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Prestressed-Concrete Spread Box-Beam Bridges

TERRY D. HAND and CELAL N. KOSTEM

ABSTRACT

An analytical scheme is developed that simu-
lates the elastic and inelastic flexural
response and the mechanism of damage initia-
tion and propagation for prestressed-con-
crete spread box~beam bridges under any
loading. The scheme employs the finite-ele-
ment displacement method in which the non-
linear structural response 1is simulated by
piecewise 1linearization of the tangent
stiffness formulation. Damage 1initiation
and propagation are simulated by dividing
plate and beam elements into multiple lay-
ers, each in plane stress. The influence of
box~beam torsional stiffness on the trans-
verse flexure of the superstructure is in-
corporated into the model by introducing rod
finite elements possessing the St. Venant
torsional rigidity of the actual box section
into the plane of the bridge slab. The
coupled flexural and axial components of the
box~beam contribution to composite bridge
action are retained in twin I-beams, each
corresponding to half the box beam, The
model is applied to a field-tested bridge
and found to yield reasonably good, slightly
conservative predictions of elastic bridge
deflections and girder moments. Results of
postelastic simulations of several box-beam
bridges are compared with those of flexur-
ally identical or comparable I~beam bridges.
Spread box-beam bridges are found to possess
superstructure stiffness and strength ap-
proximately 30 percent higher than their
I-beam counterparts. The lateral distribu-
tion of moment among box girders, more fa-
vorable at elastic load 1levels, is main-
tained almost proportionately well into the
inelastic range, whereas progressive and
unstable concentration of moment toward the
loaded girder or girders is observed in
comparable I-beam superstructures,

The majority of highway bridges in the United States
are periodically subjected to loads far in excess of
the service loads anticipated in the design process.
Investigations have been conducted over the years
by various agencies to determine the overload re-
sponse of bridges and to predict the deleterious
effects of overloads on the various components of
the superstructure, Analytical and limited experi-
mental investigations to date have focused on the
inelastic behavior of prestressed-concrete I-~beam
(1,2), reinforced-concrete cellular (3), and steel
multigirder bridges (4). Little is known, however,
about the post-linear-elastic response of pre-
stressed~concrete spread box-beam bridges (Figure 1).
It has traditionally been assumed that these
types of bridges are somehow stronger than corre-
sponding I-beam bridges and that if the latter are
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FIGURE 1 Typical presiressed-concrete spread box-beam
bridge.

able to carry given loads without damage, the same
should be true of similarly dimensioned box-girder
bridges. This assumption has led to ambiguity among
many bridge engineers as to the meaning of strength
and the definition of the damage initiation mecha-
nism for such bridges.

An analytical investigation was undertaken spe-
cifically to define the inelastic response and the
mechanism of damage initiation and propagation of
beam-slab prestressed-concrete spread box~beam
bridges and to compare the overload characteristics
of these types of bridges with those of equivalent
bridges designed by using prestressed-concrete
I-beams. The results clarify many questions regard-
ing the structural response and strength differences
in both the elastic and postelastic load ranges and
may be used as a basis for decisions to permit over-
loads.

The investigation employed +the finite-element
displacement method. Nonlinear structural response
was simulated by piecewise 1linearization of the
tangent stiffness formulation, and damage initiation
and propagation were simulated by dividing plate and
beam elements into multiple layers, each in plane
stress., The important influence of beam torsional
stiffness on bridge behavior was incorporated into
the model by introducing torsional rod elements into
the plane of the slab.

DEVELOPMENT OF THE MODEL

Background

The development of a finite-element-based scheme for
analysis of spread box-beam bridges proceeded from
an earlier model developed principally by the second
author to analyze I-beam bridges (1,2). In this
model the three-dimensional elasticity problem pre-
sented by the flexure of a beam-slab superstructure
was simplified and reduced to the problem of an
eccentrically stiffened plate. The beam-slab bridge
discretization consisted of beam and slab (plate
bending and plane stress) elements. Finite-element
nodes possessing in-plane (u and v) and bending (w,
Oy and By,) degrees of freedom (af) are
located at tge middle surface of the slab (Figure
2). Coupled in-plane and bending stiffness coef~
ficients are defined for the slab elements with
respect to all 5 df, whereas major-axis bending and
axial stiffness coefficients for beam elements are
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FIGURE 2 Layered beam and slab finite elements.
2
defined with respect only to u, w, and o thus

precluding representation of weak-axis benging of
the beams. Figure 2 shows the slab and beam layering
scheme that allows elements to exhibit a stress
variation through their depth and to experience
progressive cracking, crushing, or yielding. At the
same time, the layering provides the basis for rede-
fining element stiffnesses after each load step
through the appropriate summing of individual layer
stiffnesses. 1In this scheme each layer is assumed
to be in plane stress.

One of the principal shortcomings of this early
model lies in its inability to incorporate the tor-
sional stiffness of girders into the overall bending
response of the superstructure. As a result, its
application has been limited to bridges with beams
that have negligible torsional stiffness, such as
I- or T-beams. A second difficulty with the earlier
model, which precluded its use in the analysis of
box-beam bridges, was the question of how to treat
torsional shear flows within the restricted context
of the vertically layered beam stems.

Incorporation of Torsional Stiffness into the Model

Figure 3 illustrates a concept by which the tor-
sional stiffness of box girders may be incorporated
into the global stiffness of the superstructure.
Notional linear finite elements, which possess the
St. Venant torsional rigidity calculated for the
actual box beam, are introduced longitudinally be-
tween nodes that lie over the centerline and stems
of the box beams. Mathematically these elements are
connected only to the 8y df (Figure 2), which
had formerly been used only in defining the trans-
verse bending and twisting stiffnesses of the slab
elements, On assembly into the global-stiffness
equations, the additional stiffness provided by the
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torsion elements simulates the transverse stiffening
effect caused by the actual beams in the real
bridge. The flexural and axial stiffnesses of the
box beams are retained in twin I-beams, which may
continue to behave as the pure, planar beam columns
of the original model.

Assumptions and Limitations

The proposed scheme for introducing the torsional
stiffness of box beams into the otherwise purely
flexural model necessitated several assumptions:

1. That the true torsional response of a box
beam whose geometry is typical of those in the
bridges under study can be reasonably approximated
by St. Venant torsion alone,

2. That stresses from local transverse bending
of box-beam walls in typically proportioned beams do
not dominate over the primary flexural stresses and
flexural and torsional shear stresses, and

3. That the usual assumptions of small deflec~
tion and small strain beam theory hold at least as
well as for the original I~-beam inelastic bridge
model.

The first two assumptions have been validated by
research by the authors and are reported elsewhere

(5). The research consisted of theoretical and
finite-element analyses of a box beam loaded in
torsion and in combined flexure and torsion. Com-

parison of analytical results was made with limited
benchmark data from the laboratory testing of a
full-size prototype box beam (6).

The third assumption may be justified by the
consideration that a bridge having torsionally stiff
beams will exhibit less transverse dishing (indica-
tive of less twisting of beams and more even distri-
bution of moment among beams) than a bridge with
flexurally equivalent., but torsionally flexible
beams. This implies that box beams will more closely
approximate plane bending than their I-beam counter-
parts., Moreover, although one generally associates
box sections with torsion, their vastly higher tor-
sional strength and smaller twist angles result in
lower shear strains, which when coupled with the
reduced warping tendency of closed sections results
in a closer adherance to the assumption of key plane
sections. Last the significantly smaller deflections
and curvatures exhibited by box-beam superstructures
as compared with corresponding I-beam superstruc-
tures make the small deflection and small strain as-
sumptions all the more valid.

In addition to the assumptions just stated, the
bridge model, with or without the torsional ele-
ments, is limited by the inherently flexural nature
of its finite-element formulation. Because trans-
verse shear deformations and stresses are neglected,
the predicted bridge response and failure mechanism

SLAB ELEMENTS (Layers not shown}
TORSION ELEMENTS

a) Segment of Box - Beam Bridge
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FIGURE 3 Incorporation of torsional stiffness.
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is necessarily a flexural one. Thus, a bridge for
which the actual overload response would 1lead to
diagonal tension or shear cracking near the supports
would be a poor candidate for analysis with this
model. Because such cases are difficult to predict
in advance, this model includes provisions for cal-
culating, after each load step of the finite-element
solution, the average flexural and torsional shear
stress in each beam element. Torsional stresses are
appropriately added or subtracted to flexural shears
in each box-beam stem. Diagonal tension is then
calculated, and if it approaches a preset threshold
based on the rupture modulus of the concrete, the
analysis is stopped. A message is printed by the
computer program indicating that shear will govern
the failure mechanism of the bridge, and further
iterations with this model should be considered
inaccurate.

VERIFICATION OF MODEL IN ELASTIC RANGE

The torsional rod element concept for simulating
box~girder behavior was verified for loads in the
elastic range by comparing the predicted response
with corresponding measured data taken in field
tests of an actual box~beam bridge (Hazleton Bridge)
(7). Because measured data from the prototype were
limited to midspan deflections and moment distribu-
tion coefficients derived from strain readings, an
additional (elastic) finite-element model of the
bridge was created to serve as a surrogate for load-
ings and response parameters not covered by the
field tests. This second model employed a conven=-
tional finite-~element package (SAP IV) and treated
the bridge as a three-dimensional continuum with
rectangular plate-bending elements and with membrane

stiffness capability, including all parts of the
slab and each wall of the girders.
Figures 4 and 5 show transverse deflection

profiles at midspan as measured in the field tests
versus those predicted by the SAP IV model and those
predicted by the overload analysis model with spe-
cial torsion elements [Bridge Overload Analysis
(BOVA)]. The profiles correspond to two different
transverse positions of the 333-kN (74.8~kip) test
truck used in the tests (lanes 1 and 4). In each
case the +truck was positioned longitudinally to
produce maximum bridge moment. Note that whereas
the SAP IV model predicts the measured data almost
exactly, the BOVA model consistently overestimates
the deflection in the most heavily loaded girders.
Figures 6 and 7 show the moment distribution
coefficients as derived from data taken in the field
test versus values predicted by the SAP IV and BOVA
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FIGURE 4 Midspan deflection profile: comparison of
alternative models with test results (lane 1).
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FIGURE 5 Midspan deflection profile: comparison of
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models, respectively. These plots show good agree-
ment generally. However, the BOVA~generated values
again tend to be somewhat higher than the others,
which indicates a slight overestimation of the por-
tion of the bending moment carried by the most
heavily loaded beams,

Figures 8 through 12 are longitudinal plots of
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FIGURE 8 Internal torque versus longitudinal location: girder A,
Hazleton Bridge (lane 2).
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FIGURE 9 Internal torque versus longitudinal location: girder B,
Hazleton Bridge (lane 2).
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FIGURE 10 Internal torque versus longitudinal location: girder C,
Hazleton Bridge (lane 2). -

Transportation Research Record 950

3 sar4 o
X BOvVA

0000t

z .1
EX
m o ~
[«]
>
[
— (INCHES)
o 0.00 209.0 4|8L,0 6270 836.0
2 olooo 530 (] 1592 2123
m X (METERS)
,
S -8 %
' ?
z i+
Z g o
o 1 m
> Ly 4
©

00001~
oS

FIGURE 11 Internal torque versus longitudinal location: girder D,
Hazleton Bridge (lane 2).
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FIGURE 12 Internal torque versus longitudinal location: girder E,
Hazleton Bridge (lane 2).

internal beam torque for each of beams A through E
for the case of the test truck in lane 2 (straddling
girder B, the second beam from the right). Note
again that although the predictions of the two
models show reasonable agreement on order of magni-
tude, the BOVA formulation again predicts larger
values.

The response of the BOVA formulation for box-beam
bridges (i.e., with torsion elements) is compared
with that of the equivalent twin I~girder bridge
(identical except without torsional elements) in
Figure 13, which clearly shows the intended trans-
verse stiffening effect contributed by the torsion
elements. The loading for this plot was an AASHTO
lane load in lane 2, that is, over beam B.

These results of analyses conducted at loads in
the elastic range show that the response of a box-
beam superstructure is quite well modeled qualita-
tively and reasonably well modeled quantitatively by
the insertion of torsional rod elements into the
layered beam~slab model as described earlier. The
results suggest that in the elastic range at least,
the inelastic model (BOVA) tends to overestimate
somewhat the deflections, moments, and torques in
the critical girder. The consistent overestimation,
although problematic, is on the conservative side.

APPLICATIONS OF BOVA (BOX) IN INELASTIC RANGE

Extension of the box~beam overload model into the
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FIGURE 13 Midspan deflection profile: comparison of
alternative models.

inelastic range proceeded in two stages. In the
first stage the two BOVA versions of the Hazleton
Bridge model (i.e., the simulated box~beam and the
equivalent twin I-beam models) were each loaded to a
point near the ultimate strength of the superstruc-
ture. The purpose was not only to predict the post-
elastic response and failure mechanisms of the box-
beam version but to investigate the differences in
response between a box-beam bridge and a notional
I-beam bridge identical in every detail except for
the presence of the torsion elements.

The second stage involved a comparison of the
responses of three distinct prestressed-concrete
beam-slab bridges, each designed to Pennsylvania
Department of Transportation (PennDOT) standards for
the same span, width, and loading. The purpose was
to evaluate the differences in behavior of actual
alternative designs-~bridges with eight I-beams,
eight box beams, and five box beams.

Overload Analysis of Hazleton Bridge

In Figure 14 the load-deflection response of the
Hazleton Bridge box-beam model is compared with that
of the twin I-beam control model discussed previ-
ously. The loading consisted of monotonically in-
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FIGURE 14 Load-deflection response of Hazleton
Bridge models.
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creasing patch loads corresponding to the wheel
footprint of the three-axle test truck used in the
field tests (7). The truck was positioned in lane 2
straddling beam B. The ordinate is the total verti-
cal load. The abscissa is the vertical deflection
at midspan on the outer stem of the loaded beam.

Critical events in the overload history of each
model are annotated on the curves, and the overload
simulation was stopped in each case when the pre-
dicted flexural cracks in both stems of the loaded
beam extended into the bottommost web layer. 1In the
case of the box~girder model this occurred at a load
of 2,259 kN (508 kips) and a deflection of 24.2 mm
(0.954 in,). At this point the curve has clearly
become nonlinear but retains a large positive slope,
indicating that the bridge as a whole is not yet
approaching its collapse load. By comparison, the
equivalent I-beam bridge revealed the same damage
level at a total load of 1,077 kN (377 kips) and a
deflection of 23.8 mm (0.936 in.). The slope of the
curve in this case, however, has become nearly hori-
zontal, which implies that the bridge is near its
ultimate load.

Figures 15 and 16 are based on data from the same
overload simulation runs but show instead the pre-
dicted midspan deflection profiles at the same total
loads as those annotated on the load-deflection
curves. In additioen, the box-beam profile (Figure
15) has a curve for a load of 333 kN (74.8 kips),
the actual test-truck weight.

Examination of the two families of curves in
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conjunction with the load~deflection curves indi-
cates that although critical damage occurs in both

bridges at approximately the same maximum bridge
deflection, the box-beam version reaches that de-
flection at a total load about 35 percent higher.
Moreover, at this point in the equivalent I-beam
bridge the loaded beam is taking on an increasing
share of the total load as shown by the apparent
unloading of the right-hand beam. By contrast, in
the bhox-beam bridge the distribution of load to all
beams appears to be maintained, even at high loads
and severe deck and beam damage levels.

Analysis of Alternative PennDOT Bridges

The final series of analyses in the study compared
the responses of three hypothetical bridges, each
designed fully in accordance with PennDOT bridge
standards (8) to meet the following requirements:
~span, 18.29 m (60 ft); total superstructure width
(including curb and parapet), 14.22 m {46 ft 8 in.):
and design loading, HS20 to 44, unskewed, and simply
suppor ted. From a design standpoint the bridges
represent valid alternative structures with nomi-~
nally equivalent capacities. These three cross
sections are shown in Figure 17.

Overload simulations of the three bridges had two
purposes: (a) to assess the behavior and strength
differences between a typical spread box-beam bridge
and an I-beam bridge having the same number of beams
and beam spacing (as opposed to the equivalent I~
beam version of the Hazleton Bridge, which was iden~
tical to the box~beam version except for the torsion
elements but which did not represent an actual prop-
erly designed bridge) and (b) to determine differ-
ences in response between a box~beam bridge with
many closely spaced small beams and one with fewer
more widely spread large beams.

Figures 18, 19, and 20 show the comparative load-—
deflection curves and midspan deflection profiles at
various load levels of the I-beam bridge and the
bridge with eight box beams. The loading pattern
for these analyses was a uniformly distributed lane
load 3.05 m (10 ft) wide down the bridge centerline.
The overload simulation was stopped at the first
tension crack in the bottom flanges of the two

e
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loaded beams (both stems had to be cracked in the
case of the simulated box beams).
These plots show a situation similar to the

Hazleton Bridge, in which the box~beam bridge ex-
hibits both stiffer transverse behavior and signifi~
cantly greater strength. Also apparent in this
comparison (not in the Hazleton Bridge) is the
greater deflection capacity of the box~beam bridge
at an equivalent damage level. [Actually, the box~
beam bridge showed far less predicted slab damage at
the 1,553-kN (349-kip) load 1level than the I-beam
bridge showed at its 850-kN (191-kip) load level.]

The midspan deflection profiles of the bridge
with eight box beams and the bridge with eight I-
beams illustrate markedly different behavior at the
higher postelastic load levels. In the I-beam bridge
(Figure 19), what 1little lateral distribution of
load to the exterior girders existed at the begin-
ning appears to be degraded as (primarily) deck
damage spreads. On the other hand, this lateral
distribution, which is better initially in the box-—
beam bridge, is degraded little as deck damage prop-
agates. Clearly the contribution of the torsional
stiffness of the girders to the transverse stiffness
of the superstructure maintains the transverse in-
tegrity of the system in spite of severe deck damage
(Figure 20).

Figures 21 and 22 show load-deflection plots and
families of nmnidspan deflection profiles for the
box-beam bridges with eight and five beams, respec-
tively. The comparisons are not nearly so graphic
or informative as the I-versus~box simulations. For
these two bridge models, however, the load-deflec-
tion curves predict stiffer behavior by the five-
beam bridge as opposed to greater strength and ca-
pacity for deformation in the eight-beam bridge.
The loading and termination criteria were the same
as those for the previous simulations. The profiles
show a similar response character, particularly in
regard to maintenance of lateral distribution of
load.

CONCLUSIONS

In this investigation a rational analytical approach
was developed for simulating the elastic and post-
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elastic response of prestressed-concrete spread

box~beam bridges. The scheme was shown to be a
valid representation of true bridge behavior in the
elastic load range, whereas its verification in the
inelastic range must be deferred until prototype or
scale-model bridges are tested to failure. Based on
elastic studies, the model tends to err on the con-
servative side, suggesting that its results, extrap-
olated into the inelastic range, may reasonably be
expected to give useful quantitative estimates of
postelastic response, failure 1loads, and failure
mechanisms.

Applications of the model to overload simulations
of box-beam superstructures in comparison with
equivalent or alternative I-beam superstructures
suggest the following tentative conclusions:

1. Spread box-beam bridges exhibit significantly
greater Jload~carrying capacity than their I-beam
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counterparts with an identical or slightly greater
major-axis moment of inertia.

2. Spread box-beam bridges exhibit higher over-
all flexural stiffness than comparable I-beam
bridges, although the maximum bridge deflection
reached at equivalent beam damage levels is about
the same for the two bridge types.

3., In box-beam bridges transverse distribution
of load to beams not directly loaded is higher ini-
tially and is effectively maintained through the
entire load range as compared with I-beam bridges in
which the initially poor transverse distribution
becomes worse as total applied load is increased
into the postelastic range.
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Overloading of Steel Multigirder Bridges

CELAL N. KOSTEM

ABSTRACT

The overloading of steel multigirder highway
bridges may have deleterious effects on the
structural integrity of the superstructure.
The overloading of steel bridges is closely
linked with the fatigue-life determination
of the connection details. It is observed
that the actual structural response of these
bridges is different from the assumptions
made in the design. Results obtained from a
computer-based analytical model and simula-
tion 9acheme are presented. The method pro-
vides a reliable tool to predict the linear-
elastic and inelastic response of bridge
superstructures up to the c¢ollapse load
level. The observations from case studies
have indicated that (a) interface slip be-
tween the girders and the bridge deck can be
neglected for any practical overloadings,
{b) high stresses due to overloading tend to
be more prominent in the vicinity of the
details that are prone to fatigue-crack
initiation, (c) residual stresses play a
nonnegligible role in the inelastic response
of primary steel girders, (d) buckling is an
important but not a critical phenomenon, and
(e} damage initiation due to overloading can

initiate in girders or in the deck, depend-
ing on the design details. It was also
noted that bridges with a high degree of
internal and external structural indetermi-
nacy are less prone to damage induced by
catastrophic overload.

Most highway bridges are subjected to overloading of
varying degrees of severity with varying frequency.
It is guite rare that all structural components of a
bridge superstructure will not be subjected to
stresses and deformations that will be equal to or
below the values assumed by the designers. The
overloading of a given bridge and its components
will not necessarily occur only when a vehicle tra-
versing the bridge is heavier than the design vehi-
cle. Vehicles with close axle spacings, even if
they are lighter than the design vehicle, can cause
overloading. Thus, the issue of overloading is
prevalent for all bridges. The frequency of the
overloading cannot be accurately estimated unless
the traffic count, including the axle spacing and
weights of the axles, is monitored. Because some
steel bridge components are known to be susceptible
to fatiqgue, fatigue-~crack initiation, and propaga-—
tion, the overloading of steel bridges is closely
related to the fatigue life of the bridges.



