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into a system of equations to represent equilibrium 
conditions in a car market. A general structure of 
such equations ia described by Manski (14). It is 
believed that the use of the dynamic models devel­
oped in this work, in the framework of equilibrium 
equations, can provide a useful system for the anal­
ysis of policies that affect the car market. 
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Experiments with Optimal Sampling for Multinomial 

Logit Models 

YOSEF SHEFFI AND ZVI TAREM 

In this paper a recently published method for optimizing the sample used in 
estimating discrete-choice models is tested. The work is intended to identify 
and explore the elements that influence the effectiveness of this methodology 
in designing sampling procedures for estimating log it models. The investiga­
tion includes both analytical and numerical tests. The results indicate that 
the sample optimization method can improve the accuracy of the resulting 
estimates, as compared with random sample. 

Data collection is, in many cases, the major cost 
item in studies that involve the estimation of econ­
ometric models. Techniques for sample design have 
therefore been developed for many econometric and 
statistical models <!.>· In this paper discrete 
choice models, which are extensively used in travel­
demand analysis, are examined, and, in particular, 
the multinomial logit (MNL) model is discussed. The 

focus here is on a method for optimizing the sample 
used to estimate discrete-choice models. The ap­
plicability of this sample optimization approach to 
the collection of the sample points (the data) used 
to estimate MNL models is examined. Also examined 
is the appropriate amount of effort that should be 
invested in the sample optimization process. 

The original development of the sample optimiza­
tion method, which is the subject of this paper, is 
from Daganzo (2). Daganzo's method is a stratified 
sampling technique. It assumes that the population 
to be sampled from can be partitioned into separate 
groups (or strata) and that observations can be sam­
pled independently from each group. The objective 
of the sampling method is to determine how many ob­
servations should be drawn from each group so that 



142 

the total estimation error is minimized. The esti­
mation error is a composite measure of the error in 
all the model parameters. Naturally, this minimiza­
tion is subject to a budget constraint. This sam­
pling method attempts to determine the best alloca­
tion of the sampling budget. (The companion 
problem, that of determining the minimum budget re­
quired to achieve a certain accuracy, is somewhat 
more difficult. Its solution, however, can be in­
ferred from the solution of the problem under con­
sideration.) 

Three main points are discussed in this paper. 
The first point is the applicability of the approach 
in terms of potential. The question examined in 
this context is the sensitivity of the sampling er­
ror to different sample deijligns. The second point 
is that the solution of the sample optimization (SO) 
problem requires prior estimates (or guesses) of the 
values of the parameters of the model to be esti­
mated. The applicability of the whole concept de­
pends, naturally, on the required accuracy of these 
prior estimates. The tests described in this paper 
explore this point in some detail. The third point 
is related to the first point. It has to do with 
the question of the amount of effort that should be 
invested in obtaining these prior estimates. Such 
an effort should be judged in comparison to the 
level of effort of the entire study, which means 
that the relevant question is the allocation of ef­
fort between obtaining the prior estimates and the 
estimation itself. 

This paper is organized as follows. First, 
Daganzo' s SO method is outlined. Then the applica­
tion of this method to the MNL model is reviewed. 
Next, the question of the applicability of the SO 
method is explored by looking at a simple one-param­
eter model and a two-parameter model. Then the afore­
mentioned issue of resource allocation in the frame­
work of a small case study is discussed, and finally 
conclusions are given. 

It should be noted that the conclusions of this 
paper are based on numerical experiments, which 
means that not all the results can be generalized in 
all circumstances. The experiments are described in 
further detail by Sheffi and Tarem <l>· 

SAMPLE OPTIMIZATION PROGRAM 

Daganzo's so method attempts to minimize the error 
associated with the estimation of the parameters of 
a discrete-choice model. The optimization problem 
is formulated as a mathematical minimization pro­
gram, where a composite measure of the estimation 
error serves as the objective function and the sam­
ple group sizes are the decision variables. This 
approach assumes that the model under consideration 
is estimated by using the maximum likelihood (ML) 
method. It also assumes that the distribution of 
explanatory variables in each group is known. [This 
information may not be available, in which case the 
methods discussed by Lerman and Manski (_!) may be 
used.) 

The objective function of the SO program relates 
the sampling error to the sample group sizes. This 
expression can be derived from the Kramer-Rao lower 
bound on the covariance matrix of ML estimators. 
Letting x be a vector of explanatory variables, y be 
the dependent variable, and e be the vector of param­
eters for some model, this bound (Eel is given by 

]!§ : {-E(\7~L@.[y, ~)] }- 1 (1) 

where L(•t•,•) is the •log-likelihood of the sample 
(y ,~) evaluated at .!!..' 'J 6L (•) is the a-Hessian o.f 
L(•), and E[•J denotes the expectation operator 
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that, in Equation 1, is carried out with respect to 
both y and !.· 

For stratified sampling, where all observations 
are independent, the sample log-likelihood is given 
by the sum 

where 

L(!_IY~,~~) 

<In.~> 
Nk 

K 

(2) 

• log-likelihood of sample point n from 
group k, 

= observed values at this point, 
= number of observations in group k, 

and 
number of groups in the sample. 

The Hessian of this function is 

(3) 

In stratified sampling it is assumed that all ob­
servations from a given group ~) are realizations of 
some underlying distribution f ~k(Y,.!_l that charac­
terizes the group. Thus all t !!tie observations have 
the same expectation. The expectation of Equation 3 
is therefore 

(4) 

where E(k) [•) denotes the expectation taken over the 
distribution ~kk(y,~), and the designations n and 
k are omitted from the notation of the likelihood 
function in order to clarify the presentation. The 
final expression for the bound on the parameter co­
variance matrix is obtained by combining Equation 4 
with Equation 1, i.e., 

(5) 

To minimize the estimation error, a scalar mea­
sure of the size of the parameter covariance matrix 
has to be defined. A family of such measures can be 
defined by using a quadratic form of the covariance 
matrix with a (column) vector of constants,!.• i.e., 

(6) 

where F is the estimation error, !..e is the true 
parameter covariance matrix, and the superscript T 
denotes the transposition operation. Because the 
true covariance matrix is not known, the approxima­
tion in Equation 5, which holds asymptotically for 
maximum likelihood estimators, is used instead. Thus 

F(.~) = .!TEe<!l.!, where!= ( ••• ,Nk•···>· The form of 
the error measure used in this paper uses a vector 
z• (1,1, ••• ,1), i.e., F(N) is the sum of the ele­
ments of the parameter covariance matrix. 

The optimal sample composition is derived by min­
imizing F(!l with respect to the Nk's. The uncon­
strained solution to the minimization is, obviously, 
to sample an infinitely large number of observations 
from each group. The estimation error then ap­
proaches zero. The sample size, however, is bounded 
by the budget available for sampling, and possibly 
by some other physical size constraints. The total 
budget constraint may be expressed by 

(7) 
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where ck is the cost of sampling one unit from 
group k, and B is the total budget available. Phys­
ical group size constraints may be expressed as 

Nk ..; Nr•• for some groups k (8) 

In addition, the constraint set should always in­
clude nonnegativity of the group sizes. 

The SO program can be summarized as follows: 

(9a) 

Subject to 

(9b) 

(9c) 

Daganzo (5) indicates that this program has a unique 
local minimum for any constant vector ~ and any form 
of the log-likelihood function L(6 ly,x). This 
means that the problem can be solved by u~lng stan­
dard nonlinear, constrained optimization methods. 
The algorithm used in this work is based on the gra­
dient projection (6) method. 

The exact form-of the objective function depends 
on the specific model for which the sample is de­
signed. Sheffi and Tarem (j) formulate and solve 
this program for several model forms. In the next 
section the derivation of this expression for MNL 
models is reviewed. The remainder of the paper is 
aimed at evaluating the usefulness and applicability 
of the approach. 

SAMPLE OPTIMIZATION FOR LOGIT MODELS 

The legit formula is the most widely used discrete­
choice model because of the simplicity of its form. 
A detailed description of the model can be found in 
Domeneich and McFadden (7). 

The legit model can be used to quantify some as­
pects of individuals' choice among a set of alter­
natives. The model can be interpreted in the frame­
work of random utility maximization by assuming that 
each decision maker attaches a measure of utility to 
each alternative and chooses the one with the largest 
utility. The utility of alternative j to an individ­
ual randomly drawn from the popul ation (uj) is 
modeled as the sum of a systematic utility term 
(vj) and an error term that is assumed to be ran­
domly distributed across the population. The system­
atic utility captures the model specification in 
terms of the relationships between the utility and 
the explanatory variablesi thus Vj = Vj(~r!.l· The 
specification of the random part determines the 
family of models to be used. If these random terms 
are assumed identically and independently Gumbel 
distributed, the resulting model is the MNL mode. 
The MNL model gives the probability that each avail­
able alternative is chosen (i.e., it has the highest 
utility)--Pj(~r!_)--as 

(10) 

where I is the index set of the available alterna­
tives. In most cases the systematic utility is as­
sumed to be linear in the parameters, and thus 
Vj (!1!.) = ! T!.• 

To develop the SO objective function for the MNL 
model, the a-Hessian of the log-likelihood func­
tion has to be derived for such models. The likeli­
hood of a sample point n can be written as 
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(11) 

where .!!.n is an indicator variable vector t hat con­
tains the obs erved choice, i.e., 8nj • 1 if alter­
native j is chosen by the nth decision maker in 
the sample, and lln1 • 0 otherwise. The vector .!n in­
cludes the explanatory variables for the nth obser­
vation. The choice probabilities are given by Equa­
tion 10. The logarithm of Equation 11 is simply 

(12) 

where Pn; = P;(!1.!n) for ease of notation. The sample 
log-likelihooa includes the sum over n of L (2_1.!n•.!n>, 
i.e., 

(13) 

where N is the total sample size. 
The derivation of the a-Hessian of the sample 

log-likelihood function is simple but somewhat 
lengthy (3). The final result of applying the 
Hessian operator to the log-likelihood function is 

(14) 

where w is the matrix of attribute differences for 
an individual randomly drawn from the population, 
i.e., row j of Wis the difference !.j - !.I• where I 
is the index of the last alternative (any other al­
ternative can be chosen as a base). Q is a square 
matrix with the elements, 

(Qiu= pi (Bu - Pj) for i,j =I , 2, ... ' I - 1 (15) 

where ~ij = 1 if i = j, and O othe~wise. After 
inserting Equation 14 into the objective function of 
the sample optimization program (Equation 9a) , this 
function becomes 

F = .!'.. T I-kt Nk E(k) (-WT Q W) ,-1 ~ (16) 

Computing the expectations of E(k)[•] in Equation 
16 requires prior knowledge of both the distribution 
of the attributes in all groups and the values of 
the unknown parameter vector (a). The latter is 
required for computing the choice probabilities that 
appear in the elements of Q. As previously men­
tioned, it is assumed in this paper that the attri­
bute distributions are known before sample optimiza­
tion. The main concern of this paper is with the 
required accuracy of the initial parameter guesses. 

Because the function under the expectation opera­
tor is complicated, a numerical Monte Carlo approach 
for computing these expectations was adopted. With 
this approach, M observations were drawn from the 
distribution of the attributes and the average, where 

M 

(l/M) :E [-W~ Om Wml (17) 
m=l 

was used as an approximation of the true expecta­
tions. 

INACCURACIES IN INITIAL GUESSES: ONE-PARAMETER MODEL 

In this section two of the issues that determine the 
applicability of the SO approach are examined. 
These questions are addressed in the context of a 
simple legit model that includes only two alterna­
tives and a single parameter. 

The usefulness of the SO method depends on two 
separate questions. The first is whether SO actu-
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ally improves the accuracy of the resulting parame­
ter estimates. Although SO assures minimum error in 
estimation, the improvement relative to other sample 
designs may be insignificant. In this case the op­
timization process is not cost effective. The sec­
ond question is the dependence of the optimization 
results on the accuracy of the initial parameter 
guesses used in the optimization. If the optimiza­
tion process requires accurate parameter values to 
yield satisfactory sample composition, its useful­
ness will be limited because having such accurate 
parameter values obviates the need for the estima­
tion process. 

Thus, for the SO method to be useful, it is nec­
essary that the estimation error will decrease when 
an optimal sample is used, but also that this opti­
mal composition may be obtained without an accurate 
initial parameter guess. 

The tests described in the following sections are 
designed to determine if and when these conditions 
can be met for a simple logit model, where the issue 
can be addressed analytically. The simple logit 
model chosen for this analysis includes two alterna­
tives and one parameter. The systematic utilities of 
these alternatives are x1e and x2e, respectively. The 
choice probabilities have the form 

P1 =exp [(x1 - x2)0J/{ I +exp [(x1 - x2) OJ} 

= exp (W0)/[1 + exp(WO)]; P2 = I - P1 

= 1/(1 +exp(WO)] (18) 

and the optimization objective function (Equation 
16) for this model is given by 

• 
K K 

F~) = I/ k~I NkE(k)[W2Q] = 1/ k~l NkE(k) { W2 exp(WO) 

+ [! + exp (W8)]2} (19) 

The minimization of F <Bl in Equation 19 is equiva­
lent to the maximization of the reciprocal of F(.!:!_), 
i.e., 

K 
Min F(~) = Max F' ~) = 1: NkE(k) [W2 Q] (20) 
Nk Nk k=l 

For a problem with a simple budget constraint (such 
as Equation 9b), the solution of this so program is 
to sample all observations from the group (k) with 
the largest value of 

(21) 

The total sample size will, of course, be B/c1 , 
where t is the qroup sampled. From Equation 21 it 
is clear that if the expectations E(k) [•) are similar 
in all groups, the sample should include observa­
tions from the group with the lowest sampling cost. 
If the expectations differ considerably, however, a 
group with higher sampling cost may contribute more 
to the estimation accuracy and should therefore be 
chosen for sampling. 

The accuracy of the initial parameter guess, de­
noted by e0 , needed in computing the a(k) 's is impor­
tant only if it can cause the sampling from the 
wrong group . In other words, as long as the values 
of a(k) computed by using 9o suggest the same choice 
of group as would. happen with the true parameter (9) , 
the optimal sample composition is not affected by 
inaccuracies in e0• 

For example, assume that there are only two 
groups, and that the sampling costs are the same in 
both. If the true E(l) [W2QJ is 10 times larger than 
the true E(2) rw2QJ, computing alk) with even a bad 
guess of 9 will still probably sugqest sampling 
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from '.foup 1. If, on the other hand, the ti:ue 
E< 1 >1w ~] is only 10 percent largei: than the 
true E( l (w2QJ, a slight inaccuracy in e 0 may reverse 
the choice initiated by Equation 21. I n this case, 
however, the contribution of both groups to the es­
timation accuracy is similar, and sampling from the 
wrong group would not introduce a large increase in 
the estimation error (F). 

In sununary, Equation 21 indicates that if the 
group attribute distributions (and hence the group 
expectations) are considerably dissimilar, sampling 
from the wrong group may cause a large estimation 
error, but the correct group for sampling may be 
relatively easy to determine. In cases when this 
determination is more difficult (i.e., when the 
groups are similar), the cost of an error is not 
high. Thus this analysis leads to the conclusion 
that SO should be useful in this case, even with 
questionable prior estimates of e. 

TWO-PARAMETER MODEL 

A similar analysis can be applied to a slightly more 
complicated model, which includes two alternatives 
and two parameters. In this case the choice proba­
bilities have the form 

(22) 

where w1 and w2 are the two elements of attribute 
differences vector ~ = (W1 ,w2). The SO o~jective 

ffinction (Equation 16) in this case is given by 

F(~) = ~T I kt Nk E(k) [Q wT W] rl ~ (23) 

where the single element of the matrix Q is 

(24) 

The general analysis of this case cannot be car­
ried out analytically because of the complexity of 
Equation 24. The approach followed here was to ana­
lyze a specific sample design case with known true 
parameters. The problem setup included two groups 
with the following attribute distributions1 

wp) = W\2) = l; w~I) - N(0.5, 0.25); wP) - N(-0.5, 0.25) 

The true parameters (see Equation 22) were set to 
e1 • e2 • 1.0. The true group expectations can be 
calculated by using the simulation method, explained 
by Equation 17, as follows: 

E(I) [QWTW] = [ 0.1496 0.0549]; E(2) [QWTW] 
0.0549 0.0545 [ 

0.2234 --0.122 ] 
-0.122 0.1176 

The budget constraint was set to N1 + N2 ~ 1, which 
implies that c 1 a c 2 = l and that the Nk's can be 
looked on as sample shares rather than number of ob~ 
servations. Because the budget constraint is always 
binding in these problems, the sample composition 
can be r epresented by the single variable N1 , and 
N2 can be replaced by 1 - N1· 

The dependence of the estimation error on the 
sample composition was determined by evaluating the 
objective func~ion (Equation 23) at different values 
of N1 • Th.e resulting curve is shown as the dotted 
line on Figure 1. The estimation error has a dis­
tinct minimum at N1 = 0.908, which corresponds to 
the value F* = 17.567. It rises sharply for values 
of Ni less than 0.69 (the 10 percent deviation 
mark). 

Each sample composition is associated with a 
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Figure 1. Intervals F ± Uf plotted versus the analytical curve. 
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unique value of the objective function in Figure 1. 
The sampling process, however, introduces a random­
ness that may cause the actual estimation error to 
deviate from the one indicated in Figure 1. This is 
because once the group size is determined, the ac­
tual observations are still randomly sampled within 
each group. Thus different sample.a with the same 
composition may result in different estimation er­
rors. To verify the relationships shown in Figure 
1, a simulated data set was generated. Attribute 
observations were generated from the previously men­
tioned distribution of the explanatory variables 
within each group. The chosen alternative was de­
termined by simulating the total utilities of the 
alternatives to each individual and recording the 
alternative with the largest utility as the chosen 
one. This simulation was carried out by generating 
a Gumbel-distributed random variable (by using the 
cumulative distribution inversion method) and add­
ing it to the observed utility. 

The logit estimation routine computes, apart from 
the parameter estimates, an estimate of the parameter 
covariance matrix based on the sample. An approxi­
mate estimation error may be computed by summing the 
elements of this matrix ( see Equation 6). Five dif­
fe r ent ' samples were generated for each selected com­
position, and the estimation error was computed for 
each one by using that procedure. An interval of 
probable values for the estimation error was de-
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rived from the mean and standard deviation of the 

five measurements (i.e., F = F ±op, where Fis the 
average and op is the standard deviation of the 
five va·lues). These intervals are also plotted in 
Figure 1. As demonstrated in the figure, the sam­
pling results depict the same relation between the 
estimation error and the sample composition as shown 
by the analytical curve. 

In the particular example solved here, Figure 1 
demonstrates that the SO is worthwhile even when the 
randomness of the sampling procedure is accounted 
for. In general, however, this may not be the case 
if the variance of the attribute distribution is 
large. Such a case means that the groups are, sta­
tistically, quite similar. As in the one-parameter 
case, this means that SO is not cost effective be­
cause the ·(expected) cost of an error in the groups' 
composition is not large. 

The dependence of the optimal solution on the ac­
curacy of the initial guesses was determined by 
solving the SO problem by using different values of 
the initial parameter guesses <!ol around the true 
parameters (0). Figure 2 shows contours of equal com­
position over a range of values of !o around the true 
value of e = (1.0,1.0). The fiqure shows that in 
most of the region, except for the upper right cor­
ner, the optimal composition is within 10 percent of 
the best composition. The best composition is given 
by N1 = 0.908, which was computed by using the 
true parameter values. 

Figure 3 demonstrates the same point from a dif­
ferent angle. The relationships between the estima­
tion error and the initial guesses used in the op­
timization process can be derived by readinq, from 
Figure 1, the values of F that correspond to the 
sample compositions shown in Figure 2. These values 
can then be transformed to percentage differences 
from the minimum error, F• • 17. 567. Figure 3 de­
picts contours of equal percentage differences over 
the same range of !o used in Figure 2. As shown 
in Figure 3, most of the region analyzed lies within 
10 percent of the minimum error. In summary, it can 
be concluded that although arbitrary sample composi­
tions may yield large estimation errors (as seen in 
Figure 1), the use of so, even with a wide range of 
possible initial parameter guesses, limits the error 
to small deviations from the minimum error obtained 
by using the true parameter values. 

Figure 2. Contours of equal N1 over the range of the initial parameter 
~asses Oo. 
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Figure 3. ContOlln of equal error (Fl onr the range of intital parameter 
guesses 00 • 

... 1.0 

• 

' 2.0 
I 

• 

' 

1.0 \ 

' 

o.o 

' \ 
\ 

' 
' ' ' ' 

'' /): ---
r.o 

'~ 

-- -

OPTIMAL BUDGET ALLOCATION 

---
---- -

e, 

The initial parameter guesses used in the optimiza­
tion process may come from two distinct sources. 
The first one is an external source, such as another 
study or a set of studies conducted elsewhere or in 
the past. The second one is an internal source, 
such as a pilot study conducted on the current popu­
lation. In this case a small presample may be ran­
domly drawn in order to estimate !o· The final 
parameter estimation will be based on a combined 
sample, including the observations of the presample 
and the main sample. The relevant question here is 
what is the appropriate relative investment in the 
initial sample that will yield the best accuracy of 
estimation when using the combined sample. 

The procedure followed in this research for de­
termining the optimal allocation of the sampling 
budget was to first allocate some prescribed amount 
<Bi> to an initial random sample. The parameter 
estimates based on this sample were used as initial 
guesses in determining the optimal sampling scheme 
for the main sample, subject to the remaining budget 
B2• The main s ample was then drawn and combined 
with the initi al one and used to e s tima te the 
model. The estimation error was computed from the 
estimated parameter covariance matrix of this 
model. The optimal allocation was determined by 
parametrically varying the amount spent on the ini­
tial sample. 

The existence of an optimal allocation stems from 
the fact that when the budget (B1) spent on the 
initial random saniple is small, the resulting esti­
mates of the parameters are not accurate. Thus the 
main sample will not be close to optimality, and the 
estimation error can be expected to be large. On 
the other hand, when most of the budget is spent on 
the initial sample, the resulting initial estimates 
will be accurate, and the small main sample is close 
to being optimal. The combined sample, however, 
will include primarily the random, nonoptimal sam­
ple, and the estimation error is again expected to 
be large. Therefore, there may be some optimal al­
location of the budget such that the size of the 
random sample is sufficient to provide relatively 
accurate estimates, but the remaining optimized sam­
ple is sufficiently large to reduce the error mea­
sure. 
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This procedure was carried out by using a large 
da t a set as a population. The data were extracted 
from the 1977 National Personal Travel Study (NPTS) 
data base. A simple model of automobile ownership 
levels was used as an example model in these tests. 
The model included three alternatives: owning two 
or more cars, owning one car, and owning no car • 
The systematic utilities of the alternatives were 
specified as 

u 1 = 11 1 + 113 · INCOME + 11 4 · HHSIZE 

u2 = 112 + 113 · INCOME 

U3 = 0.0 

where INCOME is measured in $10,000 units, and 
HHSIZE is the number of members in the household, 
The population data set contained 7,393 observations 
partitioned into three groups along the income di­
mension, according to the following ranges: 

Group 
1 
2 
3 
Total 

Income 
Range ($) 

0-7,500 
7,500-20,000 
>20,000 

Observations 
2,565 
3,331 
1,497 
7,393 

The distributions of the attributes (INCOME and 
HHSIZE) were estimated from the data. 

A budget s i ze of B1, varying be tween 40 and 
200, was allocated to the initial random s ample (as­
suming a cost of one unit for all observations), 
The composition of the main sample was determined by 
solving the optimization problem with the constraint 
N1 + N2 +NJ~ B2, where B2 a 200 - B1 • The two sam­
ples were then combined to yield a sample of size 
200, and the estimation error was computed from the 
combined sample. This procedure was repeated five 
times for each value of Bi • The interva l F ± a F of 
the f ive measur ements is pl ot t e d versus B1 in Figure 
4. A shallow mini mum can be observed a round B1 • 
80, which means t hat 80 observati ons shoul d be sam­
pled at random. The results of this estimation 
should be used to optimize the composition of the 
remaining 120 observations. The shape of the rela­
tionship shown in Figure 4 suggests, however, two 
hypotheses. 

1. The optimal size of the initial sample is 
fixed, probably because it corresponds to the mini­
mum sample size that yields reasonable initial esti­
mates for the optimization. In this case the opti­
mal initial sample size (B1 ) is independent of the 
total sample size (B). 

2. Optimizing a larger sample requires more ac­
curate initial guesses, which implies a larger ini­
tial sample. In this case the optimal initial sam­
ple size (B1) is a fixed proportion of the total 
sample size (B) • 

To test these hypotheses in the context of the 
examples analyzed in this section, the test proce­
dure used in this case study was repeated for total 
sample sizes of B • 400 and 600 observations. The 
means of the five estimation error measures computed 
for each selected value of s 1 are plotted in Fig­
ure 5. The horizontal axis of the graph is the ra­
tio B1/B, and the vertical axis represents the es­
timation error. The measurements obtained from each 
value of B (i.e., 200, 400, and 600) were normalized 
for comparison purposes. The figure shows that for 
all total sample size values, the estimation error 
does not have a distinct minimum but is flat over 
the region up to s 1/B • o.s and rises thereafter. 

Thus it can only be concluded that the initial 
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Figure 4. Estimation error intervals plotted versus the budget 1pent on tha Initial 1ample for total sample size of 200. 
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Figure 5. Mean estimation error versus ratio of initial sample size to total sample size. 

50 

+ 

+ 
/;:. 

£ 
0 

30 + ~ 
0 0 0 0+ + + 

8 B: 200 

+ B=~oo 

0 B=6oo 

20 B•/a 
(),0 o.2. o.~ o . .:. o.e 1.0 



148 

sample size for this example should be less than 
one-half of the total sample size. This appears to 
suggest that, in general, the initial random sample 
can be small, regardless of the total sample size. 
The size of this sample may in fact be dictated by 
the requirements on the estimation of the dis tr ibu­
tion of the explanatory variables in all the 
groups. This point was not addressed in this paper, 
which assumed that this distribution is known. 

CONCLUSIONS 

The two major conclusions from the work described 
here may be stated as follows: 

1. The SO procedure can introduce a significant 
increase in parameter estimation accuracy, and 

2. This optimization need not be based on accu­
rate initial parameter guessec; only a small pilot 
sample is needed to produce sufficiently accurate 
guesses. 

It should be emphasized, however, that these con­
clusions result from a specific set of tests per­
formed on prespecified models. Even though these 
models were chosen without any regard to the final 
results, these results can be generalized only with 
caution. The results are, however, encouraging in 
that the SO procedure appears to be worthwhile in 
cases where it can be applied. It requires nonlin­
ear optimization software, which -may not be easily 
used in many environments. 
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Procedure for Predicting Queues and Delays on 
Expressways in Urban Core Areas 
THOMAS E. LISCO 

A procedure that predicts morning inbound and evening outbound queuing de­
lays on express highway facilities in downtown areas is discussed. The proce­
dure is based on the relationships among hourly traffic capacities at bottleneck 
points, daily volumes at those points, and associated queues and delays. The 
need for sµch a procedure arose from difficulties in using traffic assignment or 
other existing analysis techniques to predict queues and delays associated with 
alternative highway plans. Empirical delay data for developing the procedure 
came from nearly 600 speed runs conducted on the express highway system in 
and near downtown Boston. Fourteen queuing and potential queuing situa­
tions ware analyzed. The relationships derived appear to be generalizable, and 
the specific results from the Boston area should apply to other urban areas of 
comparable size. 

A procedure that predicts peak-period queuing and 
delays on express highway facilities in downtown 
areas is discussed. The procedure is based on the 
relationships among hourly traffic capacities at 
bottleneck points, daily volumes at those points, 
and associated peak-period queues and delays. (In 
this paper the term daily volume refers to average 
weekday traffic.) The procedure was developed by 
comparing observed bottleneck capacities with empir­
ical delay data for traffic upstream of the bottle­
necks. Capacities were derived from traffic counts 
at bottleneck locations. The delay data were from 

almost 600 speed runs conducted on express highway 
facilities in and near downtown Boston, mostly dur­
ing 1978 and 1979. The procedure was developed for 
use in detailed evaluations of potential traffic im­
pacts and benefits of alternative highway invest­
ments in downtown areas. 

The need for such a procedure arises initially 
from difficulties in using the output from traffic 
assignment models to predict peak-period operating 
conditions and cost-benefit statistics associated 
with alternative highway plans. The basic problem 
is that the regional traffic assignment process 
derives speeds for individual links separately based 
on their individual volume/capacity (v/c) ratios and 
does not consider the queuing effects of bottleneck 
locations. Thus in typical downtown area queuing 
situations, where one bottleneck highway segment can 
create queues stretching into many other segments, 
traffic assignments cannot indicate the locations 
and extents of queues or the delays associated with 
them. Because queuing can be of major importance in 
peak-period expressway operations in downtown areas, 
the assignments can be grossly inaccurate in pre­
dicting peak-period operating speeds. Similarly, 
the associated cost-benefit statistics can miss much 
of the phenomenon they are intended to measure. 




