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Trio Generation bv Cross-Classification: 
~ ~ 

An Alternative Methodology 

PETER R. STOPHER AND KATHIE G. McDONALD 

An alternative methodology for calibrating cross-claHification models, namely 
multiple classification analysis (MCA), Is described. This technique, which has 
been available in the social sciences for some time, does not appear to have 
been used in transportation planning before, although it appaan to be able to 
overcome most of the disadvantages normally associated with standard cross­
classification calibration techniques. The MCA procedure is described briefly, 
and its merits-in terms of statistical assessment, ability to permit comparisons 
among oltornative m.odels, and lack of susceptibility to small samples In In­
dividual coils- are discussed In dotall . In odditiOl1, the mo1hod Is based on 
anolysls of variance (ANOVA), which provides a 1tructu1od proccduro for 
choosing among alternative independent variables and alternatlvo groupings of 
the values of each indopondent variable. Thos_e procedures are contrasted with 
standard procedures for cross-classification that estimate cell values by obtain· 
ing the average value of the dependent variable (e.g., a trip rate) for those sam· 
pies that fall in the cell and are unable to use any information from any other 
cell . Tho procoss of selocting indopondont varlebles and soloctlng groupings of 
the choson variables by ANOVA Is illustrated with a case study. In this study 
the way in whioh 1his procoss works, and tho degree t.o which there Is statistical 
information provided to guide the analyst's judgment, is shown. In the case 
study the confirmation of intuitive selections of variables is noted, and also a 
more surprising result Is pruduced thot shows that the bust household grouping 
is one that combinos two· and throo-porson households. A 1ocond case itudy 
illu1trat11S tho u~o of MCA to calculate trip ratos. A compRrlson of tho conven· 
tional procedure of cell-by-cell averaging, a MCA design that does not account 
for lntoraatlons among ·tho Independent varlablos, and n MCA design that cor· 
rects for Interactions ii given. It is sho'\'n that the MCA allows trip rates to bo 
computed for some cells that are empty of data, and that MCA removes some 
po11lbly spurlOu• rates that arise in tho oonvontlonol method from tmoll somple 
problems in some cells. It Is concluded thot MCA providos a strong moth· 
odology for cross-classification modollng and that the procedure Is effective In 
surmounting most of the drawbacks of conventional estimation of such models. 

In the 1950s and 1960s most of the transportation 
planning studies developed trip-generation equations 
that used linear regression, particularly for person 
trip-production models. Linear regression was so 
strongly favored that it was the central method in 
the FHWA guide to trip-generation analysis (_!). 
Initially, most of the trip-production models were 
formulated to provide an estimate of zonal trips as 
a function of zonal variables that describe house­
holds. These models were increasingly the subject 
of criticism, particularly because of the loss of 
variance from the extremely aggregate nature of 
these models (2,3). As a result, household models 
of trip production were developed, in which the de­
pendent variable became average daily trips per 
household, possibly by purpose, as a function of at­
tributes of the household. These models remained, 
however, predominantly linear-regression models. 

In a few instances an alternative method of 
modeling trip generation appeared. This method was 
known in the United States as cross-classification 
and in the United Kingdom as category analysis 
(,!,_!). This method went through the same develop­
ment as the linear-regression models, with the ear­
liest procedures being zonal trip estimators and 
subsequent models being based on household rates. 
For the most part, however, the household-based 
cross-classification models were still aggregate in 
that the classes were defined by average zonal val­
ues for household characteristics, and the trip 
rates were applied simply to the total number of 
households in the zone. Thus a cross-classification 
model based on household size and car ownership 
might have the first variable classified into 
ranges, such as less than 1.5 persons per household, 
1.5 to 2.5 persons per household, 2.5 to 3.5 persons 

per household, and more than 3.5 persons per house­
hold1 car ownership was defined similarly in 
ranges. Then the average zonal values of each vari­
able would be determined and a look-up table would 
be used to select one cell rate for the zone based 
on these average values. 

Although the cross-classification method was 
widely used in Europe, it was used in relatively few 
instances in North America. However, with the grow­
ing interest in and use of disaggregate modal-choice 
models, there has been a resurgence of interest in 
the cross-classification model, formulated now in a 
substantially more disaggregate form. Currently, 
the model uses categorized variables, such as house­
hold size, vehicle ownership, and so on, as integer 
values to describe individual households. The rates 
in the cells of the table are then average rates for 
households of that type. The correct application of 
the model is to estimate the number of households in 
each category within a zone and to multiply the trip 
rates by those numbers of households. In general, 
this procedure leads to greater disaggregation than 
any other method of modeling trip generation, and 
has the potential to provide more policy responsive­
ness than alternative methods. 

It is important to note that the standard method 
for computing cell rates is to group households in 
the calibration data to the individual cell group­
ings and total, cell by cell, the observed trips by 
purpose groups. The rate is then the total trips in 
a cell by purpose divided by the number of house­
holds in the cell, In mathematical form it is as 
follower 

tC.n = TC.n/Hmn (I) 

where 

tp a trip rate for the pth purpose for households 
mn 

of type mn, 
~ = observed trips made by households of type mn 

mn for purpose p, and 
Hmn m observed number of households of type mn. 

The advantages that can be claimed for the disag­
gregate cross-classification methods are as follows: 

1. Cross-classification methods are independent 
of the zone system of a region, 

2. They do not require prior assumption about 
the shape of the relationships (which do not even 
need to be monotonic, let alone linear), 

3. Relationships can differ in form from class 
to class of any one variable (e.g., the effect of 
household size changes for zero car-owning house­
holds can be different from that of one car-owning 
households) , and 

4. The cross-classification model does not per­
mit extrapolation beyond its calibration classes, 
although the highest or lowest class of a variable 
may be open-ended. 

The models also have several disadvantages, which 
are cormnon to all traditional cross-classification 
methodsz 
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1. There is no statistical goodness-of-fit mea­
sure for the model, so that closeness to the cali­
bration data cannot be ascertained7 

2. Cell values vary in reliability because of 
different numbers of households being available in 
each cell for calibrationi 

3. Por the same reason as the preceding problem, 
the least-reliable cells are likely to be those at 
the extremes of the matrix, which may also be the 
most critical cells for forecasting, 

4. There is no effective way to choose among 
variables for classification or to choose best 
groupings of a given variable, except to use an ex­
tensive trial-and-error procedure not usually con­
sidered feasible in practical studies1 and 

S. The procedure suppresses information on vari­
ances within a cell . C2>· 

An alternative computational method is put for­
ward and illustrated in the balance of this paper. 
This method--multiple classification analysis 
(MCA)--is well known to quantitative social scien­
tists, but appears not to have been used by trans­
portation analysts. As will be shown, MCA overcomes 
most of the disadvantages of cross-classification 
models without compromising their advantages. 

MULTIPLE CLASSIPICATION ANALYSIS 

MCA is based on a simple extension of analysis of 
variance CANOVA), and ANOVA (6) also provides a sta­
tistically powerful procedure-for selecting the var­
iables and their categories for the cross-classifi­
cation models. MCA is a rather simple development 
out of ANOVA, with application primarily for two-way 
and greater ANOVA problems. 

Although a number of alternative methods have 
been suggested for analyzing cross-classification 
models and for determining cell values (7), there 
remains little change in the practice of ;stimating 
cross-classification cell values. Generalized lin­
ear models and regressions with dummy variables have 
been suggested as alternative methods, but they have 
not found wide acceptance in practice. The method 
suggest,ed here is more readily accessible than most 
others because it is contained in some statistical 
packages that are available to transportation plan­
ners. Nevertheless, like many of the other methods 
that have been suggested recently, there is no 
treatment of this method in the statistical texts 
most frequently used by engineers and by courses 
taken by transportation planners. Indeed, no refer­
ence to the method could be found in any of the sta­
tistical texts most likely to be found on the book­
shelf of a transportation planner or an engineer. 
Therefore, a brief description of the method is pro­
vided here. 

Consider a two-way ANOVA design in which the de­
pendent variable is a continuous variable, such as a 
trip rate, and the two independent variables are two 
integer variables that describe households, such as 
household size and vehicle ownership. First, a 
grand mean can be estimated for the dependent vari­
able, where this grand mean is estimated over the 
entire sample of households. Second, group means 
can be e·stimated for each group of each independent 
variable, without regard for the otheri in other 
words, means are computed from the row and column 
sums of the cross-classification matrix. Each of 
the group means can be expressed as a deviation from 
the grand mean. Observing the signs of the devia­
tions, a cell value can now be estimated by adding 
the row and column deviations of the cell to the 
grand mean. 
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An example may help to clarify this. Suppose the 
dependent variable is home-based work trips, and the 
independent variables are cars owned and household 
size. The grand mean is 1.49 trips per household. 
Deviations for cars owned are -o. 97 for zero cars, 
-0.26 for one car, and +0.88 for two or more cars. 
Deviations for household size are -1.06 for one per­
son, -0.33 for two persons, +0.49 for three persons, 
+o.ss for four persons, and +o. 70 for five or more 
persons. For a household with one car and three 
people, the trip rate would be estimated as 1. 72 
( • 1.49 - 0.26 + 0.49). That is, it is the grand 
mean plus the deviation for one car plus the devia­
tion for three persons. Note that, in contrast to 
standard transportation cross-classification models, 
the deviations are computed not only for households 
in the cell three persons with one car, but rather 
the car deviations are computed over all household 
sizes, and the household deviations are computed 
over all car ownerships. 

If interactions are present, then these devia­
tions need to be adjusted to account for the inter­
active effects. This is done by taking a weighted 
mean for each of the group means of one independent 
variable over the groupings of the other independent 
variables, rather than a simple mean, which assumes 
that variation is random over the data in a group. 
These weighted means will decrease the sizes of the 
adjustments to the grand mean when interactions are 
present. The cell means of a multiway classifica­
tion are still based on means estimated from all the 
available data, rather than being based on only 
those data points that fall in the multiway cell. 
Furthermore, there is no over-compensation resulting 
from a false assumption of total lack of correlation 
between the independent variables. 

Because it is based on ANOVA, MCA also has sta­
tistical goodness-of-fit measures associated with 
it. Primarily, these consist of an F statistic to 
assess the entire cross-classification scheme, an 
eta-square statistic (8) for assessing the contribu­
tion of each classification variable, and an 
R-square for the entire cross-classification model. 
These measures provide a means to compare among al­
ternative cross-classification schemes and to assess 
the fit to the calibration data. 

Without pursuing some further advantages offered 
by the statistical context within which MCA is ap­
plied, it is apparent that MCA overcomes effectively 
several of the disadvantages cited for othe.r types 
of cross-classification models. First, there are 
statistical goodness-of-fit measures available for 
the MCA models that permit selection from among al­
ternative classification schemes and that permit 
overall assessment of fit to the calibration data. 
Second, the cell values are no longer based only on 
the size of the data sample within a given cell; 
rather the cell values are based on a grand mean 
derived from the entire data set, and two or more 
class means are derived from all data in each class 
of the classification variables, where the intersec­
tion of those classes defines the cell of interest. 
This also tends to reduce the uncertainty of fore­
casting outlying households. For example, if a 
critical cell is the five or more person household 
with two or more cars available, for which the orig­
inal data might have provided less than 2 percent of 
the sample, MCA will provide a cell rate that is 
based on the grand mean (from all the data) adjusted 
by deviations for all five or more person households 
and all two or more car households, where the first 
of these might comprise 10 percent or more of the 
data and the second more than 20 percent. Clearly, 
there is far greater reliability in this cell rate 
than would be obtained from traditional methods. 
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SELECTING CLASSIFICATION VARIABLES AND CLASSES 

In current computer software packages that compute an 
MCA (9), the MCA is usually provided after perform­
ing ANOVA. In turn the use of ANOVA provides the 
appropriate method for selecting variables and 
classes within variables. After developing a series 
of hypotheses about possible variables and classes 
of variables that might be used for the cross­
classification scheme, a series of ANOVAs can be 
performed, from which several pieces of information 
are obtained that indicate better or worse classif i­
cation schemes. 

Several pieces of information are provided by a 
standard ANOVA that enable this evaluation to be 
made. First, there is an F statistic available for 
each main effect and for the interaction effects. A 
highly significant F statistic for the main effects 
indicates that the variable is strongly associated 
with the trip-rate variations in the data. A highly 
significant F statistic for the interaction effects 
suggests that the independent variables may be too 
highly intercorrelated to be useful, and it is 
likely to be necessary to choose among alternative 
independent variables and reduce as much as possible 
the interaction effects. There is also an overall F 
statistic for the entire cross-classification scheme 
that indicates the extent of covariation between the 
trip rates and the set of classified independent 
variables. 

By trial-and-error procedures, or nested hypothe­
ses, it is also possible to compare alternative in­
dependent variables and to compare alternative clas­
sifications. Of course, as the number of classes is 
changed, there is a consequent change in the number 
of degrees of freedom of the ANOVA problem and a 
consequent change in the expected F statistic. Ob­
viously, this must be taken into account in assess­
ing alternative schemes, but it then becomes possi­
ble to determine the amount of information loss 
occurring by aggregating classes, or the amount of 
added information obtained by disaggregating classes. 

Thus ANOVA provides a structured and statisti­
cally sound procedure for selecting both the inde­
pendent variables and the best groupings of those 
variables from those available. There is no claim 
of optimality in this, and clearly there are coun­
tervailing tendencies from aggregating and disaggre­
gating variables, which demand the application of 
judgment to the results rather than blind acceptance 
of the statistical indicators. Also, the method is 
only as good as the initial and subsequent hypothe­
ses of model structure. This may be interpreted as 
an advantage to the method over linear regression. 
The latter method permits too readily the abrogation 
of judgment to stepwise or similar regression pro­
cedures that may build models that appear to perform 
well, based on st~tistical measures and the R-square 
values, but which make no conceptual sense, whereas 
the application of ANOVA is far more demanding of 
the structuring of conceptually sound hypotheses, 
particularly because of its rather low efficiency in 
selecting good structures from blind application. 

Finally, with each ANOVA it is possible to obtain 
the MCA results. These can also be revealing be­
cause they provide the additional statistics of an 
R-square and the eta-square for each variable, and 
they indicate the size of the deviations from the 
grand mean provided by each class of each indepen­
dent variable. These data items may illuminate, 
clarify, or support the results from the ANOVA and 
should generally lead to a more rapid closure on a 
good structure for the model. 

In summary, the use of the ANOVA that accompanies 
the MCA procedure resolves the remaining disadvan­
tage of traditional cross-classification methods, 
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namely the lack of a sound method for choosing among 
alternative variables and alternative classes within 
a variable. 

There is, however, one disadvantage incurred as a 
result of the use of MCA. MCA averages the effect 
of the relationships of one variable over classes of 
the other variables. Because the deviations are 
based on row and column means, there is no longer 
the capability for the shape of the relationship to 
differ from class to class of each variable as ex­
ists in traditional cross-classification methods. 
There does remain, however, no limitation on the av­
erage shape of the relationship for each independent 
variable, which still is not required even to be 
monotonic, let alone linear. This appears to be a 
relatively small price to pay for the advantages ob­
tained, particularly when taking into account that 
many of the variations in functional form between 
classes in traditional models may derive from spuri­
ous small-sample effects. 

USE OF ANOVA TO SELECT VARIABLES AND CLASSES 

A case study application of this method used data on 
2,446 households from, a metropolitan area in the 
Midwest. For initial ' variable selection, several 
candidates were identified and classifications were 
proposed for each of these variables. As a pre­
cursor to the multiway analyses, one-way ANOVAs were 
performed between trip rates and each candidate var­
iable. 

There are two bases for selecting variables in 
travel-forecasting models that hold true for any 
model. This first is conceptual or behavioral jus­
tification that the variable has a causal effect on 
the phenomenon being modeled, and the second is sta­
tistical justification that the variable shows a 
significant and measurable empirical association 
with the phenomenon being modeled. 

Given 30 years of travel forecasting at the re­
gional level, considerable experience and informa­
tion exists now on variables that affect trip pro­
duction, so that extensive concept formulation is 
not necessary. Based on past experience, the fol­
lowing variables were considered: 

1. Household size (persons per household), 
2. Automobile ownership or availability, 
3. Housing type, 
4. Household life cycle or structure, 
s. Number of workers, 
6. Number of licensed drivers, 
7. Income, and 
8. Area type. 

Each of these variables is described briefly, to­
gether with its expected effects on trip production. 

Household size is defined as the number of per­
sons in the household without regard to age. House­
hold size is expected to cause increases in tripmak­
ing for all trip purposes, although not in a uniform 
manner. Trips per per son is expected and has been 
shown to be relatively stablei hence the more people 
in the household, the more trips are likely to be 
made by the household. 

Automobile ownership or availability is measured 
as the number of automobiles, vans, or lightweight 
trucks usable for personal travel by household mem­
bers, either owned by the household or available to 
members of the household. A well-documented phenom­
enon is that acquisition of a vehicle increases sub­
stantially the number of trips and motorized trips 
made by a household. This arises both from substi­
tution of vehicular trips for walk trips and from 
satisfaction of previously unsatisfied demand for 
travel. The tripmaking rate of increase is nonlin-
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ear, with a decreasing rate of increase with in­
creasing aut01110biles. Vehicle availability is 
likely to be the more appropriate measure than own­
ership because it is a more accurate measure of the 
potential to satisfy demand for vehicular trips. 

Housing type is usually defined as single-family 
or multifamily dwellings, and hotel and motel units 
when tourists and nonresidents are to be included. 
It has a weak conceptual link, deriving principally 
from density considerations and some aspects of ve­
hicle availability associated with vehicle storage 
space. 

Recent research (10) suggests that a houaehold­
structure variable correlates more strongly with 
trip rates than al1110st any other variable. The 
categories of this variable are described elsewhere 
(see paper by McDonald and Stopher elsewhere in this 
Record), as are the arguments for its conceptual ef­
fect on tripmaking (10), and they are not described 
in this paper. ~ 

Number of workers may be defined as all workers, 
or as full-time workers only, where worker is re­
stricted to work outside the home. Clearly, the 
number of workers will be in direct proportion to 
and is causative of the number of household work 
trips. Also, as 1110re members of a household of a 
given size work, the nu11ber of trips for all other 
purposes is likely to be fewer, except for non-home­
based trips, because more activities are likely to 
be undertaken on the way to or from work. 

To the extent that a household has more licensed 
drivers than vehicles, more licensed drivers than 
workers, and more vehicles than workers, the number 
of licensed drivers would be expected to have a pos­
itive relationship to all nonwork trip purposes. 

Income is usually defined as income groups of 
fairly broad income ranges. As income increases 
(all other things being equal), it is expected that 
tripmaking would increase because purchasing trips 
requires available monetary budgets and, as these 
increase, so does the potential to satisfy pre­
viously unsatisfied de11and. 

Area type has been defined in a variety of ways 
and is designed to differentiate between areas with 
markedly different intensities of development and 
activity. Therefore, either explicitly or implic­
itly, it is related to employment and residential 
densities. Where densities are higher, motorized 
trips are likely to be fewer because opportunities 
for satisfying activities are closer and both con­
gestion and parking price may be significantly 
higher, whereas parking availability is lower. In 
addition, various services and home deliveries may 
be more available, thus reducing the need for some 
tripe. The effect of area type is likely to be 
greatest on discretionary travel (home-based social­
recreational, home-based other) and least on manda­
tory travel (home-based work or school). 

The purpose of the one-way ANOVAs was both to de­
termine which variables appeared to have the stron­
gest relationships to tripmaking by purpose and to 
determine the best grouping of data to use. The re­
sults of these procedures were as follows. 

1. Number of cars available was consistently one 
of the most significant variables for all trip pur­
poses. It always performed better than number of 
cars owned. 

2. Household size was also consistently a sig­
nificant variable for all trip purposes. 

3. Area type, which was defined as two groups-­
high density of either residences or employment, and 
low density of both residences and employment--was 
ranked third in significance across most trip pur­
poses. 

4. Housing type, denoted as single family and 
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multifamily, ranked about fourth in significance 
across most trip purposes. 

5. Household structure, which was defined in 
terms of the relationships among household members, 
presence or absence of children, and some aspects of 
both household size and ages of members, was found 
to be inferior to household size alone and to number 
of cars available. 

6. Other variables examined included number of 
workers, number of licensed drivers, and income. 
Each of these variables was significant for at least 
one purpose in the most disaggregated form of the 
variables, but they did not perform satisfactorily 
across a majority of the purposes. 

In experiments on groupings, the results were as 
follows. 

1. Vehicle ownership or availability could be 
specified as zero, one, and two or more without sig­
nificant loss of power of the variable. 

2. The optimal grouping of household size ap­
peared to be one, two and three, four, and five or 
more. Examination of some other recent models (11) 
revealed a small difference in tripmaking rates for 
moat purposes between two- and three-person house­
holds, which tended to confirm this grouping. 

3. Income is best grouped into low (less than 
$15,000), medium ($15,000 to $34,999), and high 
(more than $35,000) categories. 

4. Household structure should be grouped into 
five categories1 single-person households, one­
parent households, adult households with children 
and more than one adult, adult households without 
children and more than one adult, and households of 
unrelated individuals. 

5. Number of workers can be grouped so as to ag­
gregate households of four or more workers into one 
class, yielding categories of zero, one, two, three, 
and four or more. 

6. Number of licensed drivers can also be aggre­
gated to a set co11prising zero, one, two, three, and 
four or more. 

These results should not be considered indicative 
of general rules of classification. They are for 
the case study data and are provided here to illus­
trate the way in which ANOVA can be used for this 
type of analysis. Details of the runs are not pro­
vided here, because the results were derived from 
use of six trip purposes and involved running a 
rather large number of ANOVAs. Furthermore, it is 
not the purpose of this paper to produce specific 
recommendations on the structure of trip-generation 
models or to develop conclusions about the inclusion 
of one or another variable in the model. This is 
left to other papers that may use the approach de­
scribed here to make more detailed studies of the 
performance of alternative variables. Despite the 
number required to be run, neither setup time to run 
them nor central processing unit (cpu) time on the 
computer to complete them were large. 

The results of some of the multiway ANOVAs used 
to select the cross-classification scheme are given 
in Tables 1-4. The data in Table 1 give five pur­
poses by using car ownership, housing type, and 
household size, whereas the data in Table 2 are the 
same except for the use of car availability in place 
of ownership. For all purposes except shopping, the 
F statistics are higher, although not significantly 
so, in most cases. The R-squares for the MCA tables 
and the eta-squares for the vehicle variable follow 
the same pattern. There are also two fewer signifi­
cant interaction terms for car availability than for 
car ownership. This led to the selection of car 
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availability in preference to car ownership, thus 
confirming the results from the one-way ANOVAs. 

The data in Table 3 give the replacement of the 
partly insignificant housing type by total employ­
ment. Only the home-based work model is clearly 
better in this specification, the models for all 
other purposes being virtually indistinguishable 
from the model with housing type. The data in Table 
4 give the use of income in place of housing type. 

Table 1. ANOVA results for model structure 1. 

Statistic 

F 
df 

Within group 
Between groups 
~fnificant 

Eta-square 
Vehicles owned 
Housing type 
Household size 

Significant interactions 

Purpose 

HBWORK 

28.0 

2,240 
29 -· 0.255 

0.34b 
0.06b 
o.25b 
Vehicles owned and 

household size 

HBSHOP 

6.0 

2,240 
29 -· 0.065 

0.14b 
o.osb 
0.16b 
None 

HBSOCR 

5.7 

2,240 
29 -· 0.059 

0.09b 
0.01 
o.2ob 
None 
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Confirming the ~!CHRP results (!Q), i ncome .... a -
parently able to ad.d little once vehicle availabil­
ity is included. In all purposes, none of the sta­
tistical measures for the ANOVAs is as good for this 
specification as for the one that uses housing type. 

An additional interesting result is given in 
Table 5. In the ANOVAs presented in Tables 1-4, 
household size was left disaggregated for two- and 
three-person households. In Table 5 the best speci-

HBOTHR NHB 

33.8 

2,240 
29 -· 0.291 

O. !Ob 
0.02 
a .sob 
Vehicles owned and 

household size ; 
housing type and 
household size 

10.5 

2,240 
29 -· 0.103 

0.16b 
o.o5b 
o.22b 
Vehicles owned and 

household size 

Note: Independent variables are vehicles owned, housing type, and household size. F = F-scora, di = depees of freodom , HU\YO RK • homo. 
baaed wofk, HBSHOP =home-based ahopping, HBSOCR =home-based 1oclal-recreation, HBOTliR =home-based othar. and NllR = non·ho me­
based trips. 

a Significant at 99 percent 01 beyond. bSignlflcant at 9S percent or beyond. 

Table 2. ANO VA results for car availability. 

Purpose 

Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB 

F 29.5 5.9 6 .0 35.l 11.4 
df 

Within group 2,292 2,292 2,292 2,292 2,292 
Between groups 29 29 29 29 29 
~Fficant 

a • • • -• 
0.261 0.062 0.060 0.295 0.113 

Eta-square 
0.36b o.12b o.1ob O.llb o.2ob Vehicles available 

Housing type o.osb o.osb 0.00 0.01 0.04 
Household size 0.24b 0.16b 0.19b o.sob o.21b 

Significant interactions None None Vehicles available and Housing type and None 
household size household size 

Note: Independent varleblea are vehicles available, housing type, and household alze. Statiltlcs and pW"poaes are defined in Table 1. 
8SJ1nJflcant at 99 percent or beyond. bSlgnlflcant at 95 percent or beyond. 

Table 3. ANOVA results with employment. 

~tatistic 

F 
df 

Within group 
Between groups 

~fnificant 

Eta-square 
Vehicles available 
Workers 
Household size 

Significant interactions 

Purpose 

HBWORK 

37.0 

2,402 
42 
• 

0.376 

o.22b 
0.40b 
0.16b 
Workers and vehicles 

available; workers 
and household size 

HBSHOP HBSOCR 

4.3 5.2 

2,402 2,402 
42 42 
• • -

0.058 0.061 

0.15b O.llb 
0.04 0.02 
0.17b o.2ob 
None Household size and 

workers; household 
size and vehicles 
available 

HBOTHR 

25.9 

2,402 
42 

a 

0.295 

o.1ob 
0.05 
0.49b 
Workers and household 

size 

Note: Independent variable.a are vehicles avaUable, workel8, and household 1Jze. Statistics and purpoaea ue defined in Table 1. 
8Significant at 99 percent or beyond. bSlgnlficant at 95 percent or beyond. 

NHB 

9.5 

2,402 
42 
• -

0.126 

0.16b 
0.14b 
0.19b 
Workers and household 

size 
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Table 4. ANOVA results with income. 

Purpose 

Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB 

F 23.7 4 .1 3.2 22 .8 10.5 
df 

Within group 2,153 2,153 2,153 2,153 2,153 
Between groups 41 41 41 41 41 

~1nificant 
a a • • a 

0.298 0 .053 0.046 0.284 0.119 
Eta-square 

o.21b 0.13b Q.o8b o.o8b 0.1 3b Vehicles available 
Income 0.3lb 0 .00 0.02 0.07b 0.18b 
Household size 0.19b 0 .!5b o .o8b 0.49b 0.17b 

Significant interactions None None None Income and household Income and household 
size size ; vehicles available 

and household size 

Note : Independent variables are vehicles avalla.ble 1 income, and household size. Statistics and purposes arc defined In Table 1. 
8Slgnlftc1nt at 99 percent or beyond. bSlgniftcant at 95 percent or beyond. 

Table 5. ANOVA results with aggregated household size. 

Purpose 

Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB 

F 34.2 7 .2 7.3 41.2 13 .9 
df 

Within group 2,298 2,298 2,298 2,298 2,298 
Between groups 23 23 23 23 23 

~1nificant 
8 • • a ._a 

0.244 0.061 0.058 0.284 0.112 
Eta-square 

0.37b o.12b O.llb o.12b 0.20b Vehicles available 
Housing type o.o5b o.o5b 0.00 0.01 0.04 
Household size ci.19b 0.15b 0.19b 0.49b o.21b 

Significant interactions Vehicles available and None Vehicles available and None None 
household size household size 

Notes : Independent variables are vehiclea avaUable , hou1ing type, and household size. Statl1tlc1 and purposes are defined in Table 1. 
1Sl9ntficani at 99 percent or beyond. bSlgniflcant at 95 percent or beyond. 

fication from the previous structures is used, but 
with the two- and three-person households aggregated 
into a single group. Because there is a decrease in 
the number of degrees of freedom, it is expected 
that the F score will increase. However, the in­
crease is larger than would be expected just from 
this effect. Housing type still appears to be an 
ineffective variable, but the use of the more aggre­
gated household size appears to be indicated quite 
clearly. 

DERIVATION OF CROSS-CLASSIFICATION TRIP­
GENBRATION MODELS 

A useful example of the MCA procedure is provided by 
the use of some data from a trip-generation modeling 
process used in San Juan, Puerto Rico (12). Figure 
1 provides a set of trip rates computed in the stan­
dard procedure by using individual cell means. Note 
that cells 9 and 21 do not have trip rates because 
the available data lacked observations in these two 
cells. Figure 2 shows the numbers of households in 
each cell, and it can be seen that these range from 
a low of 4 to a high of 133. This range indicates 
clearly a significant range of reliability in the 
estimates of rates. If conventional wisdom is 
adopted, in that a mean and variance can be esti­
mated with some element of reliability from a mini­
mum of 50 observations, 14 of the 24 possible cells 
are estimated with too few data points. 

As the next step in the procedure, a manual esti­
mation of a noninteractive MCA was undertaken. This 
was done at the time because of the lack of availa-

bility of the computer software to undertake a full 
MCA, but it is useful because it traces out the pro­
cedure for MCA. First, a grand mean was computed 
for the entire set of home-based work tripsi it was 
found to be 1.49. Then deviations were computed for 
each of the three variables. For the four house­
hold-size groups, the group means were found to be 
0.33, · 1.26, 1.85, and 1.841 for the two area types, 
they were 1.41 and 1.60: and for the three vehicle­
ownership groups, they were 0.65, 1.51, and 2.36. 
The deviations are computed in each case by express­
ing the group means as values that deviate from the 
grand mean. To compute the cell value for area type 
1, vehicle ownership of 1, and household size of 
four persons, the value is 1.98 (a 1.49 + 0.11 + 
0.02 + 0.36). The complete set of cell values is 
shown in Figure 3. Note that there are values now 
in both cell 9 and cell 21. 

Several points are worth noting from a comparison 
of Figures 1 and 3. First is the one already men­
tioned of the existence of rates for the empty cells 
of Figure 1 that appear in Figure 3. Second, some 
counterintuitive progressions in Figure 1 are re­
moved or decreased substantially in Figure 3. These 
progressions appear to have been caused by problems 
from the small sample size. From examining the data 
in Figure 2, it can be seen that the grand mean is 
estimated from 1,178 observations, and that the 
least-reliable deviation (for one-person households) 
is based on Bl observations. All other deviations 
are based on more than 120 observations. Although 
there are still some large variations in the sample 
size used to compute the deviations, the range of 81 
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Figure 1. Conventional trip rates: home-based work. 

cross 
class Persons/DU 

Area T 1 2,3 4 5+ 
2 

0 
s 

1 1 
Rural Low 

Density 2 

0 

2 1 
Urban High 

21 

Density 2+ 2.19 2. 70 2 . 59 

Figure 2. Number of households by cell of cross-clauification. 

cross 
class Persons/DU 

1 2,3 4 5+ 

0 17 28 

1 1 69 

Rural Low 
Density 

70 

13 

0 40 40 

17 

2 1 20 93 

Urban High 
21 

Density 2+ 

to 689 observations represents a much less-signifi­
cant variation in reliability than in the data used 
for Figure 1. 

'Figure 4 presents the results trom a full-inter­
action MCA for the same data. There are clearly 
some major interactions in this specification of the 
model, as shown by the differences in the rates be­
tween Figures 3 and 4. The anomalous decrease in 
rate between four and five or more person households 
remains and is of a similar order of magnitude, 
which suggests that this result is structured in the 
data. For the remaining differences, some rates are 
higher than before, whereas others are lower. As is 

Transportation Research Record 944 

Figure 3. Noninteractlve MCA trip rates: homa-basad work. 

cross 
class Persons/DU 

Vehicle 

Area T /DU 1 2,3 4 5+ 

0 0.00 

1 1 0. 45 

Rural Low 
9 

Density 2 I .JO 

13 

0 0.00 

17 

2 1 0 . 26 

Urban High 
21 

Density 2+ I , 11 2 .04 2.64 2.62 

Figure 4. Full MCA trip rates: home-based work. 

cross 
class Persons/DU 

5+ 
4 

1 
Rural Low 

Density 

1l 

0 
17 

2 1 0. 84 

Urban High 
21 

Density 2+ 1.61 2 . II 2.50 2.45 

expected from the theory, the range of trip rates is 
lower in Figure 4 than in Figure 3 because account­
ing for interactions decreases the net effect of 
each variable. Thus the highest trip rate in Figure 
3 is 2.83, whereas the highest rate in Figure 4 is 
2.52. Similarly, the lowest value has increased 
from o.oo in Figure 3 to 0.10 in Figure 4. Perhaps 
the most marked difference in the two figures is be­
tween the one and two or more vehicle households. 
The large differences at all household-size values 
between these two have decreased markedly in Figure 
4, and the values of the one-vehicle households are 
substantially higher in the one-person households, 
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and lower in the largest households for Figure 4 
compared with Figure 3. 

Some statistical comparisons among the results 
serve to illustrate the differences better than can 
be seen from a visual inspection. First, root mean 
square (RMS) errors were calculated between Figures 
1 and 3, Figures 1 and 4, and Figures 3 and 4. For 
Figures 1 and 3, it is 0.477 between Figures 1 and 4 
it increases to 0.51; but it is only 0.24 between 
Figures 3 and 4. This is about as expected. The 
largest difference is between the conventional rates 
and the MCA rates with full interactions. The dif­
ference between MCA with full interactions and with­
out is by far the least of the differences. Given 
an average trip rate of around 1.45, the differences 
between the conventional method and the MCA methods 
are on the order of one-third of the average trip 
rate. 

Chi-square contingency tests between values close 
to 1.0 are notoriously misleading because the value 
of chi-square is necessarily small in such a case. 
This case is no exception, with the three compari­
sons producing chi-squares of 1.88, 4.22, and 1.30, 
each with 21 degrees of freedom. These values would 
not be considered significant. However, if the 
rates are multiplied by the number of households in 
the sample (Figure 2) , the chi-square test would be 
for differences in the numbers of trips produced for 
work. In this case the chi-squares are 55.5, 19.0, 
and 41.4, respectively. The degrees of freedom are 
the same as before, and all values except the second 
one are significant beyond 95 percent. The low chi­
square between Figures 1 and 4 appears to arise 
purely by chance, where two of the larger groups of 
households are associated with a small difference in 
trip rates, fortuitously. It is not clear whether 
this result should lead to a conclusion of no sig­
nificant difference in trip rates between the two 
cases. Thus these results indicate some real dif­
ferences in trip rates that are likely to lead to 
significant differences in forecasts. 

CONCLUSIONS 

The two case studies presented in this paper serve 
to illustrate the potentials provided by the MCA 
method and ANOVA from which it stems. This proce­
dure overcomes a number of the criticisms that have 
been made before about cross-classification models. 
Specifically, the method permits a statistically 
based selection of variables for the cross-classifi­
cation model, and also allows comparisons to be made 
between alternative groupings of any given vari­
able. From this it is possible to provide a model 
structur~ that has both conceptual and statistical 
merit, rather than relying only on a conceptual se­
lection. 

Second, the method provides a statistically sound 
procedure for estimating cell means, which reduces 
the inherent variability of rates computed from dif­
ferent size samples of households and is capable of 
providing estimates for some cells where data may be 
lacking in the base data set (although the use of 
this capability does reduce some of the available 
statistical information). Third, there are good-
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ness-of-fit statistics from all of these steps in 
the process that permit more specific comparisons to 
be made, good hypothesis-testing procedures to be 
followed, and results to be assessed in terms of the 
amount of the variability of the dependent variable 
that is captured in the model. Finally, and most 
important, the method takes into account the inter­
actions among the alternative independent variables, 
which have never been taken into account in standard 
cross-classification models. 

It should be noted that similar models have been 
developed for predicting vehicle availability, as 
well as for trip produ~ttt>ns by a variety of pur­
poses. There is_. n"o. ~eii~on why such cross-classifi­
cation models should not be built for any other 
phenomenon that is appropriately modeled by this 
procedure. Principally, any phenomenon that has a 
nonlinear, and possibly discontinuous, functional 
form, and that is most readily related to variables 
that are categorical in nature, would be a prime 
candidate for the method. 
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