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Development of a Bayesian Acceptance Approach for 
Bituminous Pavements 

JAMES L. BURATI, JR., CHARLES E. ANTLE, AND JACK H. WILLENBROCK 

Traditional approaches for estimating the percentage of a lot that is within 
specification limits (PWL) are based on random samples taken from the lot 
being evaluated. These approaches suffer from the small sample sizes neces­
sitated by the destructive and time-consuming tests that are usually used in 
determining the quality of the materials. The development of a Bayesian ap· 
proach for estimating PWL is presented that incorporates informat.ion concern· 
ing the contractor's past performance on the project along with the current 
sample results in determining the estimate for the PWL of the current lot. The 
procedure assumes that the dally population mHan i• • ra11r.Ju111 varial.Jle Lhdl fol­
lows a normal distribution, that the production process is also normally distrib· 
uted, and that the process variance is constant. These assumptions are con­
firmed by using goodness-of-fit tests on data collected from 13 bituminous 
runway-paving projects. Computer simulation shows that the Bayesian PWL 
estimators are slightly biased as compared with the unbiased traditional quality­
index method but that the PWL estimators exhibit smaller variances than the 
traditional method. 

To determine the acceptability of and the ultimate 
payment for bituminous pavements, a procedure is 
necessary for estimating the quality of those mate­
rials. In this paper a method tor estimating the 
quality of construction materials is presented that 
incorporates empirical Bayes (EB) techniques into 
t-.h<;> eRt-. im11t-.1>. It is believed that such a procedure 
will be an improvement over current procedures based 
solely on classical techniques because it incorpo­
rates information concerning the contractor's past 
production record into the estimate for the current 
lot of material. The method, which should be appli­
cable for many construction materials, will be de­
veloped from data collected on bituminous concrete 
pavement construction projects. 

TYPES OF ACCEPTANCE PLANS 

Several different types of acceptance plans have 
been developed and recommended for bituminous con­
crete pavement materials. Some acceptance plans 
<.!-.!> determine the acceptability of the material 
from the average, or mean, of the test results from 
a sample. These plans are based on the assumption 
that the. standard deviation is known (or assumed). 
This known standard deviation is used to determine 
the acceptance limits within which the sample means 
must fall. 

Other types of acceptance plans (]:,~r2r~) are 
based on the fact that the standard deviation is not 
known and must be estimated from the sample re­
sults. In one type of plan the sample mean must 
fall a specified number (k) of standard deviations 

from the acceptance limit. (e.g., x - L > kR). The 
specified number (k), in essence, determines the 
percentage of the material that must exceed the ac­
ceptance limit before the material is accepted. In 
an extension of this method (1, 2, 7-9) , the calcu­
lated percentage of the material that is within the 
acceptance limits (percentage within limits, or PWL) 
is used for acceptance purposes. This method pro­
vides a natural measure for the relative quality of 
the material (presumably 90 PWL is superior to 80 
PWL) • It can therefore be used for developing a 
price-adjustment schedule that relates the quality 
of the material (as measured by PWL) to the payment 
to be received for the material. 

The PWL method has the advantage that it consid­
ers both the mean and the variability of the mate-

rial and then incorporates these into one value, 
PWL, which can then be related to payment level. 
The PWL approach is a well-accepted method that has 
been adopted by state (_!!,,!!) and federal (10) agen­
cies. The PWL approach to acceptance is the one for 
which an EB estimator will be developed in this 
paper. 

PROBLEMS WITH EXISTING PLANS 

Many acceptance plans currently in use that attempt 
to account for material variability use the sample 
range to estimate this variability. When the range 
is employed in a PWL acceptance plan, it is actually 
used to estimate the sample standard deviation. It 
has been pointed out (11) that the range method pro­
vides a biased estimate of PWL. The sample standard 
deviation, which provides an unbiased estimate for 
PWL, will be used in this paper to provide a better 
method for estimating PWL. 

One major problem common to all types of con­
struction-material acceptance plans is the rela­
tively high costs and destructive nature of many of 
the tests commonly used tc measure the qu.:lity and 
acceptability of the material. The luxury of using 
a sample size of 100 for each lot may be possible in 
industrial and manufacturing applications but is 
totally impractical for most construction situa­
tions. Sample sizes in construction-material accep­
tance plans are typically about four or five samples 
per lot. The objective in this paper is to develop 
an acceptance procedure that addre"sses this problem 
of a limited sample size. 

The method used will be to employ an EB procedure 
to estimate the quality of a given lot of material. 
This procedure will incorporate the preceding infor­
mation from the contractor's production history on 
the project into the estimate for the quality of the 
material placed during the day for which the quality 
is being estimated. In other words, the preceding 
information about the contractor's process capabili­
ties will be pooled with the test results from the 
current sample to estimate the quality of the mate­
rial in question. 11.s pointed out by Mart:z ( 12) , 
this pooling of data tends to have the effect of in­
creasing the sample size. 

BAYESIAN ESTIMATOR FOR PWL 

The case to be considered in the development of the 
Bayesian estimator is that of basing the acceptance 
of a lot of material on an estimate of the PWL value 
for the lot. It is common practice to estimate the 
PWL value for a given lot of material from the mean 

(X) and standard deviation (s) of a number of tests 
performed on samples randomly selected from the 
lot. In this way, each lot is considered totally 
independent of preceding or subsequent lots. The 
method to be developed will employ Bayesian concepts 
to pool information from previous lots with the re­
sults from the current lot to estimate the PWL for 
the current lot. 

In the development of the Bayesian estimator it 
will be assumed that the sampling is from a normal 
process, i.e., that the daily test results are nor­
mally distributed. It will also be assumed that the 
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process has a constant variance. The final assump­
tion to be made is that the daily population means 
are also normally distributed. The Bayesian ap­
proach considers this daily population mean as a 
random variable and assigns some distribution to 
it. The appropriateness of these assumptions will 
be verified against data collected from 13 field 
construction projects, and this analysis will be 
presented in a later section. 

The normal-normal assumption is quite convenient 
and is frequently used when the data are only ap­
proximately normally distributed because it forms 
what is known as a conjugate family. Conjugate fam­
ilies make updating of the preceding distribution 
with current data to form the subsequent distribu­
tion . relatively easy. That is, if one samples from 
a normal process with a fixed variance (cr') and 
the preceding distribution for the mean is normal, 
the subsequent distribution for the mean will also 
be normally distributed. This ailows for a fairly 
convenient estimator for the mean of the subsequent 
distribution. 

Bayes Estimator for Daily Population Mean 

Parameters Known 

The underlying assumptions on which the estimator 
will be developed are presented in Figure 1 and may 
be summarized as follows: 

(!) 

(2) 

where 

Xij j daily test results for day i; 
µi population mean for day i; 

process variance (assumed equal for all 
days, i.e., constant variance); 
preceding mean of the distribution of daily 
population means (µi); i.e., µi is a random 
variable with mean equal to µp; 
preceding variance of the distribution of 
daily population means (µi); i.e . , µi is a 

2 
random variable wi th variance equal to crp; 

i = 1, 2, 3, ••• , N = number of days; and 
a 1, 2, ••• , n =number of tests per day. 

2 2 
If cr , µP' and crp were known, then with a squared 

error loss function, the Bayes estimator for daily 
population mean (call it 0) can be shown to be given 
by 

Figure 1. Assumptions made in development 
of Bayesian estimator for daily population 
mean. 

DAY 1 

(3) 
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The derivation of this equation has been discussed 
by Burati (13). 

Parameters Unknown 

The estimator in Equation 3 was based on the assump­
tion that the process variance and preceding distri-

2 
bution were known. Because cr 2

, µP' and crp are not 
known in the typical construction situation, their 
values must be estimated from the sample results. 
Based on the results of N previous days, natural 
estimators for µP and cr 2 are 

N 
µP = (1/N) ;~1 X; (4) 

N 
a2 

= (1 /N) ;~, s[ (5) 

where 

N number of previous days, 

xi daily mean for day i, and 
2 

Si daily variance for day i. 

Equation 5 is the pooled estimate for variance for 
the case of an equal number of tests each day. This 
is typically the case for density test results in 
asphalt pavement construction. If the number of 
tests per day is not constant, which may be the case 
for certain test results, such as the Marshall and 
extraction tests, the following formula must be used 
to determine the pooled estimate for process vari­
ance: 

a2 = [(n, - l)sr + (n2 - l)s~ + ... + (nk - l)saJ/(n1 + n2 + ... + nk - k) (6) 

2 2 2 
where s1, s2, ••• , sk are the daily sample vari-
ances for day 1, 2, ••• , k and n1, n2, . , nk 
are the number of tests per day for day 1, 2, •• 
k. 

• 2 
The development of an estimate of op is not so 

obvious as t he case of µp and cr 2
, because there is no 

natural estimator t hat is readi ly apparent. The 
daily means can be thought of as being equal to the 
daily population mean (µi) plus some average error 

term ( £ ); i.e., 

(7) 

This can be illustrated as follows: 

DAY 2 DAY 

H -N(µ,.0
2

: 
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Xu =µi +e1 

X12 = µ; + €2 

X;3 = µi + €3 

and 

X· ~ (I/n) £ X· · 
l j= J IJ 

but this can also be written as follows: 

or 

but 

is merely the average error (E), so 

(8) 

(9) 

(10) 

(I I ) 

If it is assumed that the daily population mean 
(µi)and the average error term for the day (c) are 
independent of each other, because 

then 

Var(X\) =Var{µ;)+ Var (€) 

2 
It may be

2 
recalled that µi "' N(µp, crp) J 

Var(µi) = crp· Also, it may be noted that 

Xii~ N(µI> cr2) 

Then 

so 

Therefore, 

Var(€) = u2 /n 

If this information is combined, it can be stated 

Var(X) =a~ + (u2 /n) 

(12) 

(13) 

then 

(14) 

(15) 

(16) 

(17) 

(18) 

The variance of the daily means can also be stated 
as follows: 

- N - = 2 
Var(X;) = [l/(N -1)] i~l (X; - X) 

where 

N number of previous days: 
xi daily mean for day i; and 
-.. 

(19) 

X grand mean, i.e., mean of daily means for N 
previous days. 
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If the right side of Equation
2
19 is referred to as 

5N• then the estimate for crp is therefore as fol­
lows: 

(20) 

Because all these values are estimates, it may be 
p9ssible on some occasions for cr 2 /n ·to exceed 
5N· Because it is not possible t9 have a variance 
less than zero, the estimate of crp will be as fol­
lows: 

a~ = s~ - ( u2 /n) if positive, 

= 0 if s?i - ( a2 /n) is negative 

To summarize, an EB estimate for the daily popula­
tion mean <Pi> may be calculated from the sample re­
sults as follows: 

""2 .... .... 
where crp, µP' and a• are as defined above. 

ESTIMATING PERCENTAGE WITHIN LIMITS 

Because the acceptance procedure under consideration 
is based on PWL, it is necessary to develop a method 
for estimating FWL by using the EB estimator for 
daily population mean (EB mean estimator) that was 
developed above. A number of possible estimators 
for PWL that are based on the EB mean estimator can 
be developed. 

Tr~d itic:-:e.l Quellty-!nde~ Appr oac h 

The traditional approach uses the daily sample mean 
and standard deviation results to calculate a qual­
ity index (Qr, or Qul. Once the quality index 
has been calculated for a given lot, the estimated 
PWL can be determined from tabled values. The qual­
ity index can be calculated as follows: 

QL = (X - L)/s 

o r 

Ou= (U-X)/s 

where 

QL lower quality index, 
Qu upper quality index, 

L lower specification limit, 
u • upper specification limit, 

X sample mean, and 
s = sample standard deviation. 

(21) 

(22) 

Table 1 is used to estimate PWL values based on QL 
and Qu va lues . The procedure for deriving this 
table was dev~loped by Wi llenbrock and Kopac (11). 

An example will help to dP.sc:ribe this approach, 
referred to as method 1, for estimating PWL. The 
following values are known for the case of accep­
tance of a lot based on mat density: X = 97.6 per­
cent, s = 1.05 percent, L = 96.7 percent, and n = 4. 
The quality index can then be calculated as follows: 

Qr,= (X - L)/s = (97.6 - 96.7)/1.05 = +0.857. 

From Table 1, the estimated PWL for the lot is 78.6 
percent. 

Bayes Quality-Index Approach 

Logically, the first step in incorporating the EB 

-.. 
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Table 1. Standard deviation method for estimating percentage of lot within limits. 

Percentage Negative Values of Qu or QL Percentage Positive Values of Qu or QL 
Within Within 
Limits n=3 n=4 n=S n=6 n=7 Limits 

so 0.0000 0.0000 0.0000 0.0000 0.0000 99 
4S 0.1806 0.ISOO 0.1406 0.1364 0.1338 98 

40 0.3S68 0.3000 0.2823 0.2740 0.2689 97 

39 0.3912 0.3300 0.3106 0.3018 0.2966 96 

38 0.42S2 0.3600 0.3392 0.329S 0.3238 9S 

37 0.4S87 0.3900 0.3678 0.3S77 0.3S IS 94 
36 0.4917 0.4200 0.3968 0.38S9 0.3791 93 

3S O.S242 0.4SOO 0.42S4 0.4140 0.4073 92 

34 0.SS64 0.4800 0.4S44 0.4426 0.43S4 91 

33 O.S878 0.SIOO 0.4837 0.4712 0.4639 90 

32 0.6187 O.S400 O.Sl3l 0.S002 0.49S2 89 
31 0.6490 0.S700 0.S424 O.S292 0.S21 l 88 

30 0.6788 0.6000 O.S717 0.SS86 0.SS06 87 

29 0.7076 0.6300 0.6018 O.S880 O.S846 86 

28 0.7360 0.6600 0.631S 0.6178 0.609S 8S 

27 0.763S 0.6900 0.6619 0.6480 0.639S 84 
26 0.790S 0.7200 0.6919 0.6782 0.6703 83 

2S 0.8164 0.7SOO 0.7227 0.7093 0.7011 82 

24 0.8416 0.7800 0.7S3S 0.7403 0.7320 81 

23 0.8661 0.8100 0.7846 0.7717 0.7642 80 

22 0.8896 0.8400 0.8161 0.8040 0.7964 79 
21 0.9122 0.8700 0.8479 0.8363 0.8290 78 

20 0.9342 0.9000 0.8798 0.8693 0.8626 77 

19 0.9SSS 0.9300 0.9123 0.9028 0.8966 76 

18 0.9748 0.9600 0.94S3 0.9367 0.931S 7S 

17 0.9940 0.9900 0.9782 0.9718 0.9673 .74 
16 1.0118 1.0200 l.012S 1.0073 1.0032 73 

IS 1.0286 l.OSOO 1.0469 1.0437 1.0413 72 

14 1.0446 1.0800 1.0819 1.0813 l ."0798 71 

13 l.OS97 1.1100 1.1174 1.1196 1.1202 70 

12 1.0732 1.1400 1.1 S38 1.IS92 1.161S 69 
11 1.0864 1.1700 1.1911 1.2001 l.204S 68 

10 1.0977 1.2000 1.2293 1.2421 l.2494 67 

9 I.I 087 1.2300 1.2683 1.2866 1.2966 66 

8 1.1170 1.2600 1.3091 l .3328 l.346S 6S 

7 1.1263 1.2900 1.3S 10 1.3813 1.3990 64 
6 1.1330 1.3200 1.3946 1.4332 l .4S62 63 

s 1.1367 l.3SOO 1.4408 l .4892 l.S 184 62 

4 1.1402 1.3800 1.4898 l.SSOO l.S868 61 

3 1.1439 1.4100 1.5428 1.6190 1.6662 60 

2 1.1476 1.4400 1.6018 1.6990 l.761S SS 
l l.lSIO 1.4700 1.6719 1.8016 1.8893 so 

mean estimator into the PWL estimate is simply to 
substitute it for the sample mean in the calculation 
of the quality index. This approach, referred to as 
method 2, can be written as follows: 

QL = (flEB - L)/s (23) 

or 

Qu = (U - ilEB)/s (24) 

where PEB is the EB estimator for daily population 
mean and QL' Qu• L, u, and s are as described 
before. 

The next logical step in developing a Bayes 
quality-index approach is to extend the concept of 
pooling preceding information with current sample 
results to the estimate of the variability of the 
material. Because in the development of the EB mean 
estimator it was assumed that the process had a con­
stant variance, the estimate for the process variance 
(cr 2

), as defined in Equation 5, should be an improve­
ment on the use of the sample standard deviation (s) 
in the quality-index calculation. This approach, 
method 3, can be written as follows: 

(25) 

or 

n=3 n=4 n=S n=6 n=7 

1.ISIO 1.4700 1.6719 1.8016 1.8893 
1.1476 1.4400 1.6018 1.6990 l.761S 
1.1439 1.4100 l.S428 1.6190 1.6662 
1.1402 1.3800 1.4898 1.SSOO l.S868 
1.1367 l.3SOO 1.4408 1.4892 1.S 184 

1.1330 1.3200 1.3946 1.4332 l.4S62 
1.1263 1.2900 l.3SIO 1.3813 1.3990 
1.1170 1.2600 1.3091 1.3328 l.346S 
1.1087 1.2300 1.2683 1.2866 1.2966 
1.0977 1.2000 1.2293 1.2421 1.2494 

1.0864 1.1700 1.1911 1.2001 l.204S 
1.0732 1.1400 l.IS38 I. I S92 1.161S 
l.OS96 1.1100 1.1174 1.1196 1.1202 
1.0446 1.0800 1.0819 1.0813 1.0793 
1.0286 l.OSOO 1.0469 1.0437 1.0413 

1.0118 1.0200 l.Ol 2S 1.0073 1.0032 
0.9940 0.9900 0.9782 0.9718 0.9673 
0.9748 0.9600 0.94S3 0.9367 0.931S 
0.9SSS 0.9000 0.9123 0.9028 0.8966 
0.9342 0.9000 0.8798 0.8693 0.8626 

0.9122 0.8700 0.8479 0.8363 0.8290 
0.8896 0.8400 0.8161 0.8040 0.7964 
0.8661 0.8100 0.7846 0.7717 0.7642 
0.8416 0. 7800 0.7S3S 0.7403 0.7320 
0.8164 0.7SOO 0.7227 0.7093 0.7011 

0.790S 0.7200 0.6919 0.6782 0,6703 
0.763S 0.6900 0.6619 0.6480 0.639S 
0.7360 0.6600 0.631S 0.6178 0.609S 
0.7076 0.6300 0.6018 O.S880 0.S846 
0.6788 0.6000 O.S717 O.SS86 0.SS06 

0.6490 O.S700 O.S424 O.S292 0.S2 ll 
0.6187 O,S400 O.Sl31 O.S002 0.492S 
O.S878 O.SlOO 0.4837 0.4712 0.4639 
O.SS64 0.4800 0.4S44 0.4426 0.43S4 
O.S242 0.4SOO 0.42S4 0.4140 0.4073 

0.4917 0.4200 0.3968 0.38S9 0.3791 
0.4S87 0.3900 0.3678 0.3S77 0.3SIS 
0.42S2 0.3600 0.3392 0.329S 0.3238 
0.3912 0.3300 0.3106 0.3018 0.2966 
0.3S68 0.3000 0.2823 0.2740 0.2689 

0.1806 O.ISOO 0.1406 0.1364 0.1338 
0.0000 0.0000 0.0000 0.0000 0.0000 

Qu = (U -flEB)/(iP/' (26) 

where (o 2 )1/2 is the estimated process variance as 
defined in Equation 5 and QL, Qu, µEB• L, and U are 
as described before. Although the use of 02 may not 
be strictly Bayesian, it is based on the same prin­
ciple of pooling preceding information because it is 
defined as the average of all daily sample variances 
on the project. As long as the constant-process 
variance assumption is appropriate, this third 
method should provide a good estimate for PWL. 

Normal-Distribution Approach 

Another approach to estimating the PWL for the lot 
of material is simply to consider the process to be 
normally distributed and to use the daily estimates 
for mean and standard deviation as the parameters 
for the normal distribution that describes the popu­
lation for the day. In this way, the PWL can be 
estimated by using a standardized statistic ( z) and 
tables of the standard normal distribution to esti­
mate the proportion of the daily population that is 
within the specification limits. 

Two Bayes approaches can be developed for calcu­
lating the z-value to be used for estimating PWL. 
These approaches, methods 4 and 5, differ in the 
estimator that is used for the daily population 
standard deviation. These two methods parallel the 
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way that variability was estimated in methods 2 and 
3, which have been described previously. 

Method 4 uses the daily sample standard deviation 
to estimate the population standard deviation along 
with the EB mean estimator. The calculation for z 
can then be described by the following: 

(27) 

or 

(28) 

where ZL is the standardized variate for the lower 
specification limiti z0 is the standardized variate 
for the upper specification limiti and L, U, µEB• and 
s are as described before. 

Method 5, on the other hand, uses the pooled es­
timate of process variance as the estimate for the 
daily population variability, This can be described 
as follows: 

(29) 

or 

(30) 

where all terms are as described before. 

VERIFICATION OF ASSUMPTIONS 

In the previous section, several semiempirical Bayes 
estimators for· PWL (EB PWL estimators) were devel­
oped. These estimators were based on three assump­
tions concerning the production process and the dis­
tribution of the daily population means. It was 
assumed that the process was normally distributed 
with a 'constant variance from day to day and that 
the daily population means were normally distrib­
uted. Before the EB PWL estimators can be evalu­
ated, it is necessary to determine whether the 
assumptions on which they were developed are appro­
priate for the case of a bituminous concrete surface 
course. In order to verify or refute these assump­
tions, a number of goodness-of-fit (GOF) tests were 
conducted on density, asphalt content, and aggregate 
gradation data collected on actual paving projects. 
Although GOF tests were conducted on all of these 
properties, only density is discussed in this paper. 

Data were collected from 13 bituminous concrete 
runway-paving projects in four states. The proj­
ects, designated A through M, and their locations 
and approximate tonnages placed are given in Table 
2. More than 200,000 tons of bituminous concrete 
were placed on these projects. 

Daily Popu1at i on Means 

The first assumption to be considered is that the 
daily population means are normally distributed. 
This assumption can readily be checked by applying a 
GOF test to the daily sample means from the 13 proj­
ects for which data are available to see whether 
they can be assumed to follow a normal distribu­
tion. Three commonly employed GOF tests that were 
considered for the analysis included the chi-square 
(X 2

), Kolmogorov-Smirnov (K-S), and Cramer-von 
Mises (CvM) tests. The x2-test requires a rela­
tively large sample size and was therefore not ap­
propriate in this instance because the largest num­
ber of days on any project was only 26. The K-S 
test is a widely accepted general-purpose GOF test. 
The CvM test is particularly appropriate for small 
sample sizes, which was the case in this analysis. 

The K-S and CvM tests were implemented by means 
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Table 2. Projects from which data were collected. 

Concrete Placed 
Project State (tons) 

A New York 8,210 
B Pennsylvania 2,500 
c Virginia 25,300 
D New York 10,660 
E New York 60,000 
F Pennsylvania 6,850 
G New York 3,250 
H New Jersey 6,850 
I Virginia 2,230 
J Virginia 3 ,050 
K Virginia 8,000 
L Virginia 33,000 
M New York .l..~ ... Q.M. 
Total 205,900 

Table 3. K-S GOF results for assumption of normal distribution for daily 
population density. 

Dogr••• of K-STe•t Critical Value 
Project Freedom Statistic (ll'. = 0.05) Decision 

A 15 0.1375 0.220 @ 

B 6 0.2062 0.319 @ 

c 19 0.1127 0.195 @ 

D 17 0.1530 0.206 @ 

E 12 0.1809 0.242 @ 

F 10 0.1972 0.258 @ 

G 23 0.1060 0.184 @ 

H 10 0.2092 0.258 @ 

I 13 0.1003 0.234 @ 

J 9 0.1690 0.271 @ 

K 21 0.0959 0.188 @ 

L 26 0.1146 0.176 @ 

M 18 0.1572 0.200 @ 

Note: @ = do not reject normality assumption. 

of a computer program, GOF, written by Don T. 
Phillips of Purdue University (14). The program, 
which had to be modified to run on the compiler that 
was being used, is capable of conducting x•, K-S, 
and CvM GOF tests on up to 500 sample observations. 

The results of the K-S tests on daily population 
density are given· in Table 3. The critical values 
for a 5 percent level of significance (CJ • O. 05) 
given in the table are taken from a paper by Lillie­
fors (15). These values, which were determined by 
Monte Carlo methods, are appropriate for the case 
where the mean and standard deviation for the theo­
retical distribution to be tested are determined 
from the sample observations. As can be seen from 
an examination of Table 3, there are no instances in 
which the normality assumption can be rejected at 
the CJ = o. 05 level. This provides a solid argu­
ment in favor of the validity of the normal distri­
bution assumption for daily population means. 

The results of the CvM tests on daily population 
density art! ylven in Table 4. The critical values 
for CJ = O. 05 shown in the table are taken from tile 
monograph by Phillips (14). Once again, there are 
no instances in which the normality assumption can 
be rejected. 

Distribution of Production Process 

The next assumption to be considered is that the 
process from which the daily samples are drawn is 
normally distributed. The logical way to test this 
assumption is to conduct GOF tests on the individual 
daily test results to determine whether they can be 
assumed to follow a normal distribution. This ap­
proach is not feasible because of the small number 
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Table 4. CVM GOF results for assumption of normal distr ibution for daily 
population density. 

Project CVM Test Critical Value 
Project Days Statistic (C1 = 0.05) Decision 

A IS 0.1009 0.461 @ 

B 6 0.0602 0.461 @ 

c 19 0.0782 0.461 @ 

D 17 0.1003 0.461 @ 
E 12 0.0620 0.461 @ 

F 10 0.0792 0.461 @ 

G 23 0.2029 0.461 @ 
H 10 0.2700 0.461 @ 
I 13 0.0698 0.461 @ 
J 9 0.0491 0.461 @ 
K 21 0.2974 0.461 @ 
L 26 0.0674 0.461 @ 
M 18 0.1306 0.461 @ 

Note: @=do not reject normaUty assumption. 

Table 5. K-S GOF results for assumption of normal distribution for density 
residuals. 

Project 

A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 

Degrees of 
Freedom 

60 
24 
73 
65 
36 
30 
69 
40 
91 
34 
84 
91 
68 

K-S Test 
Statistic 

0.0996 
0.0746 
0.0843 
0.0690 
0.0623 
0.1093 
0.1072 
0.0807 
0.0850 
0.0760 
0.0894 
0.0473 
0.0823 

Critical Value 
(C1 = 0.05) 

0.114 
0.182 
0.104 
0.110 
0.148 
0.161 
0.1067 
0.140 
0.093 
0.152 
0.097 
0.093 
0.107 

Decision 

@ 
@ 
@ 
@ 

@ 
@ 
x 
@ 

@ 
@ 
@ 
@ 

@ 

Note: @=do not reject normality assumption; X =reject normality 
assumption. 

of tests (usually f our) per day. Th i s sampl e size 
is too s ma l l f or eve n the CvM test to provide mean­
ing f ul r e sults. To conduct a GOF test it was there­
fore necessary to pool, or group, the individual 
daily test results for all days on the project. 

When the data were pooled from day to day, it was 
not possible simply to combine the daily tests, be­
cause each day had a different sample mean. To 
eliminate the day-to-day variation in sample means, 
instead of pooling the actual test values, the daily 
residuals were combined to form one large sample for 
each project. The residuals were defined as the 
difference between the individual test results for 
each day and the daily sample mean for the respec­
tive day. The procedure for determining the residu­
als can be illustrated in equation form as follows: 

r;j = (xii - X;) (31) 

where 

xij test result number j for day i, 

Xi daily sample mean for day i, and 
rij residual number j for day i. 

If the production process from which the individ­
ual daily test samples were d r awn is normal, these 
i x j residuals s houl d be normal l y distributed with 
mean equal to zero. 

K-S tests were conducted on the residuals for 
each project to determine whether they could be as­
sumed to follow a normal distribution. Because of 
the larger sample sizes for the residuals, CvM tests 
were not conducted. The results of the K-S test for 
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normality on the individual test residuals for den­
sity are shown in Table 5. Once again, the critical 
values for a= 0.05 are f rom Lilliefors (1 5). 
With the exception of one p r o j ect, the norm~lity 
assumption cannot be rejected at the a = O. 05 
level. This is convincing evidence of the appropri­
ateness of the assumption that the production pro­
cess is normally distributed. 

Ass ump t i on o f Consta nt Process Variance 

The final assumption to be addressed is that of a 
constant process variance from day to day throughout 
the project. To determine the appropriateness of 
this assumption it is necessary to test the equality 
of the sample variances from each of the project 
days. Bartlett's test is most often used (16) to 
test homogeneity of variances for random samples 
drawn from several populations. This test is based 
on a statistic whose sampling distribution approxi­
mates a chi-square when the random samples are drawn 
from independent normal populations. The normality 
assumption has already been addressed in the preced­
ing paragraphs. 

The form of the Bartlett test used to evaluate 
the assumption of constant process variance is that 
presented by Neter and Wasserman (17). The proce­
dure consists of d~termining a pooled estimate for 
process variance (Sp) by using the following: 

2 k 2 
Sp = [1 /(nT - k)] i~l (n; - l ) s; 

where 

5p pooled estimate for process variance, 
2 

Si ~ k-sample variances, 
ni sample size for k-project days, 

k number of sample variances, and 

(32) 

Once the pooled variance estimate has been deter­
mined, the test statistic (B) can be determined from 
the following: 

(33) 

where · 

C = 1 + [1 /3(k - 1)] ( { J
1 

[1/(n;- l)l}- (1 / (nT -k)]) (34) 

The test statistic is a value of a random variable 
that approximately follows a chi-square distribution 
with k - 1 degrees of freedom. 

A simple FORTRAN program was written to calculate 
the values of the Bartlett test statistics given. in 
Table 6 for density. The critic al values given in 
the table were determined from the appropriate chi­
square distribution for the 5 percent level of sig­
nificance (a= 0.05). 

The constant-variance assumption was rejected on 
4 of 13 projects for density. Although the con­
stant-variance assumption did not fare as well as 
the two normality assumptions tested by the K-S and 
CvM procedures, based on the results given in Table 
6 it still appears to be a reasonable assumption. 

COMPUTER SIMULATION 

The performance of the EB estimator for PWL can be 
evaluated against the traditional method by means of 
computer simulation. An extensive computer simula-
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Table 6. Results of Bartlett test for constant variance on density, 

Pooled Test Degrees of Critical Value 
Project Variance Statistic Freedom (O< = 0 .05) Decision 

A 0.8278 18.8862 14 23.68 @ 
B 2.2600 3.1491 5 11.07 @ 

c 2.4903 25.3461 18 28.87 @ 

D 1.3883 11.0024 16 26.30 @ 
E 0 .333 9.9718 II 19.68 @ 

F 0.3107 20.3424 9 16.92 x 
G 0.5200 34.0504 22 33.92 x 
H 0.7799 6.3637 9 16.92 @ 

I 0.1255 34.3288 12 21.03 x 
J 0.5570 13.3109 8 IS.SI @ 

K l.4526 37.9786 20 31.41 x 
L 0.5676 19.9066 25 37.64 @ 

M 0.4250 12.2958 17 27.59 @ 

Note: @ = do not reject normality assumption; X =reject normality assumption. 

tion analysis was conducted with the five methods 
for estimating PWL that were described previously. 
A detailed description and discuss i on of this simu­
lation analysis hav~ hPPn made (13), and a paper de­
tailing this analysis is also currently in prepara­
tion. A brief description of the basic simulation 
procedure used is presented in this paper along with 
some of the results of the analysis. 

Simulation Design 

Each simulation run consisted of 3,000 project 
days. Because paving projects are typically of 
relatively short duration, the 3,000 project days 
were made up of 100 projects of 30 days' duration 
each. In the simulation the values for the daily 
population means (µi) were generated from a 

2 

(µp• op) normal distribution. Values of o 2 were 

held cons tant for a given project but allowed to 
vary among projects. For each simulation, however, 
the ratio of the variance of the daily sample means 

2 
(0

2 /n) to the preceding variance (op) was held con-

stant for all projects. The ratio [(o 2 /n)/o;J was 

chosen to be 2.0, 1.0, or 0.5. A value of 2.0 would 
favor the EB estimator because it meant that the 
preceding distribution had a smaller variance than 
did the daily sample means. Similarly, a value of 
0. 5 for this ratio favored the traditional method 
for estimating PWL because it meant that the preced­
ing dis~ribution was more variable than were the 
daily sample means. 

In each simulation conducted, three approaches, 
designated approaches A, B, and c, were used to es­
tablish the initial estimate for the preceding dis­
tribution to be used. The approache s were 

1. The use of 20 earlier production days to es­
tablish a preceding production history for the con­
tractor; 

2. The use of the first five project production 
days to establish the precedent for the project in 

question; in this app roach , Xi and si were used to 
estimate PWL in t he traditional manner for the first 
five project days, and then the EB PWL estimators 
were used for days 6 through 30; and 

3. No knowledge concerning the contractor's pre-

ceding production was assumed; Xi and Bi were used on 
project days 1 and 2, and then EB PWL estimators 
were used. 

Evaluation Procedure 

A number of different measures for evaluating the 
performance of the EB PWL estimators (methods 2-5) 
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Table 7. Summary of results from typical computer simulation for density. 

(a2 /n)/a~ 

Approach for 
Establishing 
Preceding 
Distribution 

0.5 A 

B 

c 

1.0 A 

B 

c 

2.0 A 

B 

c 

Method of 
Estimating 
PWL 

I 
2 
3 
4 
s 
I 
2 
3 
4 
s 
I 
2 
3 
4 
5 

I 
2 
3 
4 
s 
I 
2 
3 
4 
5 
I 
2 
3 
4 
5 

l 
2 
3 
4 
s 
I 
2 
3 
4 
s 
I 
2 
3 
4, 

5 

Avg Error for Each Project 

Avg Daily 
PWL Error 
(PWL) 

0.020 
1.814 
1.645 
1.094 
0.792 
0.020 
1.550 
1.396 
0.997 
0.737 
0.020 
1.787 
i .633 
1.169 
0.900 

--0.011 
1.688 
1.374 
0.944 
0.581 

-0.011 
1.357 
1.106 
0.770 
0.454 

-0.011 
1.585 
1.323 
0.928 
0.596 

-0.007 
1.511 
1.086 
0.789 
0.380 

-0.007 
1.135 
0.827 
0.548 
0.214 

-0.007 
1.321 
0.998 
0.670 
0.313 

Avg Daily 
Squared PWL 
enor (PWL 2 ) 

88.19 
76.45 
52.30 
66.51 
44.20 
88.19 
82.21 
62.30 
74.86 
55.68 
88.19 
82.69 
6i .60 
74.56 
54.12 

85.50 
64.20 
40.88 
54.42 
33.22 
85.50 
73.92 
53.04 
65.16 
45.67 
85.50 
72.79 
51.02 
63.23 
42.86 

84.40 
54.93 
30.59 
44.88 
23.54 
84.40 
61.16 
42.06 
52.92 
34.59 
84.40 
58.72 
39.06 
49.70 
30.73 

with respect to the traditional approach (method 1) 
were employed in the ana lysis. Two will be consid­
ered here. 

For each project day, the correct PWL value for 
the daily population--call this p i--was calculated 
from the known µC and a 2 -values . By us i ng 
computer simulation, it was possible to obtain the 
correct value of Pi• a l UlC Ury that is not possible 
in an actual construction situation . Also, based on 
the daily sample, the estimated PWL--call this Pi-­
was determined for each approach (A, B, C) and each 
method (1-5). The perform~nr.P of P.ach PWL estimator 
was then evaluated by dete r min i ng the differenc e 
( 6 i =Pi - Pi) between t he estimated and correct PWL 
values. Average values of o i were determined 
for each project and pooled for the 100 projects to 
determi ne a mean PWL error for each approach and 
method used in each simulation, These daily PWL 
errors should be distr i buted about zero, i.e., have 
a mean error equal to zero. A positive or negative 
mean error is indicative of some bias in the method 
of estimating Pi• To evaluate the variabil i t y 
assoc i ated wi th each method for estimating Pir the 

squared PWL error [6~ • <Pi - Pil 2 l was also deter­
mined for each project day, and then an average 
squared PWL error was determined for each proj ect 

-



Transportation Research Record 924 

and for the entire simulation for each method of 
estimating Pi. 

Analysis of Results 

The results of a typical computer simulation for 
density are given in Table 7 (n = 4). In this 
table, method l is the traditional quality-index ap-
proach (based on Xi and sil and can be used as the 
control against which to measure the performance of 
the EB PWL estimators. 

A review of Table 7 indicates that the tradi­
tional estimator produces a better estimate in terms 
of the average PWL error (6) because the average 
error is nearly zero; i.e., it is an unbiased esti­
mator. The EB estimators, on the other hand, pro­
duce average errors that are slightly biased toward 
the high side. Nevertheless, the EB estimators al­
ways produce a lower average squared error than the 
traditional method. This means that the EB estimate 
for PWL has a higher likelihood of being close to 
the true PWL value because it has less variability 
associated with it. Space does not allow a detailed 
analysis of the results in Table 7 here. A thorough 
discussion of the results of the computer simulation 
analyses may be found elsewhere (13). 

CONCLUSIONS 

In this paper the steps involved in the development 
of an acceptance approach for bituminous pavements 
based on EB techniques are presented. The approach 
developed uses a Bayesian estimator for the percent­
age of the lot of material within specification lim­
its (PWL) for determining the level of quality for 
the pavement. The estimator was developed on the 
basis of three assumptions: 

1. The production process follows a normal dis­
tribution, 

2. The daily population means follow a normal 
distribution, and 

3. There is a constant process variance. 

GOF tests conducted on data collected from 13 bitu­
minous runway-paving projects verified the reason­
ableness of the three assumptions. Computer simula­
tion indicated that the Bayesian estimators for PWL 
were slightly biased toward higher estimated PWL 
values but that they had a lower variance for the 
estimated PWL value than that obtained with the tra­
ditional quality-index method. 

REFERENCES 

1. F.J. Bowery and S.B . Hudson. Statistically 
Oriented End-Result Specifications. NCHRP, 
Synthesis of Highway Practice 38, 1976. 

2. Quality Assurance and Acceptance Procedures. 
HRB, Special Rept. 118, 1971. 

3. v. Adam. Louisiana Experience with End-Result 
Specifications for Construction of Asphaltic 
Concrete. National Asphalt Pavement Associa­
tion, Paving Forum, Fall-Winter 1972. 

71 

4. A.W. Manton-Hall. Comparison of Operating 
Characteristics of Overlapping and Non-Overlap­
ping "Means of n" Type Specifications. Univ. 
of New South Wales, Sydney, Australia, UNICIV 
Rept. R-171, Aug. 1977. 

s. B.A. Brakey. Statistical Acceptance as In­
cluded in the Colorado Sampling and Testing 
Program. Presented at FHWA Quality Assurance 
Conference, Albuquerque, N. Mex., May 1976. 

6. R.B. Delbert. Application of End-Result Speci­
fications to the Production and Laydown of Bi­
tuminous Mixtures. Presented at Annual Meet­
ing, AAPT, Cleveland, Ohio, Feb. 1972. 

7. Improved Quality Assurance of Bituminous Pave­
ments. FHWA, 1973. 

8. R.M. weed. Optimum Performance Under a Statis­
tical Specification. Presented at the 58th An­
nual Meeting, TRB, 1979. 

9. J.H. Willenbrock and P.A. Kopac. A Methodology 
for the Development of Price Adjustment Systems 
for Statistically Based Restricted Performance 
Specifications. Pennsylvania Transportation 
Institute, Pennsylvania State Univ., University 
Park, Rept. FHWA-PA-74-27(1), Oct. 1976. 

10. Item P-401: Bituminous Surface Course. East­
ern Region, Federal Aviation Administration, 
June 1982. 

11. J.H. Willenbrock and P.A. Kopac. The Develop­
ment of Tables for Estimating Percentage of Ma­
terial within Specification Limits. Pennsyl­
vania Transportation Institute, Pennsylvania 
State Univ., University Park, Rept. FHWA-PA-74-
27(2), Oct. 1976. 

12. H.F. Martz. Empirical Bayes Estimation in 
Quality Control and Reliability: An Exposition 
and Illustration. Presented at 1974 Annual 
Meeting of the American Statistical Associa­
tion, St. Louis, Mo., Aug. 1974. 

13. J.L. Burati. Development of a Bayesian Accept­
ance Plan for Bituminous Pavements. Pennsyl­
vania State Univ., University Park, Ph.D. 
thesis, 1982. 

14. D.T. Phillips. Applied Goodness of Fit Test­
ing. American Institute of Industrial Engi­
neers, Norcross, Ga., OR Monograph Series No. 
1, 1972. 

15. H.W. Lilliefors. On the Kolmogorov-Smirnov 
Test for Normality with Mean and Variance Un­
known. Journal of the American Statistical 
Association, June 1967, pp. 399-402. 

16. R.F. Walpole and R.H. Meyers. Probability and 
Statistics for Engineers and Scientists. Mac­
millan, New York, 1972. 

17. J. Neter and w. Wasserman. Applied Linear Sta­
tistical Methods. Richard D. Irwin, Inc., 
Homewood, Ill., 1974, 

Publication of this paper sponsored by Committ~e on Quality Assurance and 
Acceptance Procedures. 




