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Effect of Sample Size on Disaggregate Choice Model 
Estimation and Prediction 

FRANKS. KOPPELMAN AND CHAUSHIE CHU 

Sampling error is one of several types of error in econometric modeling. The 
relationship between sampling error and sample size Is well known for both es
timation and prediction. The objactive of this paper is to provide an empirical 
foundation for using these relationships to guide researchers and planners In the 
determination of sample size for model development. Analytic relationshlp1 
are formulated for sample size, precision of parameter estimates, replication of 
parent population, and replication of an alternative (transfer) population. Ap
P.li«;11tion of these relationships to an empirical case Indicates that the sample 
si~s required to obtain reasonably precise parameter estimates are substantially 
la:i'ge1 than the sample sizes generally considered to be needed for disaggregate 
iiiodel estimation. Nevertheless, these sample sizes appear to be adequate for 

•obtaining reasonably accurate replication of observed choice behavior in the 
parent population. The corresponding results for prediction to a different pop
talitlon are complicated by the issue of intrapopulatlon transferability. Al· 
th"iliigh the results reported in this paper should be validated in other contexts, 

· it appenrs that accurate estimation requires the use of samples that aro sub
., rtantlally larger thnn formerly believed. Samples on the order of 1 ,000 to 
:o 2,000 observations may be needed for estimation of relatively simple dlsaggre· 

gate choice models. Although some reduction in this requirement may be ob
tained by Improved sample design, it is unlikely that the final sample require
ments can be reduced to less than 1,000 observations. 

Econometric model development is subject to errors 
in sampling, model specification, and measurement 
(1,2). In this paper the effect of sampling error 
is -examined for model parameter estimates, predic
tion to the parent population, and transfer predic
tion to alternative populations. Sampling error can 
be avoided only by observation and analysis of the 
entire population. In practice, the resources 
needed to collect data for an entire population and 
to analyze such extensive data are not available. 
Thus there is concern with tt.e magnitude of the er
rors that are introduced by use of samples of the 
population. 

The precision of parameter estimates for a given 
model structure depends on the estimation method 
used, the multidimensional distribution of the ex
planatory variables of the model, the range of ob
served behavior, the quality of model specification, 
and the sample size of the estimation data set. 
Maximum likelihood estimation obtains consistent 
estimators of the parameters of disaggregate choice 
models and provides estimates of the precision with 
which ~odel parameters are estimated !J-2>· 

The relationship between parameter precision and 
sample size is well known. The variance-covariance 
matrix of estimated parame.ters in linear models is 
inversely proportional to sample size (1,_!). The 
variance-covariance matrix of maximum likelihood 
estimated parameters for quantal choice models is 
a:11ymptotically equal to the negative inverse of the 
Hessian of the log-likelihood function (3,7). The 
asymptotic expectation of this matrix is- inversely 
proportional to sample size. Thus the error var
iance-covariance matrix for maximum likelihood esti
mations for quantal choice models is also inversely 
proportional to sample size. 

Prediction accuracy describes how well the choice 
model replicates observed population behavior. Pre
diction performance of discrete choice models is a 
function of the validity of model theory, the valid
ity of the derived model structure, the quality of 
model specification, the quality of variable mea
surement and prediction, and the accuracy of esti
mated parametus (~) • As noted earlier, precision 
of model parameter estimates is proportional to 
sample size. It follows that the portion of predic
tion error attributable to errors in parameter esti
mation is inversely proportional to sample size. 
Specifically, the expected squared prediction error 
caused by errors in parameter estimates is inversely 
proportional to sample size (5, p. 189). Models 
estima.ted from large samples are more likely to ac
curately describe the behavioral process in the gen
eral population, and consequently such models will 
have satisfactory prediction performance. Thus it 
is expected that increased sample size in model es
timation will yield improved prediction precision. 
When excessively small samples are used, both param
eter estimates and parent population predictions 
will be highly variable. 

Transferability of disaggregate discrete choice 
models is based on the argument that choice models 
describe the underlying behavioral response mecha
nisms or decision rules of decision makers in the 
selection among available alternatives (9,10). If 
the behavioral response or decision ruleB Of deci
sion makers is constant across contexts, models that 
describe this behavior will be transferable. Kop
pelman and Wilmot (11) define transferability of 
choice models as •the degree of success with which 
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Table 3. Estimation statistics for sectors. 

Item Sector I Sector 2 Sector 3 Region 

No. of cases 744 746 746 2,236 
No. of observations 2,078 1,997 2,156 6,240 
Log-likelihood at zero -755 -722 -790 -2,266 
Log-likelihood at convergence -580 -636 -688 -1,928 
Likelihood ratio statistic 350 171 203 678 
Likelihood ratio index 0.232 0.118 0.129 0.150 

Thus the variance of this 
given a particular model and 
tion of sample size only. 

standardized measure, 
population, is a func-

Scattergrams of estimates for the standardized 
measure of the seven slope parameters defined in 
Table 1 have been plotted against estimation sample 
size for three different sectors, and they were 
found to be similar. The scattergram for one param
eter in all three sectors is shown in Figure 2, 
along with the 95 percent confidence limits. As ex
pected, the estimated parameters are distributed 
around the true parameters, with the range , of the 
distribution decreasing as the number of cases in 
the estimation sample increases. It appears that 
the mean of Q is approximately zero (as expected) , 
and its variance is described by Equation 6a. Fur
ther, approximately 95 percent of the reported devi
ations are within the expected range. Finally, as 
expected, the distribution appears to be independent 
of the estimation sector. 

Parameter Precis ion and Required sample S i ze 

The deviations of sample parameter estimates from 
population parameters for each sector and variable 
are related to the standardized deviation (Q) by the 
population parameter standard deviation (sp), as 

Figure 2. Scattergram of parameter precision with 
estimation sample size. 
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shown in Equation 5. Thus the variance of observed 
parameter deviations (zsl is 

V(z) = s ~ x V(Q) 

= s~ x [(Np - Ns)/N,] (7) 

which is a function of the estimation precision of 
the parameter in the population and the sample 
size. Thus it is possible to determine a priori the 
sample size necessary to obtain a predetermined 
level of precision in parameter estimates if the 
population estimation precision and the population 
size are known. 

The interpretability of this relationship can be 
improved by formulating an index of estimation pre
cision that is independent of both population size 
and sample size. Thus, 

(8) 

This index, which can be estimated by 

(9a) 

or 

s; = s; x N, (9b) 

characterizes the underlying precision of a param
eter independent of population or sample size. This 
index is used in Equation 7 to obtain 

V(z) = s; ((Np - N,)/(Np x N,)] (1 0) 

By using this formulation, the sample size required 
to obtain a desired level of precision in parameter 
estimation can be obtained as a function of popula
tion size and as the precision index for the param
eter of interest. Specifically, an Ns is sought 
that satisfies 

ta/2 s. ((Np - N,)/(Np x N, )] y, = z• 
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where ta;2 is the t value associated with the 
desired {a) confidence interval for z, and z* is 
the desired level of precision for parameter devia
tions. Thus the required sample size is 

which, when ~ is large, simplifies to 

N; ~ (s. t" 12 /z')2 

(12) 

(13) 

This relationship (Equation 12) is plotted in 
Figure 3 for the case where the parameter deviation 
(z) is to be within a prespecified fraction of the 
parameter precision index (S•) with 95 percent 
confidence. 

Equation 12 (or Equation 13 for large popula
tions) can be used to predetermine the sample size 
required to obtain a desired level of parameter es
timation precision. This determination is based 
only on prior knowledge of population parameter pre
cision (s•) and population size . Estimates of 
population pa i:arneter prec ision may be obta ined by 
reviewing estimation results of similarly specified 
models in other contexts or by using a small data 
sample. The use of small data samples to obtain in-

Figure 3. 
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formation to optimally design the sample collection 
procedure for a given sample size has been treated 
extensively by Daganzo (12). 

The use of Equation 12 is demonstrated by calcu
lating the sample size required to have 80 percent 
confidence so that the absolute value of z is less 
than 25 percent of the true parameter value. (More 
generally, this analysis can be undertaken by set
ting limits to the deviations of each parameter 
based on required or desired precisions in model 
sensitivity and the differences in the corresponding 
variable across plan alternatives. However, use of 
an arbitrary proportional range provides useful in
sight in an abstract context.) The calculation pro
cess and results are given in Table 4. These re
sults illustrate again that as population increases, 
the number of sample observations needed to obtain 
parameter estimates in a prespecified range in
creases at a decreasing rate. When the population 
is large (i.e., more than 100,000), the required 
estimation sample size approximates that for an in
finite population. 

More important, the 
tain what would appear 
rameter precision are 
those commonly used in 
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Table 4. Computation of required sample size to obtain 
Required Estimation of parameter estimate with 80 percent confidence within c-___ ,_ Cl:~-~-- n:&+-----• 

<!to percent ot true values. 
(3' 

uu.uop.o.v ....,,.._.., ,...., .. .._.. ... ._ .. ..,,.,,u,. 

s, Population Sizes 
(see (see s, 
Tables 2 z Tables 2 (From Np: N : p 

Variable and 3) (±0.25 {3*) and 3) Equation 8b) 100,000 1,000,000 

DAD -2.366 ±0.5915 0.2261 10.69 533 536 
SRD -2.349 ±0.5873 0.1747 8.26 324 325 
CPD DA 3.047 ±0.8518 0.2268 10.72 260 261 
CPDSR 1.767 ±0.4418 0.1593 7.53 475 477 
GWSR 0.6477 ±0.1619 0.0962 4.55 1,276 1,291 
NWORKSR 0.3084 ±0.0771 0.0674 3.19 2,721 2,789 
OPTCINC -0.0297 ±0.0074 0.0084 0.395 4,422 4,605 
TVTT -0.0233 ±0.0058 0.003i O.i47 i,032 J,042 
OVTTD -0.0588 ±0.0147 0.0393 1,086.0 20,756 25,523 
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the predictions obtained by model transfer describe 
behavior in the prediction context.• Transferability 
is a function of the quality of the model being 
transferred and similarity of behavior between the 
estimation and application contexts. 

If choice behavior in the estimation and applica
tion contexts is based on the same behavioral pro
cess, the transfer predictive accuracy will be in
creased with increasing estimation sample size. In 
this case a model that is able to provide an accu
rate description of choice behavior in the estima
tion context will be able to provide an accurate 
description in the transfer qr prediction context. 
However, if the behaviors are different between con
texts, increasing sample size will not ovtrcome 
these differences. 

The objective of this paper is to examine the ef
fect of sample size on parameter stability, parent 
population replication, and transferability of dis
aggregate discrete choice models of multinomial 
logit structure. In each case the expected rela
tionship is formulated, an empirical analysis to 
s9ale the relationship is executed, the implications 
of the results obtained are identified, and the con
clusions are stated. Also described in the paper 
are the data used and the structure of the empirical 
analys'is undertaken. 

DATA DESCRIPTION AND EXPERIMENTAL DESIGN 

The data used in this study are drawn from the Wash
ington Council of Governments travel to work modal
choice data collected in Washington, D.C., in 1968. 
The data used describe the central business district 
(CBD) work trips of 2,236 persons. A total of 1,768 
persons have drive-alone, shared-ride, and transit 
alternatives available, and 468 persons have only 
the shared-ride and transit alternatives because of 
a lack of driver's license or cars available in tl:le 
household. 

The data set is partitioned into three geographic 
sectors of the region according to worker residen
tial location. Each sector includes approximately 
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one-third of the sample observations. The partition 
allows for the examination of the first two rela
tionships (parameter precision and parent population 
replication) within each sector and the investiga
tion of the transferability prediction relationship 
for six possible transfers between sectors. 

Experimental Design 

The experiment is constructed by defining the full 
sample in each sector as the population of interest, 
and then subsamples of varying size are selected. 
These subsamples are used to estimate multinomial 
logit model parameters, predict choice behavior for 
the population from which each sample is drawn, and 
predict choice behavior in each of the other popula
tions (different sectors). The flowchart of this 
experimental design is shown in Figure 1, which de
scribes the sampling and estimation process and also 
the data used in each step. 

The first task of the experiment is to obtain 
subsamples of each data set with varying s~mple 

sizes. Forty-five sets of random subsamples' are 
independently generated within each of the three 
sectors. Within each sector the number of individ
uals in samples varies from approximately 50 to ap
proximately 700. 

The second task is to estimate travel modal
choice models for each data sample. A nine-variable 
model previously used in a related study of model 
transferability (11) is used in this study. 1 These 
variables are described in Table 1. By using a 
single-model specification, it is possible to ex
amine the effect of sample size without any con
founding effects caused by differences in model 
specification. The estimation results for these 
models that use the full set of cases (the popu).a
tion) in each sector, as well as additional data, 
are reported in Tables 2 and 3. These estim<1tion 
results serve as a reference point for the mod,els 
estimated with each data subsample. The subsample 
estimation results are discussed later in this paPEt~· 

The third step in this study is to use the 45 
models estimated in each sector to predict travel 
choices for the full population in each of the thi::ee 

Figure 1. Flowchart for experimental design. FLOWS OF OPERATION NATURE OF DATA STATISTICAL TASK 
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sectors. Thus each estimated model is used for 
three predictions (one local and two transfer pre
dictions). Population replication performance and 
transferability measures are developed for each of 
these predictions and used to interpret the model 
accuracy relationships. 

EFFECT OF SAMPLE SIZE ON PARAMETER PRECISION 

Parameter precision is the inverse of the variance 
of parameter estimates obtained in repeated sam
ples. In this section the effect of sample size on 
parameter precision is evaluated by comparing esti
mated parameter values for each sample with the pop
ulation parameters reported in Tables 2 and 3. 

Rel.ation Between Parameter Precision and Sample Si.ze 

The total available data sample is treated as the 
population of interest, and the difference between 
models estimated on subsamples and models obtained 
from the population (full sample) is examined. As 
all the data included in each subsample are also in
cluded in the full sample, the parameter estimates 
obtained from samples are not independent of param
eter estimates obtained from the full data. The 

Table 1. Model specifications. 

Variable Name 

DAD, SRD 

CPDDA, CPDSR 

QPTCINC 

TVTT 

OVTTD 

GWSR 

NWORKSR 

Variable Description 

Dummy variable specific to drive-alone and shared-ride 
alternative; measures average bias between pairs of al
ternatives other than that represented by the included 
variables 

Cars per driver included separately as alternative specific 
variables from the drive-alone and shared-ride modes; 
measures the change in bias among modes caused by 
changes in automobile availability within the household 

Round trip out-of-pocket travel cost divided by income 
(cents/$1,000 per year); measures the effect of travel 
cost on mode utility with cost effect modified by 
household income level 

Round trip total travel time in minutes; measures the 
linear effect of combined in- and out-of-vehicle travel 
time in mode utility 

Round trip out-of-vehicle travel time divided by trip 
distance (minutes/mile); measures the additional effect 
of out-of-vehicle travel time in utility in addition to the 
effect represented in TVTT; this added effect is struc
tured to decline with increasing trip distance 

Dummy variable that indicates if the breadwinner is a 
government worker specific to the shared-ride alterna
tive; measures the effect on shared-ride utility of shared.
ride incentives for government workers 

Number of workers in the household specific to the 
shared-ride alternative; measures the change in utility of 
shared ride when there is an opportunity to share ride 
with a household member 

Table 2. Parameter estimates and standard errors. 

:,iector 1 Sector 2 Sector 3 
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variance-covariance matrix of estimates of the dif
ference between sets of parameter estimates is 

where 

(I) 

error variance-covariance matrix for dif
ference between subsample and full sample 
parameters (i.e., z = Bs - Bpi; 
error variance for subsample and full 
sample parameter estimates, respectivelyi 
and 
covariance matrix of error between sub
sample and full sample parameter esti
mates. 

When the subsample is a subset of the full sample 
Esp= Es (see Appendix), 

(2) 

which is a positive semidefinite covariance matrix 
of the differences between parameter estimates ob
tained from the full and partial samples. The ex
pected relationship between the full and partial 
sample error variances is 

(3) 

Thus, from Equations 2 and 3, 

(4a) 

and 

l:, = [(Np - N,)/N,] l:p (4b) 

A standardized variable of differences is formulated 
in parameter estimates (Q) by dividing observed dif
ferences (z) by the standard error in population 
estimates (8pll i.e., square root of diagonal 
elements in Epr 

Q = z/sp (5) 

where Q is the difference between sample parameter 
and population parameter values in units of standard 
error of estimate for population parameters. Then 
the variance and 95 percent confidence interval of Q 
are 

V(Q) =(Np - N,)/N, (6a) 

and 

-1.96 [(Np - N,)/N,] y, .; Q' .; 1.96 [(Np - N,)/N,] v. (6b) 

Region 

Estimated Standard Estimated Standard Estimated Standard Estimated Standard 
Variable Parameter Error Parameter Error Parameter Error Parameter Error 

DAD -3.30 0.425 -1.44 0.388 -2.73 0.402 -2.67 0.226 
SRD -2.62 0.321 -1.92 0.277 -2.52 0.345 -2.35 0.175 
CPD DA 4.06 0.426 2.70 0.382 3.58 0.396 3.41 0.227 
CPDSR 2.06 0.319 1.67 0.235 1.59 0.315 1.77 0.159 
OPTCINC -0.0138 0.0155 -0.0282 0 .0139 -0.0280 0 .0163 -0.0297 0.0084 
TVTT -0.0459 0.0070 -0.0110 0.0050 -0.0223 0.0049 -0.0233 0.0031 
OVTTD -0.0019 0.0668 -0.1068 0.0666 -0.0421 0.0781 -0.0588 0.0393 
GWSR 0.775 0.179 0.481 0.166 0.680 0.163 0.648 0.096 
NWORKSR 0.133 0.128 0.275 0.110 0.502 0.123 0.308 0.067 
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gate choice models. The sample size required is 
substantially greater than the 300 to 500 observa
tions that are commonly believed to be adequate for 
estimation of disaggregate choice models (13,14) for 
more than half of the model parameters. Use of the 
smaller samples can be expected to produce parameter 
estimates that have a high probability of being dif
ferent from the true parameters. This problem is 
most serious for level-of-service parameters in this 
data set. 

Conclusions 

Two important observations are drawn from these re
sults. First, as expected from sampling theory, the 
variability of parameter estimates is inversely 
related to sample size in a nonlinear fashion. This 
relationship is described in Equation 6a and is 
shown in Figure 3. Second, the sample size needed 
to obtain a reasonable degree of precision for mana
gerial policy analysis may be substantially larger 
than is commonly suggested for the estimation of 
disaggregate choice models. The commonly held be-
1 ief that 300 to 500 observations are satisfactory 
seriously underestimates the sample size suggested 
in this analysis to be needed to obtain estimators 
with a reasonable level of precision, especially for 
service variables. The importance of these results, 
if verified in other studies, is heightened by not
ing that many studies use samples of 1,000 or less 
observations (15-20), whereas this study suggests a 
need for at least-Y,ooo observations to estimate tbe 
influence of travel time--a most important vari
able--within an error of 25 percent with 80 percent 
confidence. 

EFFECT OF SAMPLE SIZE ON REPLICATION OP PARENT 
POPULATION BEHAVIOR 

In this study an examination was made of the ac
curacy with which a model, based on a data ·sample, 
will replicate the choice behavior in the parent 
population. 

Relation Between Replication Pr ecision 
and sample Size 

A prediction test statistic was formulated to test 
the hypothesis that the subsample model Bs is 
equivalent to the population model Bpr 

PTSp (ll,) = - 2 [LLp (ll,)- Llp (/Jp)] (14a) 

This statistic, which is approximately chi-squared, 
can be expressed as a quadratic function of the dif
ference in parameter vectors 12): 

PTSp (il,) ~ (/Jp - iJ,)' ~j,1 (llp - ll, ) (14b) 

Entering the relationships of z • Bs - B~ and Iz • 
[(Np - Ns)/Nslip into Equation 14b: 

PTSp (il,) ~ [(Np - N,) /N, ] z' ~~1 z (15) 

where the quadratic term has a chi-square distribu
tion. Thus the mean, variance, and 1 - a confi
dence limit of PTS are 

E(PTS) = [(Np - N,)/N,) x DF 

V(PTS) = 2 [(Np - N,)/N,) 2 x DF 

and 

PTSa <: ((Np - N,)/N,) xbF,a 

(16) 

(17) 

(18) 
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Thus both the average and the variance of PTS de
crease at decreasing rates as estimation s ample size 
increases and are asymptotic to zero as Slllllple aize 
approaches population size. 

Empirical Population Repl ication Analyais 

To empirically demonatrate the reaulta derived in 
the previous subsection, the predicted population 
log-likelihood by subsample models was c0111pared with 
the maximum population log-likelihood by the full 
sample model in each sector by using Equation Ua. 
To examine the distribution and the 95 percent con
fidence limit of the prediction test atatiatic, 
scattergrams were plotted of the prediction test 
statistic against the size of eatimation aubsa111ples 
in Figure 4, and different SYlftbols were used to rep
resent observations in three different sectors. The 
results were as follows. Firat, as expected, PTS i• 
subject to large variance when estimation aample 
size is small. The variance decreases quickly aa 
estimation sample size increases for observations in 
all three sectors. Second, the curve that repj:e
sents the expected value of PTS appears to fit the 
data well in all three sectors. Third, it appear• 
that approximately 95 percent of the observation• 
are within the 95 percent confidence limit shown in 
the figure. Thus these observations are consistent 
with the analytic results in the previous subsection. 

Next, a prediction index was formulated that de
fines the degree to which the model estimated from 
the sample describes the population choice behavior 
relative to a model based on the full population. 
First, the common sample-based rho-square measure 
was considered: 

p~ = [LL, (/J,) - LL, (NM)] /[LL; - LL, (NM)] 

= I - [LL, (ft,)/LL, (NM)] (19) 

and then the corresponding population-based rho
square measure based on sample estimates was con
sidered: 

p~, = [LLp (ll,)- LLp (NM)] /[LI,; - LLp (NM)] 

= I - [LLp <P.)/LLp (NM) I (20) 

Based on population estimates, 

P~p= [Llp (ilp)- LLp (NM)]/[LI,;- Llp (NM)] 

= I - (LLp (ilp)/LLp (NM)] (21) 

Next, the prediction index as the ratio of Equations 
20 and 21 were formulated to obtain 

PI= [LLp (jl,)- LLp (NM)]/ [LLp (ilp)- Llp (NM)] (22) 

The degree to which the sample-baaed model provides 
information about population behavior relative to 
that provided by the population-baaed model (when 
both referred to a common base or null model) is de
scribed by this ratio. To interpret thilll index, it 
was reformulated in terms of the population test 
statistic defined in Equation 14, 

PI= I - {PTSP (il,)/2 [Llp (/lp)- Llp (NM)]} (23) 

Note that the denominator in the second term is 
fixed for any population and model specification. 
Further, thi's term is the population model likeli
hood ratio statistic reported in Table 3 for each of 
the population models. These results can be used to 
obtain the expected value of the prediction index 
for fixed population size as 

E (PI)= I - {[(Np - N,)/N,] · DF/LRS} (24) 
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Figure 4. Scattergram of prediction test statistics with 
estimation sample size. 
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Finally, these results are modified for populations 
of varying size but otherwise identical characteris
tics by defining the likelihood ratio statistic per 
individual in the population (obviously, population 
data from which to compute the population model 
likelihood ratio statistic are not generally avail
able7 however, LRS• can be estimated by dividing 
sample likelihood ratio statistics by sample size): 

LRS. = LRS/Np (25) 

to obtain 

E(PI)= 1-{((Np- N,)/N,) · DF/(Np x LRS.)} (26) 

which, when population size is much greater than 
sample size, is 

E (PI)= I - (1/N,)(DF/LRS,) (27) 

The expected values of the prediction index for the 
three Washington sectors for different sample sizes 
are given in Table 5. The proportion of information 
provided by models estimated on samples of different 
sizes depends on the ability of the model to provide 
information about the behavior under study, as rep-

Table 5. Expected value of prediction index (large population cases). 

Expected Value of Prediction Index 

Sample Size Sector I Sector 2 Sector 3 

50 0.62 0.21 0 .34 
100 0.81 0 .6 1 0.67 
200 0.90 0.80 0.83 
300 0.94 0.87 0.89 
500 0.96 0.92 0.93 

1,000 0.98 0.96 0.97 

resented by the value of the likelihood ratio sta
tistic per person. Sectors in which estimated mod
els provide a higher level of information require 
smaller samples to achieve a specified level of rel
ative accuracy. The results reported in Table 5 in
dicate that samples of 500 observations will provide 
90 percent of the potential model information in 
each of the three Washington sectors. 

Conclusions 

The theoretical relationship between sample size and 
population description accuracy in the form of the 
prediction test statistic is developed in Equations 
14-18. The empirical results reported in Table 4 
are consistent with those relationships. The pre
diction index provides a somewhat more intuitive 
description of the relationship between sample size 
and descriptive accuracy. This relationship sug
gests that, in terms of descriptive accuracy alone, 
disaggregate samples of approximately 500 observa
tions may be adequate. It is important to recognize 
the distinction between the ability to describe 
parent population choice behavior and prediction of 
behavior under different travel service conditions, 
which is most closely related to the precision of 
estimated parameters discussed previously. 

EFFECT OF SAMPLE SIZE ON TRANSFERABILITY 

Statistical Measure and General Expectation 

Model transferability at the disaggregate level can 
be measured by indices formulated as a function of 
the difference in log-likelihood for the application 
sample of a transferred model [LLi (Bjll and the cor
responding log-likelihood of a model estimated on 
th.at sample [ (LL1 (Bi l I. The transfer test statistic 
formulated by Koppelman and Wilmot (11) is used to 
evaluate the transferability of disaggregate models. 
The transfer test statistic 
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(28) 

is chi-squared distributed with degrees of freedom 
equal to the number of model parameters under the 
assumption of fixed values of parameters for the 
transferred model. The smaller this statistic is, 
the more applicable is the transferred model to the 
application population. 

This transfer test statistic is used to evaluate 
each of the sample-based models for transfer predic
t ion of the population in each of the other sec
tors. Based on the results given previously, it is 
expected that the sample size of estimation subsam
ples will affect both the prediction accuracy and 
variability of a transferred model in the applica
tion context, according to a function that has a 
term of <Np - Ns ) /N8 to reflect the samp ling 
effect in the e stimation context. It is also ex
pected that there is a constant term in the transfer 
test statistic that reflects the real difference be
tween the population of estimation and the popula
tion of prediction. These relationships are devel
oped in the following subsection. 

Relation Between Transfer Test Statistics and 
Estimation Sample Size 

The transfer test statistic of a subsample-based 
model ( j), predicted on an alternative popula
tion, is defined as 

(29a) 

which is approximately (2) , 

* Let TTSij represent the transfer test statistic 
of the population-based model, 

(30) 

which is nonstochastic, 

Np . x Ep . ( i • e. , the 

va?iance)matrices are 
lations; thus !±..!.), 

and assume that NPi x Epi ~ 

underlying model parameter co-

equivalent) for the two popu-

TISu = TTS;j + (Np/Npi) · [(Npi - N,i)/N,i] (2 ((3;° - f3t)' ~~) zi 

+ z; ~~i Zj] (3J) 

That is, the transfer test statistic for a model 
estimated on a sample from population j and used to 
predict population i is composed of a deterministic 
term that describes the difference between the two 
populations and a random variate composed of two 
terms. The first term, which is random because of 
t he inclusion of Zj , is normally distx ibuted w.ith 
mean zero and variance-covariance matrix Ezj . The 
s eco nd term , wh ich is random because of the inclusion 

f ' -1 . . o Zj EzjZj, is a chi-square variate with DF de-

grees of freedom. Thus TTSij is the sum of a 
fixed term, a normal variate and a chi-square vari
ate. (Note that this breakdown of TTSij ignores 
the interaction betwee n terms and the constraint 
r equired to ensure that TTSij is no nnegative.) The 
e xpected value and va.r iance of TTSij are 

and 

v (TTS) = 4 (Np/Np) x { [(Npj - N,)/N,j] TTsa 
+ 2 (Np/Nv) x [(NPi - N,i)/N,i] x OF 

(32a) 

(32b) 

67 

Thus both the mean and variance of the transfer test 
statistic increase with the difference between the 
two populations involved in the transfer process and 
decrease with the sample size of the estimation data 
set so that increased estimation sample size im
proves model transferability. 

Empirical Analysis 

The relationship between the transfer test statistic 
and sample size is examined empirically. The values 
of the population transfer test statistic (TTS*) are 
given in the following table: 

Estimation 
Sector 
l 
2 

3 

Transfer Test Statistics 
by Prediction Sectors 
_l~ _2~ _3~ 

48.6 
52.6 

67.2 72.2 
29.0 

27.2 

A scattergram of the transfer test statistic is 
plotted with varying estimation sample size for 
transfers from sectors l and 3 to sector 2. This 
scattergram (Figure 5) can be used to examine the 
expected values and variances that were derived, In 
this figure, the expected value of the transfer test 
statistic, as defined by Equation 32a, is included. 
As expected, these lines fit the data in the respec
tive transfer conditions satisfactorily. It was 
also observed that the variance of the transfer test 
statistic decreases as the estimation sample size 
increases, as suggested by Equation 32b. Further, 
it was noted that the sample values of TTS for 
transfers from sector 3 with the smaller value of 
TTS* have both lower mean and variance than the 
transfer from sector 1. 

Conclusions 

The expected relationship between sample size and 
transfer prediction accuracy is confirmed by the 
analytic decomposition of the transfer test statis
tic into a deterministic component that is indepen
dent of sample size and a stochastic component, the 
distribution of which is related to sample size for 
any given pair of populations. Empirical transfer
ability tests are consistent with these analytically 
formulated relationships. 

Increases in sample size cannot be used to offset 
real differences in the behavior of two populations 
reflected in TTS*. However, they can reduce the 
stochastic component. Additional analysis may be 
useful to clarify these relationships, but the em
pirical results suggest that samples in excess of 
500 observations may be necessary to obtain transfer 
predictive accuracy that is close to that which 
might be obtained by a population-based model. 

SUMMARY OF CONCLUSIONS 

The conclusions reported in the preceding sections 
are summarized as follows. 

1. Increased size of estimation samples leads to 
(a) parameter estimates that are likely to be closer 
to the true population parameters, (b) smaller stan
dard errors of such parameter estimates, and (c) 
more accurate prediction of population choice be
havior. 

2. The sample size required to obtain choice 
model parameter estimates that are reasonably close 
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Figure 6. Sctttereram of transfer test 11:11ti1tlc;1 
predictld on 1ector 2. 
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to the true population parameters appears to be sub
stantially larger than the sample sizes commonly 
prescribed for the estimation of disaggregate choice 
lllOdels. 

J. The sample size required to obtain a model 
that accurately replicates parent population choice 
behavior appears to be somewhat s.maller than that 
required to obtain accurate parameter estimates and 
accurate prediction under changed transportation 
service coordination. 

4. Model transferability is a function of both 
the e•timation sample size and the difference be
tween the populations involved in the model trans
fer. Increasing estimation sample sf.ze has a posi
tive effect on transferability at a decreasing 
rate. When the difference between two populations 
is large, it is expected that there will be large 
and highly variable transfer errors. 

5. The required sample size needed to obtain a 
desired level of parameter estimation or prediction 
•ccuracy can be determined from pilot sample model 
estimation. 

Overall, these results suggest the need to use 
data samples on the order .of 1,000 to 2,000 observa
tions rather than 500 observation• as formerly be
lieved. Although some reduction in sample size may 
be feasible when optimal sample stratifications are 
used (12, and paper by Sheffi and Tarem elsewhere in 
this Record), it is unlikely that samples as small 
as 500 obaervations can be adequate for model esti
mations. 

Obviously, the importance of this issue suggests 
that additional research be undertaken to obtain 
further analysis of sa111Ple size requirements for 
models of different travel choices in different con
texts. Purther, transportation planners must formu
late judgments about the desired precision of esti
mated model parameters and model prediction. 

Appendix: Derivation of Sample Population 
Covariance Matrix 

The population (full sample) estimation covariance 
matrix is the negative inverse of the Hessian <.!> or 

where 

V • covariance matrix, 
i: • sunonation, 

(Ai) 

Xit • variable vector of alternative i for indi
vidual t, 

Xt • probability weighted average of xit' 
P • choice probability of alternative i for in-

dividual t, 
p .. population, 
t • individual, and 
i • alternative. 

Similarly, the sample estimation covariance matrix is 

(A2) 

where s is the eam~le indir.~~nr-
Pinally, the covariance matrix between the popu

lation and sample estimates is given by 

Ysp = r l: l: (X11 - Xe)' Pu (I - Ptt) (Xtt - Xu)l-1 

Ltcs,p J J 
(A3) 

where sp indicates the covariance matrix between 
population and sample estimations, and t C s,p im
plies sununation over observations included in both 
the sample and the full population. 

In this case, where the population includes all 
sample elements, the sununation over s,p is equiva-
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lent to the sununation over s and Vsp = Vs or, by 
using the notation in the body of the paper, Esp = 
Es• 
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