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Precision of the Maximum-Density Estimate in 

Control-Strip Specifications 
RICARDO T. BARROS 

One method of controlling embankment densification refers to the maximum 
density observed in a local control strip. The local ma)<imum is the standard 
against which all mainline densities are compared, yet research to date has not 
addressed the precision of what is truly an estimated maximum density. The 
precision of the maximum-density estimate is quantified by simulating typical 
roliing procedures and density-growth curves with pertinent parameters, such 
as the decision rule and sample size, controlled in a factorial design. Analysis 
of the simulation results leads to the followiOQ general findings: (a) The 
sampling plan with the same locations and correlated comparisons is the most 
efficient of the four plans investigated, and (bl by employing this plan, the 
true relative density will be greater than 90 percent about 95 percent of the 
time. 

The embankment-densification process is sufficiently 
indeterminate to warrant flexible requirements in 
compaction specifications. These specifications re­
quire that maximum density be achieved during the 
construction process, not under operational' loads. 
The precise value of the maximum density, however, 
is an elusive quantity. Maximum-density values vary 
between soils, as does the compactive effort neces­
sary to achieve them. 

Control-strip specifications afford the flexibil­
ity required by variable soil response characteris­
tics. In these specifications, a pilot section, or 
control strip, is constructed and closely monitored 
during its densification. Successive passes with a 
roller are made, and when the incremental density 
change between any two passes drops to some prede­
termined small difference, compaction stops. The 
resultant density is declared the maximum. Other 
density measurements taken elsewhere in the project 
are evaluated in light of this relative maximum un­
til conditions change, in which case a new control 
strip is created. 

Another consideration, essential to the perfor­
mance of control-strip specifications, has appar­
ently been overlooked. The reference density ac­
cepted as the maximum is really an estimate. If 
this estimate were to be low, all other relative 
comparisons could be adversely affected. The pr in­
c ipal objective of this analysis was to determine 
the precision of these maximum-density estimates. 
This was done primarily through computer simulation. 

A second objective was to determine the optimum 
oampling strategy. Several specific questions ad­
dressed include the following: 

l. Should the same locations be repeatedly sam­
pled between successive passes of a roller or should 
different locations be randomly selected? 

2. What effect would reuse of a sampled density 
observation have on the sampling plan's overall ef­
fectiveness? This situation would occur if a den­
sity value used to gauge the effect of a roller pass 
were to be recycled into the assessment of the ef­
fect of the next pass. 

3. To what degree does the sample size affect 
the precision of the maximum-density estimate? 

A final objective was to investigate the impact 
of various decision rules. The decision rule estab-
1 ishes the largest density change for which rolling 
can stop and is not necessarily zero. Previous 
field applications have been ambiguous in this re­
gard, leaving the actual decision rule to the in­
spector's discretion. 

DENSITY-GROWTH CURVE AND ROLLING DISTRIBUTION 

Field experience indicates that the sampled density 
increases are large at first and then gradually be­
come smaller. In actual practice, the final density 
change may be negative. This apparent density de­
crease may be attributable to two causes: (a) a 
true density increase did occur but was not detected 
due to sampling and testing error, or (bl tightly 
interlocked particles were actually loosened by the 
rolling process, which increased the volume and de­
creased the density. Additional passes would recon­
solidate the material in the latter case. Points on 
an actual density-growth curve (1) have been plotted 
in Figure 1. - ' 

For this curve, the maximum average density of 
138.5 pcf would be achieved after eight roller 
passes. Of course, this would not be known to field 
engineers: they would have to infer true points on 
the growth curve from sample estimates. One of the 
possible sampling plans used to estimate maximum 
density might read as follows: 

Select three random locations within the control­
strip boundaries. By using a nuclear gauge, measure 
the density at each location before and after each 
pass of the roller. If the average density after 
the roller's pass is greater than the average den­
sity before, select another three random locations 
and repeat this procedure. Rolling should stop only 
when a decrease in the average density is observed 
for the current three locations. The maximum aver­
age density is then defined as the largest average 
density achieved by this procedure. 

The effectiveness of this sampling plan may be 
assessed through computer simulation. With the 
g ·rowth curve shown in Figure 1, 1, 000 applications 
of this procedure were simulated. The number of 
passes required to estimate maximum density was re­
corded for each simulation, which produced the fre­
quency histogram shown in Figure 2. The average 
number of passes made was approximately 7 in this 
simulation. The overall average density when com­
paction stopped was 137.0 pcf, which yielded a rela­
tive density of approximately 98 percent. 

There was some dispersion about this average 
value, as can be inferred from Figure 2. For ex­
ample, 13 percent of the simulations stopped on or 
before the fourth pass, which corresponds to a rela­
tive density of about 93 percent. At the other ex­
treme, 11 percent of the applications required nine 
or more passes. Thus, for this combination of 
growth curve and sampling plan, there is a 13 per­
cent risk of stopping compaction at 93 percent rela­
tive density or less and a similar risk of requiring 
an excessive amount of compaction. 

Although this type of information would be of 
great value to specification designers, this spe­
cific information is meaningful only to those deal­
ing with similar growth curves and sampling plans. 
Density-growth curves are highly variable between 
embankment materials, which raises the question of 
this sampling plan's more general operating char­
acteristics. A sensitivity analysis of these char­
acteristics will be presented after the simulation 
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procedure and its underlying theory have been de­
veloped. 

SIMULATION MODEL 

An exponential equation was selected to model the 
density-qrowth curve. Although the simulation is 
relatively insensitive to the precise mathematical 
function used, provided its shape is reasonably cor­
rect, the exponential curve affords certain conveni­
ences. Density increases behave similarly to those 

Figure 1. Typical density-growth curve. 
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observed in the field, the curve is easily fitted to 
specific points, and the average maximum-density 
plateau is reflected in the theoretical asymptote. 

Three sources of variability contribute. to any 
measured density value. These are the variability 
of the virgin material, the testing variability, and 
the variability introduced by the rolling process. 
Of these, only the first two 1have been experimen­
tally identified; the roller variability must be in­
ferred from empirical observations. Fortunately, 
this is easily accomplished by a soil-variance anal-
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Figure 2. Frequency histogram resulting 
from computer simulation of control· 
strip procedure. 
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ysis. The total variability after max i mum density 
has been reached is known, as is the s hape of the 
growth curve. A trial-and-error process may be used 
to determine the magnitude of roller variability 
that must be used in the model to match the final 
dispersion observed in the field. Typical standard 
deviations found for the virgin material, roller 
variability, and testing error are 3.0, 2.5, and 2.0 
pcf, respectively. 

Figure 3 shows the algorithm used to simulate 
each successive roller pass. Individual density 
observations were randomly selected from a normal 
distribution on the Y-axis and used to find the cor­
responding x- va lues. Each x-value, representing the 
theoretical numbe r of roller passes, was incremented 
by one unit to simulate the pass of a roller. New 

Figure 3. Simulated compaction process. 
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Figure 4. Typical density distributions obtained by simulation procedure. 
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Y-values were then computed to determine the resul­
tant densities. These new densities were then per­
turbed with a scaled random normal deviate to model 
the variability of the rolling procedure. The re­
sultant densities now represent the true distribu­
tion after X passes but must be perturbed once more 
to model the testing error incurred in their inter­
pretation. Finally, these transformed densities are 
averaged and either stored for later review or dis­
posed of in accordance with the procedure under test. 

The above procedure was repeated 1,000 times for 
each X-value, and the entire process was repeated 
for as many as 20 roller passes. Figure 4 shows 
several typical density distributions as the control 
strip is transformed along the growth curve. The 
distributions remain essentially normal although 
there is a subtle negative skewness. This skewness 
parallels the real-wor ld tendency in which distribu­
tions are skewed away from a natural boundary {maxi­
mum density in this case), but the magnitude of this 
skewness is negligible for practical purposes. Note 
that the total dispersion decreases slightly with 
additional passes, a result of the nonlinear trans­
formation in which low density values are increased 
at a faster rate than high values. 

POSSIBLE SAMPLING SCHEMES 

Maximum-density estimation using the control-strip 
technique is essentially a form of a statistical 
hypothesis test. Two hypotheses are made, one that 
maximum density has been reached and the other that 
further densification is possible. Only if a small 
density increase is observed can it be inferred that 
the soil is at or near its maximum dens i ty. 

Three important distinctions make this particular 
hypothesis test unlike most of its s t a t istical 
counterparts. First, the test itself i gnores dis­
persion, because only mean values (i.e., the average 
densities) are computed. Second, the test is in­
tended to be performed iteratively. Thus, due sim­
ply to cha nce, it is unl i kely that e ven an unrealis­
tically l ong growth curve will survive many of the 
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Figure 5. Four alternative sampling plans. 
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repeated stop-continue decisions. Finally, the 
sampling procedure itself may inadvertently influ­
ence the outcome . This would occur if independence 
were lost between any two successive comparisons. 
This last point is subtle and will be explained 
below in the analysis of alternative sampling strat­
egies. 

Three decisions must be made by an observer who 
wants to make sequentia l inferences about a dens i ty­
g rowth c u rve . The firs t is simply the n umber of 
density measurements that will be averaged to­
gether. The second is whether the measured densi­
ties are to be paired by location before and after a 
pass or whether entirely different locations are to 
be measured. Finally, a decision must be made 
whether the sample averages will be used more than 
once in successive comparisons. 

For a sample size of 3, Figure 5 shows the four 
possible sampling plans that result from these deci­
sions. Each of these plans may be distinguished by 
the manner in which the test locations are selected 
and the comparison process is repeated. 

Consider case I. Densities are measured at ran­
dom locations A, B, and C before a pass and at ran­
dom locations D, E, and F afterwards. Thus, the 
locations are independent from each other before and 
after the pass. A new set of random measurements is 
then made, and the entire test procedure is repeated 
for the next pass. 

In case II the same random locations are moni­
tored before and after each pass. The comparisons 
remain independent, however, because the entire pro­
cedure is replicated for each rolling sequence. 
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A subtle variation is introduced by the sampling 
plan in case III. Here locations A, B, and C are 
measured before the first pass, and locations D, E, 
and F are measured afterwards. Then, without an 
additional three density measurements as in case I, 
the second roller pass is made, Densities at new 
locations G, H, and I are subsequently compared with 
densities at previous locations D, E, and F. Al­
though both the first and the second comparisons are 
individually independent, they result in a corre­
lated test procedure because the measurements at 
locations D, E, and F were used twice. Thus, the 
outcome of the first comparison may have some influ­
ence on the outcome of the second. 

The final sampling plan, case IV, simply remea­
sures the densities at the same locations after 
every pass. Although this may be a practical alter­
native, it most certainly compounds the correlation 
problem cited in case III. 

One criterion by which the relative merits of 
these four plans may be evaluated is the sampling 
effort required. Note that 12 density measurements 
are required for two roller passes in cases I and 
II, but only 9 measurements are required for cases 
III and IV. Thus, the latter plans require a lesser 
sampling effort. 

OPTIMUM SAMPLING STRATEGY 

Figure 6 shows the operating characteristics of four 
distinct sampling strategies. Density increases are 
plotted on the X-axis and the probability of stop­
ping compaction is plotted on the Y-axis. Note that 
the probability of stopping compaction, which is 
equivalent to the risk of a false maximum-density 
indicat i on whenever a true density increase does 
occur, becomes larger with progressively smaller 
density changes. In other words, it becomes more 
difficult to detect density increases as the true 
density approaches the ma~imum. 

It is desirable to minimize the risk of false 
maximum-density indications. This is done if for 
any given density increase, a particular sampling 
plan is associated with the smallest probability of 
stopping compaction. Figure 6 indicates that of the 
four plans investigated, the one with the same loca­
tions and independent comparisons is most powerful 
because it has the lowest operating-characteristic 
(OC) curve. The plan with different locations and 
independent comparisons is the next most powerful 
for small density increases. 

Note the distinct impact of intercomparison cor­
relation: The risk of prematurely stopping compac­
tion is substantially increased near the point of 
maximum density, Within the subclassification o~ 

comparison type, however, the same-location sampling 
plan is still more powerful. (Curve IV is lower 
than curve III, as curve II is lower than curve I.) 

A trade-off must be considered in deciding which 
same-location sampling plan is most efficient, the 
one with independent comparisons or another in which 
the comparisons are correlated. Plans with inde­
pendent comparisons are clearly more discriminating, 
but they also require a larger effective sample 
size. For the same effective sample size, i.e., the 
same number of total measurements between two 
passes, the independent-comparison OC curve and the 
correlated-comparison OC curve cross so that neither 
is consistently lower. (The effect is similar to 
that of curve I crossing curve IV.) The indepen­
dent-comparison OC curve is lower for small density 
changes, and the correlated-comparison OC curve is 
lower for large density changes. Under these cir­
cumstances, the net effect of the two sampling plans 
must be evaluated directly from the density distri­
butions when rolling stops. 
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Figure 6. Comparison of sampling plans. 
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Figure 7. Two possible density-growth curves. 
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Simulation results indicate that for the same 
effective sample size, plans with correlated compar­
isons produce higher average relative densities. 
They also tend to produce density d i s t ributions with 
a smaller degree of dispersion. Consider two plans 
with an effective sample size of 4, for example. A 
same-location, independent-comparison plan would 
have a sample size of 2, and a same-location, cor­
related-comparison plan would have a sample size of 
4. One simulation analysis revealed that the aver­
age relative densities were 97.4 percent for the 

5 6 7 

15 

correlated-comparison plan and 96. 4 percent for the 
independent-comparison plan. The corresponding 
threshold densities at the 5 percent level of risk, 
i.e., the lower relative-density limits that are 
exceeded by 95 percent of the observations, were 
94.0 and 91.6 percent, respectively. Clearly the 
correlated-comparison plan is more powerful. Fur­
ther discussion will concentrate on the same-loca­
tion, correlated-comparison plan because it is more 
efficient for the small effective sample sizes com­
monly used (case IV in Figure 5). 

.. 
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SENSITIVITY ANALYSIS 

Alternative control-strip simulations were investi­
gated in which the effect of the growth curve, the 
variability of individual density values about the 
growth curve, the sample size, and the decision rule 
were all controlled parameters. For each combina­
tion of these parameters, 1, 000 replications were 
simulated. Although the individual final density 
distributions were fairly sensitive to these parame­
ters, reflecting the variable nature of soil compac-

Figure 8. Effect of density-growth function on density-change OC curve. 
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tion characteristics, the density-change OC curves 
were not. This sensitivity analysis focuses on 
these OC curves because they are most general, but 
control-strip-specific results are also presented in 
a sununary format. 

Two distinct density-growth curves were consid­
ered. Figure 7 shows that growth curve A reaches a 
higher average maximum density than growth curve B 
but requires additional roller passes to do so. Al­
though individual density values frequently exceeded 
these maximum average values, neither growth curve 
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exhibited a substantial increase in the average den­
sity once the theoretical asymptote was reached. 

Moderate- and high-variability components were 
incorporated into each of the growth curves. The 
total initial standard deviation of 4. 4 pcf, which 
has been used in the preceding examples, was in­
creased to 7.3 pcf for the high-variability simula­
tions. (The contributory standard deviations were 
2.0, 5.0, and 5.0 pcf for the testing error, virgin 
material, and roller variability.) 

Figure 8 shows the OC curves for growth curves A 

Figure 10. Effect of decision rule on density-change OC curve. 
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and B at both moderate and high levels of variabil­
ity. The oc curves appear to be relatively insensi­
tive to the shape of the density-growth curve but 
not to its level of variability. This will be used 
to advantage in an analytical approximation that i s 
briefly discussed in the following section. Note 
here that growth curves with high variability tend 
to have a greater risk of false maximum-density es­
timates. 

The impact of varying the sample size for a sin­
gle combination of growth curve and acceptance plan 
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Table 1. Simulation results: paired-location, correlated-test sampling plan. 

Moderate Variabilityb High Variability< 

Relative Maximum No. Relative 
Expected Density at of Passes at Expected Density at 

Decision Relative 95 Percent 95 Percent Relative 95 Percent 
Sample Ruic Density Confidence Confidence Density Confidence 

Curve• Size (pcf) (%) Limit(%) Limit (%) Limit(%) 

A 2 0.0 96.63 91.09 11 97.11 89.37 
A 2 0.5 96.62 90.54 10 96.81 88.81 
A 2 1.0 95.72 90.14 10 96.44 88.80 

A 3 0.0 97.03 93.09 II 97.78 92.49 
A 3 0.5 96.71 92.13 11 97.52 91.18 
A 3 1.0 96.27 91.44 10 97.23 90.86 

A 4 0.0 97.41 93.97 12 98.16 92.91 
A 4 0.5 96.97 93.19 11 97.78 92.49 
A 4 1.0 96.54 92 .5 0 JU 97.39 90.95 

A 5 0.0 97.48 94.04 12 98.34 93.58 
A 5 0.5 97.17 93.56 11 98.09 93.18 
A 5 1.0 96.66 92.90 10 97.61 92.51 

B 2 0.0 99.09 95.47 8 98.92 93 .31 
B 2 0.5 98.88 95.10 8 98.78 92.58 
B 2 1.0 98.74 94.97 7 98.60 92.00 

B 3 0.0 99.26 96.19 9 99.10 95.62 
B 3 0.5 99.05 95.55 8 98.99 94.55 
B 3 1.0 98.84 95.39 8 98.85 93.60 

B 4 0.0 99.35 96.86 9 99.28 96.21 
B 4 0.5 99.20 96.23 8 99.16 95.98 
B 4 1.0 99.04 95.64 7 99.01 94.89 

3 Curves A and B in Figure 7. bTotal initial standard deviation= 4.4 pcf. cTotal initial standard deviation= 7.3 pcf. 
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Table 2. Regression coefficients for empirical OC curves. 

Decision Moderate Variability" High Variabilityb 
Sample Rule 
Size (pcf) B i B2 B1 

2 0.0 0.80 -0.57 0.70 
0.5 0.90 -0.51 0.77 
1.0 1.00 -0.45 0.85 

0.0 0.80 -0.68 0.69 
0.5 0.95 -0.62 0.77 
l.O 1.00 -0.51 0.89 

4 0.0 0.83 -0.81 0.69 
0.5 0.91 -0.64 0.77 
1.0 l.00 -0.55 0.88 

0.0 0.76 -0.82 0.73 
0.5 0.99 -0.74 0.80 
1.0 1.00 -0.63 0.90 

~Tota) initial standard deviation = 4 .4 pcf. 
Total initial standard deviation= 7.3 pcf. 

Figure 11 . Worksheet for empirical OC curve construction. 
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is shown in Figure 9. Increasing the sample size 
does effect an improvement, although a point of di­
minishing returns is soon reached. It is thought 
unlikely that a sample size greater than 5 would be 
considered practical in this application. · 

Nonzero decision rules tend to degrade the pre­
cision of maximum-density estimates. The three OC 
:::urves shown in Figure 10 indicate that at the 5 
percent level of risk, the threshold density change 
increased by about 2.0 pcf as a result of increasing 
the decision rule from zero to l. O pcf. The risk 
increase is intuitively logical: To state it sim­
ply, rolling stops at a lower point on the density­
growth curve. 

These same results are reflected in Table 1, 
where curve-specific results are listed for several 
of the combinations investigated. It can be seen 
that the expected relative densities .were generally 
high and generally unaffected by the sample size. 
Although in some cases growth curves with high vari­
ability had slightly higher expected re la ti ve den­
sities, they also had a greater dispersion about 
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this average. Their threshold relat~ve densities at 
the 95 percent level of confidence for the high­
variability growth curves were uniformly lower than 
those of their moderate-variability counterparts. 
These threshold densities are sensitive to the sam­
ple size and may be influential in determining the 
required sampling effort. Finally the maximum num­
ber of required passes at the 95 percent confidence 
limit is also listed. This enables the user to es­
timate the maximum number of passes that can be ex­
pected for any one control strip. 

ANALYTICAL TECHNIQUES 

Specification designers fortunate enough to recog­
nize in Tabl~ 1 a growth curve modeling their re­
gional soils may directly implement the results of 
these findings. The sample size and dec1s1on rule 
would be selected with reference to the relative 
densities, the anticipated measuring-time delay, and 
the maximum number of passes. [Of course, the spec­
ification that subsequently uses the maximum-density 
estimate would also be considered. These specifica­
tions typically allow a certain percentage of the 
density distribution to fall below the estimated 
maximum (see paper by Barros, Weed, and Willenbrock 
in this Record).] Other designers may generate 
tables s .imilar to Table 1 by using the density­
change OC curve. 

The density-change OC curve underlies all rela­
tive-density estimates and is not sensitive to the 
shape of the density-growth curve. If this oc curve 
can be constructed and paired with a particular 
growth function, then specific probabilities may be 
computed. One nonlinear regression model that 
closely matches the form of the simulated density­
change OC curve is given as follows: 

P(STOP) = B1 exp(B2DELTA) 

where P(STOP) is the probability of stopping compac­
tion given a DELTA density increase and DELTA is the 
observed density increase in pounds per cubic foot. 
The regression coefficients that best estimate the 
simulated same-location,. cori;elated-test OC curves 
are given in Table 2. The coefficients were derived 
specifically from growth curve A, but they are simi­
lar to and conservatively represent the coefficients 
associated with lower growth functions. Plots of 
these regression models are similar to those shown 
in Figures 6 and 8-10. 

An analytical technique that empirically recon­
structs the results of computer simulation analyses 
will now be discussed briefly. This technique uses 
the density-change OC curve to determine the shape 
of the rolling-frequency distribution for a given 
sample size, such as the one shown in Figure 2. As 
indicated by the worksheet shown in Figure 11, a 
rough approximation of the density-growth curve must 
be assumed. The relative densities at incremental 
stages of compaction are then computed, as is the 
incremental density increase after each pass. These 
incremental density increases are then substituted 
into the appropriate regression model of Table 2, 
and the probability of stopping after any pass may 
be estimated. The product of this probability and 
the number of replications surviving previous stop 
or continue decisions gives the number of replica­
tions that stop after the current pass. 

The average relative density and the average num­
ber of passes made, both weighted by their frequency 
of occurrence, represent the expected relative den­
sity and expected number of passes, respectively. 
Threshold values are determined simply by proceeding 
from either tail of the frequency distribution until 
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a sufficient tail area has been accumulated. An ex­
ample of this procedure is presented in worksheet 
form in Figure 11. 

This is a practical, if empirical, analytical 
technique. It provides a means by which specifica­
tion provisions may be linked to previously unquan­
tified conditions. Iteration of the analysis for a 
range of possible growth functions should provide a 
reasonable estimate of the maximum-density estimate 
obtainable in control strips under field conditions. 

SUMMARY AND CONCLUSIONS 

Control-strip specifications monitor the magnitude 
of successive density changes to estimate relative 
densification. Small density changes, which occur 
with increased height on the density-growth curve, 
signal the approach of maximum density. The den­
sity-monitoring procedure is therefore critical to 
the pre9ision of the maximum-density estimate. 

Same-location sampling plans are more effective 
than their different-location counterparts. Appar­
ently some location-to-location variability is 
screened from the inference-making process by these 
plans, thereby increasing the plan's efficiency. 

Correlation of successive comparisons in a sam­
pling plan adversely affects the maximum-density 
estimate. This consideration must be weighed 
against the sampling effort itself: Correlated­
comparison samplinq plans require a smaller effec­
tive sample size. In practice, it is anticipated 
that the same-location, correlated-comparison sam­
pling plan will be most useful. 

Two density-growth curves were investigated by 
using both moderate- and high-variability compo­
nents. Although moderate variability should more 
realistically reflect true field conditions, high 
variability was included as part of a sensitivity 
analysis. Aspects of ~he sampling plan, such as the 
decision rule and sample size, were investigated at 
both levels of variability for the two density­
growth curves. 

Although nonzero decision rules tend to degrade 
the ability to achieve maximum .density, two factors 
are in their favor. The marginal loss in precision 
is not great, and a nonzero decision rule may be 
more easily implemented. Both agency inspectors and 
the contractor's personnel may be more easily per­
suaded that a small density deficiency is critical 
if the decision rule is 0.5 pcf rather than 0.0. 

Efficiency of the estimation procedure does im­
prove with increased sample sizes, but a sample size 
of 3 may be sufficient in practice. In any event, 
these and other subjective decisions must be made by 
the specification designer. 

A precision-gauging technique was presented that 
quantifies key aspects of the decision-making pro­
cedure. This technique led to three application­
specif ic parameters: the expected relative density, 
the threshold relative density, and the maximum num­
ber of passes. 

Finally, although maximum-density estimates may 
be influenced by the growth curve and its inherent 
variability, these are not within the designer's 
control. Specification provisions have been identi­
fied that will control the density-change OC curve, 
and the expected relative densities are consistently 
high. When these densities are evaluated in light 
of the relatively small sampling effort, it is evi­
dent that control-strip maximum density estimates 
may be exceptionally precise. 
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Software Package for Design and Analysis of Acceptance 

Procedures Based on Percent Defective 

RICARDO T. BARROS, RICHARD M. WEED, AND JACK H. WILLENBROCK 

The trend toward sttitisticol end-result specifications has led to tho develop· 
mont of conuruction specifications based on the concept of porcent dnfeetive. 
To analyze tho risks and determine the offectiveness of the accoptanco pro· 
ceduros 8$SOciated with thoso specifications, oparating·charocteristlc curves 
must be constructed. Howovor, many potential users do not have a working 
knowledge of tho noncentral t and beta distributions nocossary tor this devel­
opment. The underlying theory, several useful references, and a conversational 
computer program that greatly simplifies the design and analysis of specifica· 
tions of this type are presented. 

The current trend toward statistical end-result 
specifications has been a natural step in the evolu­
tion of the highway quality-assurance system. Where­
as the earliei: method-type speciflcations outlined 
in detail precisely how the work was to be accom­
plished, the more modern approach has been to define 
the characteristics and quality requirements of the 
finished product. Contractors are allowed consider­
able flexibility in meeting these requirements and 
the specifying agency is responsible primarily for 
the evaluation of the finished work. 

The end-result approach offers several advantages 
over the earlier method-type specifications. First, 
by recognizing the existence of both inherent and 
testing variability, it deals with construction 
parameters in a more realistic manner. Highway 
engineers have begun to realize that it is not un­
usual, nor necessarily undesirable, for a small 
percentage of test values to fall outside realistic 
specification limits. Second, by defining the con­
trol of the construction process as the contractor's 
cesponsibili ty and the acceptance of the work (end 
result) as the agency's responsibility, the likeli­
hood of contractual disputes can be reduced . Third , 
by clearly defining acceptance criteria and random­
sampling procedures, the risks to both the contrac­
tor an.d the highway agency can be controlled and 
known in advance. Under the earlier method-type 
specifications, a contractor's bid was often in­
fluenced by the reputation of the highway inspector 
assigned to the project. Fourth, the development of 
adjusted-payment schedules provides a practical 
means to deal with work that is substandard but not 
so deficient that it warrants removal and replace­
ment. Finally, because the random-sampling plans 
avoid the biases that are likely to occur when an 
inspector attempts to select a representative sam­
ple, reliable estimates of the as-built construction 
quality can be made. This information can also be 
used as feedback to determine whether further modi­
fications of the specifications are desirable. 

One of the most important steps in the design of 
an end-result speci'fication is the development of 

the operating-characteristic (OC) curve describing 
its capabilities. Although most of the necessary 
theory is available in one form or another, much of 
it is not familiar or easily accessible to highway 
engineers. In this paper this theory is outlined, 
appropriate references are cited, and a conversa­
tional computer program that greatly simplifies the 
design or analysis of the type of statis t ical ac­
ceptance procedure normally used with end-result 
specifications is presented. 

PERCENT DEFECTIVE AS A MEASURE OF QUALITY 

Although several ·statistical measures of quality are 
available, highway engineers have exhibited a strong 
preference for the concept of percent defective, the 
estimated percentage of the work falling outside 
specification limits (or its c-0mplement, the percent 
within limits). This measure is particularly appeal­
ing, not only because the amount of material falling 
within limits is believed to be strongly relate(! to 
actual performance, but because it can be applied to 
virtually any construction quality characteristic. 
This general philosophy is promulgated in Standard 
214 (1) of the American Concrete I nstitute CACI), 
for eX'ample, although the ACI acceptance criteria do 
not use a purely percent defective approach, 

Two statistical parameters commonly used with 
these procedures are the process mean and standard 
d eviation. r n this paper the situation is addressed 
in which the values of these parameters are not 
known and must be estimated from sample observa­
tions. This development is appropriate for those 
situations in which these values may change during 
the course of a project. 

Figure 1 illustrates three possible parent popu­
lations having identical percent defective levels 
and the sampling distribution associated with a 
sample size of 5. The sampling distribution is 
strongly skewed, but because the technique for esti­
mating percent defective is unbiased , its mean is 
exactly at the true population percent defective. 
The significance of this is that although the qual­
ity of any single lot may be overestimated or under­
estimated, the long-term average of these estimates 
will be exactly equal to the true lot quality. This 
is of particular importance in developing fair and 
equitable construction specifications. 

The theory associated with the development of 
spec ifications based on percent defective is some­
what involved and uses frequency distributions sel­
dom encountered in introductory statistics courses. 




