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Analysis of Ambient Carbon Monoxide Data 

PAUL E. BENSON 

ABSTRACT 

Several current methods fo'r estimatinq 
worst-case ambient carbon monoxide levels 
are critically reviewed. The distributions 
by month, day, and hour of seasonal maximum 
ambient levels measured at 12 California 
stations are presented. These distributions 
are used to develop an observed maximum 
method for estimating the second annual 
maximum concentration from limited field 
measurements. The method is based on the 
co~bined use of the binomial distribution 
and combinatorial analysis. The binomial 
distribution is used to generate the ex­
pected number of occurrences of ambient 
concentrations within the top six ranks of 
the seasonal statistics given schedulinq and 
duration of sampling. Combinatorial analysis 
is used to predict the distribution of sea­
sonal maximums among these top six ranks. 
The resulting models are verified both sepa­
rately and together by using the California 
data. A table is produced that can be used 
to design samplinq plans that will yield 
observed maximum concentrations equal to or 
close to the second annual maximum. 

The determination of second annual maximum 1-hr and 
8-hr ambient carbon monoxide (CO) concentrations 
from limited field-monitoring data is an important 
component in transportation air quality impact 
studies. Because the significance of an air quality 
impact is judged on the basis of comparison with an 
absolute standard rather than between alternatives, 
accurate estimation of the ambient or background 
concentration is er i tic al. It can often mean the 
difference between the find inq of an acceptable or 
unacceptable impact. This is particularly true when 
project-related impacts are small relative to back­
ground concentrations. Many hiqhway improvement 
projects in urban areas fall into this category. 

In this paper the problems underlying the current 
method used by the California Department of Trans­
portation (Caltrans) for extrapolating second annual 
maximum concentrations from field measurements are 
examined. A simpler, more accurate scheme is devel­
oped in which scheduling and duration of sampling 
are used to yield a high probability of sampling a 
value equal to or close to the second annual maxi­
mum. Data analysis is reduced by using the maximum 
value sampled as a direct estimate of the second 
annual maximum. The new method eliminates overly 
conservative assumptions and time-consuming analyt­
ical procedures. 

LITERATURE REVIEW 

The method currently used by Caltrans to estimate 
second annual maximum 1-hr and 8-hr CO concentra­
tions was first introduced by R. I. Larsen in 1971 
(!.). It was developed empirically from aerometric 

data collected at eight urban sites from 1962 
through 1968. A two-parameter lognormal distribution 
was used by Larsen to extrapolate expected maximum 
values from random field measurements. A computer­
ized version of Larsen's model was developed by 
Caltrans in 1976 (2). 

Since its int~oduction, Larsen's two-parameter 
lognormal model has been studied and in some ways 
improved on. The weaknesses of the original model 
primarily involve three areas: 

1. The suitability of the two-parameter lognor­
mal distribution. 

2. The implicit assumption that sequential aero­
metric measurements are independent and evolve from 
a stationary process, and 

3. The requirement that a random sampling scheme 
be followed. 

Several authors, including Larsen, recognized that 
the two-parameter lognormal distribution was not ap­
propriate for all cases. In 1977 Larsen proposed a 
three-parameter lognormal distribution for use on 
data collected at urban and source-affected sites 
(1_) • Mage and Ott recommended use of a censored 
three-parameter lognormal distribution in 1978 (_~). 

In 1975 Curran and Frank proposed the use of a one­
or two-parameter exponential distribution fit exclu­
sively to the highest observed concentrations Ci>· 

In 1973, Patel objected to the implicit assump­
tion of independence between sequential aerometr ic 
measurements contained in Larsen's model ( 6). Neu­
s tadter and Sidik later showed that the assumption 
of independence was reasonable for successive mea­
surements made 3 to 6 days apart (7). Horowitz and 
Barakat concluded that serial correlation between 
sequential measurements would not seriously limit 
the usefulness of Larsen's model but that deviations 
from the implicit assumption of stationarity could 
(_!!). 

A survey conducted by Meisel and Dushane !_2) 
showed that continuous aerometric samplinq over a 
period of 3 weeks to 3 months was the normal field 
practice. Random sampling by day or by hour was 
characterized by respondents as inconsistent with 
efficient field operations. Respondents found it 
more efficient to site a sampler for a fixed block 
of time and sample on a 3- to 5-day weekly schedule. 
Meisel and Dushane developed an analytical method­
ology consistent with this type of quasi-continuous 
sampling plan. Their project, funded by NCHRP, was 
published as NCHRP Report 200 in 1979 (_2.). 

NCHRP 200 METHOD 

The NCHRP methodology is designed to amplify limited 
project-specific CO data by the use of an auxiliary 
data set collected concurrently at a nearby, year­
round monitoring station. The method assumes a siq­
nificant temporal correlation between the two sets 
of data. The auxiliary station data set is used to 
estimate the number of adverse days sampled at the 
project site target station. An adverse day is de­
fined as a day containing an 8-hr daily maximum 
ranking in the upper 20 percent for the year. 

The target station data may be analyzed in one of 
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three ways: the distribution, observed maximum, or 
combination methods. The last is simply a weighted 
average of results from the first two methods. In 
the distribution method, an exponential distribution 
is fitted by least squares to the 8-hr daily maxi­
mums measured at the target station during adverse 
days. The second annual maximum is extrapolated from 
this distribution. In the observed maximum method, 
the number of adverse days occurrinq durinq the 
sampling period is used as a prequalification. If 
there are at least 6 adverse days in a 1-month 
period or 10 in a 2-month period, the highest 8-hr 
daily maximum observed during the period is used as 
an estimate of the second annual maximum. In cases 
where no auxiliary data are available, NCHRP 200 
recommends that sampling periods be prequalified on 
the basis of nationwide or statewide monthly distri­
butions of adverse days. 

During implementation of NCHRP 200 by Cal trans, 
it became clear that acquiring and processinq auxil­
iary data required an inordinate amount of time and 
effort. It was decided that the method for determin­
inq adverse days from statewide monthly distribu­
tions should be followed. However, this approach 
also presented a problem. The distribution of ad­
verse days by months given in NCHRP 200 contained 
data from only two regions in California. In addi­
tion, possible differences between the monthly dis­
tributions of adverse days and second annual maxi­
mums had not been investigated. The lack of temporal 
resolution in the final result also had to be con­
sidered. For example, an observed 8-hr maximum that 
occurred late in the evening might be used as repre­
sentative of a morning commute-hour ambient. Without 
organizing the analysis by time of day, similar 
examples of data mismatching miqht occur. 

These problems and others were addressed by exam­
ining data from a number of California monitoring 
stations and developinq several modifications to the 
original NCHRP 200 method. 

ANALYSIS OF AMBIENT CO DATA FROM SELECTED 
CALIFORNIA STATIONS 

In order to help develop and verify the intended 
modtfications to NCHRP 200, a larqe representative 
data set was required. Fortunately, historical data 
from a comprehensive network of air quality monitor­
inq stations throughout California were readily 
available from the California Air Resources Board in 
an edited, machine-readable form. Twelve stations 
with relatively complete records over a period of 
years were chosen from this data base. They repre­
sented a variety of qeographic and demoqraphic set­
tings typical of California. 

The selected data set was composed of daily rec­
ords of 1-hr averaged CO concentrations. In cases 
where missing data were encountered, the NCHRP 200 
interpolation method was used. If gaps within a 
31-hr period (midnight to 7:00 a.m. of the following 
day) exceeded the size and frequency criteria set 
down in NCHRP 200, the entire day was dropped from 
the data set. After being edited for missinq values, 
the data set was stratified by co season, startinq 
July l and endinq June 30 of the followinq year. The 
seasonal stratification was made in lieu of a calen­
dar year division so that the monthly distribution 
of maximums would accurately represent the distribu­
tion encountered when sampling was done within a 
season. Seasons with more than 10 days missinq in 
any single month from October throuqh February or 
more than 25 days missing over this entire 5-month 
wintertime period were deleted from the data set. 
This left a total of 112 station-seasons in the d~ta 
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set, each composed of an averaqe of 349 days' worth 
of twenty-four 1-hr CO concentrations. 

Peak 8-hr averaqes were determined for each day. 
Calculations were made by crossinq midnight with the 
start hour of the 8-hr period to determine the date 
of the maximum. Overlapping 8-hr daily maximums were 
not permitted. The daily maximums within each sta­
tion-season were then ranked. Dates and start hours 
of the top six ranks were retained in the final 
version of the data set. Tied values were assigned 
the same rank, making multiple occurrences of sea­
sonal maximums possible. A similar treatment was 
given to 1-hr maximums, with the exception that 
multiple annual maximums within the same day were 
allowed. A description of the final data set is 
given in Table 1. 

The distributions of the seasonal high 8-hr daily 
maximums by month, day of week, and hour of day were 
key elements in development of the modified sampling 
procedure. Instead of using the top 20 percent of 
the data, as in NCHRP 200, the modified method 
focused on the probabilities of encounterinq maxi­
mums within the top six ranks of the seasonal sta­
tistics. Study was limited to these seasonal maxi­
mums rather than adverse days because their temporal 
distributions were expected to follow the distribu­
tion of second annual maximums more closely. 

The modified method assumes that the monthly 
distribution of seasonal maximums is independent of 
averaging time and rank. A categorical analysis of 
variance performed on the 12-station data set showed 
no significant differences between monthly distribu­
tions of 1-hr and 8-hr maximum and first- through 
sixth-ranked seasonal high 8-hr maximums. There was 
a significant difference in the distribution of 
maximums by station. However, this was slight enough 
to justify the aggregation of results over the 12 
stations as representative of a composite California 
location. The final sampling plan was specified by 
using the aggregated monthly distribution of the 
proportion of days containing 8-hr seasonal maximums 
shown in Figure 1. 

The distribution of seasonal maximums by day of 
week, shown in Figure 2, was also important in the 
development of the modified method. For weekdays the 
fraction of 1-hr seasonal maximums is somewhat 
greater than 8-hr maximums. For weekends this dif­
ference is reversed. The relatively short duration 
of weekday traffic peaks and the broader temporal 
distribution of traffic volumes on weekends is con­
sistent with this pattern. The day-to-day trends in 
Figure 2 are roughly similar for both 1-hr and 8-hr 
averaging times. There are gradually more seasonal 
maximums occurring through the week until a peak is 
reached on Friday. The number of seasonal maximums 
then drops significantly for Saturday and reaches a 
minimum on Sunday. Cross-stratification of the data 
by time of day and day of week revealed that the 
additional Friday occurrences, as well as many of 
the Saturday occurrences, take place in the late 
evening hours. The few occurrences of Sunday maxi­
mums also take place in the eveninq about l hr later 
than weekday commute peaks. 

These temporal patterns exhibited by the seasonal 
maximums closely follow expected traffic distribu­
tions reported by Shirley (10). A composite version 
of the 1-hr and 8-hr day-of-week distributions was 
used to determine the probabilities of encountering 
seasonal maximums associated with different day-of­
week sampling plans. 

The distributions of 1-hr and 8-hr seasonal maxi­
mums by start hour are shown in Figure 3. The dis­
tributions are quite dissimilar, particularly re­
garding the occurrence of morning maximums. The most 
concentrated number of 1-hr maximums occurs between 



Benson 

10 

,.. 
N .... 
Q 

5 

TABLE 1 California Ambient CO Data Set 

1980 
Metropolitan 
Population 
(OOOs) 

< 100 

100 to 
500 

>500 

a 1979-1980 season. 

Station 

Pittsburg 
Lancaster 
Escondido 
Santa Barbara 
Salinas 
Bakersfield 
Stockton 
Redwood City 
Sacramento 
Pomona 
San Diego 
Burbank (L.A.) 

MONTH 

Area/Site 
Code 

700/430 
7000/82 
8000/115 
4200/355 
2700/544 
l 500/203 
3900/252 
4100/541 
3400/282 
7000/75 
8000/120 
7000/69 

FIGURE 1 Monthly distribution of proportion of days (pj) 
containing 8-hr daily maximums within top six seasonal 
ranks. 
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FIGURE 2 Fraction of 1-hr and 8-hr seasonal maximums (f;) 
distributed by day of week. 

Second Maxi-
mum, 1981-
1982 (ppm) 

Total 
Years Studied Seasons I-Hr 8-Hr 

1969-1982 12 8 4.9 
1971-1982 10 9 4.9 
1975-1982 7 12 8.0 
1974-1982 7 15 8.1 
1976-1982 5 4 2.9 
1972,1973,! 976-1979,1981-l 982 5 14 10.1 
1965-1967 ,1979-1982 5 14 7.5 
1968-1982 13 10 5.5 
1972-1980 7 II' 7.4' 
1966-1982 14 12 9.6 
1973-1982 8 12 8_6 
1963-1982 19 25 20.l 
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FIGURE 3 Fraction of 1-hr and 8-hr seasonal maximums (f;) 
distributed by start hour. 
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the morning commute hours of 7: 00 and 9: 00 a .m . 
Approximately 40 percent of the 1-hr maximums and 10 
percent of the 8-hr maximums occur during this 
period. The explanation for this difference lies in 
the combined temporal distributions of traffic and 
meteorology. During the evening hours, these two 
factors combine over sufficiently long periods to 
yield the bulk of the 8-hr daily maximums. In the 
morning hours, a pronounced morning commute and 
stable meteorological conditions lead to a substan­
tial number of 1-hr seasonal maximums. However, the 
short duration of the morning commute peak and the 
rapid shift to unstable meteorological conditions 
typically following this peak limit the number of 
morning 8-hr seasonal maximums to a small percentage 
of the total. 

The time-of-day distributions were used to deter­
mine an appropriate division of the modified ob­
served maximum analysis into four time periods : 
morning, midday, evening, and nocturnal (Table 2). 

DEVELOPMENT OF A MODIFIED SAMPLING PROGRAM 

The fundamental differenc e between the NCHRP 
method and the modified method developed in 

200 
this 
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TABLE 2 Time Periods for Analysis of Ambient CO 
Concentrations 

Occurrence of 
Start Hour Seasonal Maximum 

(%) 
Time 1-Hr 8-Hr 
Period Maximum Maximum 1-Hr 8-Hr 

Morning 6:00 1:00 43 10 
Midday 10:00 8:00 I >I 
Evening 5:00 l I :00 32 80 
Nocturnal 9:00 8:00 24 10 

paper involves the procedure for determininq the 
duration of sampling. Instead of sampling for a 
fixed 30 days with a minimum of 6 adverse days re­
quired, the modified procedure calls for a sampling 
program the duration of which varies with the month 
or months sampled. The duration of sampling is 
chosen so as to yield an extremely high probability 
of attaining as an observed maximum an unbiased 
estimate of the expected second annual maximum. This 
is achieved through the combined application of the 
binomial distribution and combinatorial analysis. 
The specific sampling intervals recommended in this 
paper are based on the Calitornia data set. However, 
the principles can be extended to any comparable 
data set. 

A distribution of randomly chosen, independent 
events characterized by two mutually exclusive out­
comes can be described by the binomial expansion 
(q + p)n, where q and p represent the probabil­
ities of occurrence attached to each outcome. '!'he 
rth term of the expansion equals the probability 
that the outcome, the underlying probability of 
which is denoted by p, will occur r times in n 
samples. This can be stated as follows: 

P(rlp,n) = [n!/r!(n - r) !] prqn-r (1) 

The binomial expansion was used to generate expected 
monthly probabilities of encountering r seasonal 
maximums (defined as daily 8-hr maximums within the 
top six ranks for the season) in an n-day sampling 
period based on the underlyinq probabilities shown 
in Figure 1. Thus, for a full-month sample taken 
durinq the jth month, 

(2) 

where Pj and n· equai , respectively for the jth 
month, the pro~ability of encountering seasonal 
maximums and the number of days in the month. Equa­
tion 2 was used to predict the distribution of oc­
currences of seasonal maximums for the full-month 
sampling periods of October through February. These 
are compared in Table 3 with the observed distribu-
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tions taken from the California data set. Probabil­
ities are rounded to the nearest whole percent, so 
totals may not exactly equal 100 percent. 

Use of the binomial distribution assumes that the 
8-hr daily maximums are randomly chosen, independent 
events. In fact, they are a set of sequentially 
sampled, autocorrelated events. The assumption of 
randomness is not seriously violated provided sam­
pling is of sufficient duration to incorporate a 
majority of winter meteorological conditions. The 
assumption of independence between daily maximums 
presents a more serious problem, however. Examina­
tion of the California data set showed that clusters 
of consecutive seasonal maximums occur with greater 
frequency than would be expected from a series of 
independent events. This was most evident for small 
clusters of two to three seasonal maximums; 26 per­
cent of the paired values and 8 percent of the 
groups of 3 occurred on successive days. 

Clustering of seasonal maximums is caused by 
short periods of calm, stable meteoroloqical condi­
tions between winter storms. The effect of cluster­
ing on the overall distribution of seasonal maximums 
is apparent in Table 3. There is a consistently 
higher percentage of months with no occurrences of 
seasonal maximums than would be expected from a 
truly independent distribution. This higher percent­
age is caused by the clustering of maximums in other 
months. By the same token, the overestimation of 
months with only one occurrence can be ~ttributed to 
the likelihood that seasonal maximums will occur in 
clusters rather than as isolated events. 

The binomial distribution does reasonably well at 
predicting the observed pattern for months having 
two or more occurrences as well as for the entire 
distribution for November. Therefore, the assump­
tions of independence and randomness, although not 
entirely valid, were considered satisfactory for 
purµ>ses of approximating the number of seasonal 
maximums (r) within a given sampling interval. 

The probability that an observed maximum equals 
the mth-ranked seasonal maximum, given a sample 
containing r seasonal maximums, can be stated as 
follows: 

P(mlr) (3) 

where ~ is the number of ranks less than the mth 
rank (6 - m) for the r seasonal maximums and 

- r): n > r 

n < r 

This formulation assumes that there are no multiple 
occurrences of seasonal maximums. For the California 
data set there were tied ranks, however, yielding an 
average of eight maximums within the top six ranks 

TABLE 3 Observed and Predicted Probabilities of Encountering r Seasonal Maximums by Month 

Probability of Occurrence(%) by Month 

No. of Seasonal Oct. Nov, Dec. Jan , Feb . 
Maximums 
(r) Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted 

0 64 52 14 12 9 2 45 33 82 79 
J 19 34 26 27 6 9 24 37 14 19 
2 10 11 26 28 13 18 15 20 2 2 
3 4 2 21 19 22 22 11 7 I 0 
4 3 0 7 9 17 20 5 2 1 0 
5 1 0 4 3 15 14 1 0 
6 2 1 10 8 
7 I 0 5 4 
8 2 1 
9 I 0 
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per season. The following modification to Equation 3 
was derived to account for this: 

P(mlr) = (l/8Cr) {(q2/36) [(2 + l)Cr - 2Cr) 

+ (q/18)[0 + 2)Cr - 2Cr) + (q2/18)[(2 + 2)cr 

- 0 + l)cr] + (l/36) [(2 + 3)cr - 2Cr) 

+ 0/18) [(R + 3)cr - (2 + l)crJ 

+ (2 2/36)[(2 +3)cr- (2 +2)cr)} (4) 

where g is the number of ranks greater than the mth 
rank (m - l). 

Equation 4 is based on the assumption that the 
two extra seasonal maximums are randomly distributed 
among the top six ranks. Overall, there is a slight 
increase with descending rank of the number of ties 
in the California data set. However, for months 
containing three or more seasonal maximums, the 
distribution of tied ranks is approximately uniform 
among the top six ranks. 

Equation 4 was used to model the distribution of 
observed maximums among the top six ranks as a func­
tion of the number of occurrences of seasonal maxi­
mums. These values can be compared in Table 4 to the 
rank distribution of monthly observed maximums cate­
gorized by number of occurrences (r). The discrep­
ancies between observed and predicted probabilities 
are primarily due to the nonuniform distribution of 
tied ranks and the tendency for first and second 
seasonal maximums to be associated with clustered 
results. 

To test the validity of the combined use of the 
binomial distribution and Equation 4, the modeled 
distributions of observed maximums by rank for the 
months October through February were generated by 
the following: 

7 
P(m~)= ~ [P(rlj) ·P(mlr)] + [P(r;. 8lj) ·P(mlr=8)] (5) 

r=t 

where P(mlj) equals the probability of the observed 
maximum during the j th month coming from the mth 
rank. The second term in Equation 5 relates the 
diminishing probabilities generated by the bionomial 
distribution for r > 8 to the fixed probability for 
r = 8 derived from -the combinatorial analysis. The 
predictions generated by Equation 5 compare favor­
ably with the observed distributions obtained from 
the California data set (Table 5). 

In general terms, the combined model can be ex­
pressed as follows: 

n 

P(mlpj ,n)= ~ [P(rlpj,n) • P(mlr)] (6) 
r=l 

where n is the number of days sampled in the j th 
month and P(mlr) = P(mlr = 8) for all r > 8. Given 
known values for Pj and the average differences be­
tween concentrations by rank from the California 
data set, Equation 6 can be used to approximate an 
unbia sed s ampling pi:oq ram . The values for p· are 
given in Figure l, whe r eas the distr i bution o'fl dif­
ferences between the second seasonal maximum (m = 2) 
and the first through sixth seasonal maximums for 
the California data set are summarized in Table 6. 
The maximum and overall average differences are 
given as follows: 

Seasonal 
Maximum ldm- 2 1max ldm-2' 
(r) !EEml lEE!!!l_ 
l 8.6 1.27 
3 7.2 0.69 
4 7.7 1.15 
5 7.9 1.52 
6 8.4 1.85 
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Because there was no significant difference between 
the monthly distributions of 1-hr and 8-hr seasonal 
maximums, a samplinq program based on 8-hr values 
was assumed equally valid for 1-hr estimates. 

The sampling program was designed so that the 
duration of samplinq would be sufficient to guaran­
tee a fixed probability (Pel of obtaininq one or 
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TABLE 5 Observed and Predicted Probabilities by Month Tllat Observed Maximum Will Equal mth Seasonal Maximum 

Rank 
(m) 

J 
2 
3 
4 
5 
6 

Probability of Occurrence(%) by Month 

Oct. Nov. 

Observed Predicted Observed 

9 10 27 
4 9 25 
5 8 13 
8 7 9 
6 7 6 
4 6 6 

TABLE 6 Distribution of Differences Between 
Second and mth Seasonal Maximums 

Predicted 

31 
21 
14 
10 

7 
5 

Probability of Occurrence(%) by No. 
of Seasonal Maximums (r) 

ldm_2 I (ppm) 4 6 

.;0.5 38 62 30 14 6 
0.6- 1.0 22 21 29 29 25 
1.1- 1.5 17 IO 22 20 21 
1.6-2.U 6 '2 '/ ]'/ 17 
2.1-2.5 6 1 4 5 11 
2.6-3.0 2 2 3 4 6 

>3.0 9 3 5 II 14 

more seasonal maximums. To select a proper value for 
Pc, the probabilities described by Equation 6 were 
used in combination with the average differences 

(~_ 2 ) given earlier. Because the binomial dis tr i­
bution turned out to be relatively insensitive to 
values of Pj ranging from 0.01 to 0.10 given a 

fixed value of Pc, an averaged value {p) of 0.05 was 
used in the following final design equation: 

B= ~ ~ P(rlp,Pc) · ~ [P(mlr) · dm -2 1 { 
I l m=l ~ 

+ [P(n 8lp,Pc) ·d1.2J +((I -Pc)• do] (7) 

In this equation, B equals the expected bias in parts 

per million given Pc, a nd d 0 represents an estimate 
of the average difference between the second sea­
sonal maximum and observed maximums occurring out­
side the top six-rank interval. In cases where a 
seasonal maximum is not encountered during the sam­
pling period, there is still a high probability 
(Pc') that a daily maximum within the top 12 ranks 
will be found. It can be shown that 

P~ =I - exp (Qn(l - Pc)Qn(l - 2P)/Qn(l - p)] (8) 

assuming that the average underlying probability of 
encountering a daily maximum within the top 12 ranks 
is twice the probahil ity of encountering a maximum 
in the top 6 ranks. Thus, the selection of the de­
sign probability (P0 ) was based on B approaching 
zero in Equation 7 and Pc approaching 1 in Equation 

8. The value for d0 was determined by extrapolating 

values of dm-2 for m = 7 to 12 by using the average 
differences given earlier and compositing these 
values as follows: 

, I 12 t 
d0 =,::,1 [P(rlp ,Pc)/PcJ • m=

7 
(P(m- 6 1r)• dm-2J~ 

+ { [P(o8 1p,Pc)/Pcl • d7-2} (9) 

Equation 9 deals essentially with the small prob­
ability (Pc' - Pel that an observed maximum will fall 
outside the top 6 ranks but within the top 12 ranks 

Dec. Jan . Feb. 

Observed Predicted Observed Predicted Observed Predicted 

51 
15 
13 
8 
4 
I 

50 16 17 3 4 
23 7 14 3 4 
12 II 12 3 4 
6 9 IO 3 4 
3 8 8 3 3 
2 5 6 5 3 

for the season. The same combined probabilities used 
to model the distribution of the top 6 ranks are used 

to weight the values of ~-2 for m = 7 to 12 when the 

composite result (d0 ) is developed. 
By trial and error, a design value for Pc of 

0.93 was derived . This yields a value of 0.995 for 
P0 '. Simply stated, this means that given a sam­
pling period of sufficient duration to assure a 93 
percent chance of encountering at least one seasonal 
maximum, one can be 99.S percent confident that the 
observed maximum is an unbiased estimate of the 
expected second annual maximum. 

The distribution of differences given in Table 6 
represents a wide range of exposures. The average 
differences were used in this paper strictly for the 
purpose of approximating an unbiased sampling pro­
gram. It was assumed that 

d1-2ldm-2 = constant (10) 

for each value of m regardless of location, season, 
or averaging time. The absolute random error that 
one can expect in terms of parts per million for any 
given location will depend on the magnitude of the 
seasonal maximums at that location, not the average 
differ ences derived from the California data set. 

RECOMMENDED SAMPLING PLAN 

Scheduling and duration of sampling are the key 
elements in the modified observed maximum method. 
They are used to minimize bias and to assure a rea­
sonable probability of encountering a maximum value 
equal to or near the second seasonal maximum. Sample 
scheduling determines the probability (Pj k.) of en­
countering a seasonal maximum given the Jth month 
and the kth day-of-week sampling plan. Sampling du­
ration determines the probability of encountering 
one or: moi::e seasonal maximums qiven Pjk• If the 
probability [P( r_l lPj kll equals the desiqn probabil­
ity (Pc) , the observed maximum repcesente an 
unbiased estimate of the expected second seasonal 
maximum. 

To facilitate selection and design of samplinq 
plans, a table listinq values of P(r=OIPjkl = l -
P(r_::,l tpjk) for 1-week periods as a function of month 
and days sampied dui::ing the week was consti::ucted. The 
following simplified foi::m of the binomial distribu­
tion for r = O was used to compute these probabil­
ities: 

n 
P(r=OIPjk•nk) = (1 - Pjkl k 

whei::e nk is the numbei:: of days sampled per week. 

(11) 

Values of Pj taken from Figure 1 were modified 
according to the following equation: 

(12) 
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where fi equals the average probability from Fig­
ure 2 of encountering a seasonal maximum on the ith 
day, and Dik = 1 if the ith day is included in the 
k th day-of-week sampling 'Plan or Dik = 0 if it is 
not. Equation 12 is simply a means of accounting for 
the significant difference in the distribution of 
seasonal maximums by day of week shown in Figure 2. 
Eight day-of-week sampling plans were considered. 
The results are given in Table 7. 

TABLE 7 Probability of Encountering Zero Seasonal 
Maximums in a I-Week Sampling Period by Month and 
Day-of-Week Sampling Plan 

P(r=O IPjk) 
Days 
Sampled Oct. Nov. Dec. Jan. Feb. 

M-W 0.94 0.80 0.68 0.89 0.97 
Tu-Th 0.93 0.79 0.66 0.89 0.97 
W-F 0.92 0.76 0.62 0.87 0.97 
M-Th 0.91 0.74 0.59 0.86 0.96 
Tu-F 0.90 0.71 0.55 0.84 0.96 
M-F 0.88 0.66 0.49 0.81 0.95 
M-Sa 0.87 0.63 0.44 0.79 0.94 
M-Su 0.86 0.61 0.43 0.78 0.94 

To use Table 7, one simply selects the entry or 
entries for the month or months and day-of-week 
sampling plan or plans being considered. Treating 
each probability as independent, the combined prob­
ability of encountering zero seasonal maximums over 
a given sampling period will be the product of the 
individual probabilities taken from Table 7. For 
instance, if a proposed sampling plan calls for 
three weeks of M-F sampling in December followed by 
two weeks of Tu-F sampling and one week of M-Sa 
sampling in January, the combined probability of 
encountering zero seasonal maximums would be given by 

P(r=O) = (0.49) 3 • (0.84) 2 • (0. 79) = 0.07. 

The criterion for accepting a proposed sampling plan 
is 

w 

j~k P°(r=01Pjkl jk " 1 - Pc (13) 

where wjk equals the number of weeks the kth day­
of-week sampling plan will be repeated in the j th 
month. Because Pc = 0.93, the sample plan cited 
earlier meets this criterion. 

By using Table 7 and Equation 13, a field super­
visor can choose a sampling plan that will yield as 
an observed maximum a relatively unbiased estimate 
of the expected second seasonal maximum. If the need 
arises, a prearranged plan can even be changed mid­
stream and still meet the criterion stated in Equa­
tion 13. After sampling is concluded and the data 
checked for outliers, the 1-hr and 8-hr observed 
maximums by time period can be considered accurate 
estimates of their respective second annual maximums. 

CONCLUSION 

Development of the sampling criterion specified by 
Table 7 and Equation 13 was presented in general 
form so that it might be applied to a variety of 
situations. For locations where the monthly distri­
bution of seasonal maximums differs significantly 
from the 12-station California data set, a more 
appropriate version of Table 7 could be constructed 
from local aerometric data by using the same design 
equations. In cases where the duration of sampling 

13 

falls short of the recommended period because of 
time, funding, or staff limitations, the probability 
of encountering the second or higher seasonal maxi­
mum can still be determined by using Equation 6. 
Proposed revisions to the National Ambient Air Qual­
ity Standards for CO by increasing the allowable 
number of exceedances to five per year (11) can also 
be accommodated by shifting the reference rank in 
Equation 7 from the second to the sixth seasonal 
maximum and modifying Equation 4 for use with either 
the second or third observed maximum. If the pro­
posed revisions are adopted, sampling-duration re­
quirements would probably be reduced. 

The observed-maximum method recommended in NCHRP 
200 and the modified sampling procedure developed in 
this paper will soon be implemented by Caltrans. It 
is anticipated that the new procedures will save 
considerable time in the collection and analysis of 
aerometric data for project-level transportation air 
quality studies. In addition, more accurate esti­
mates of ambient maximums are expected. 
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Transportation Emission Controls in Baltimore 
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ABSTRACT 

The application of a cost-effectiveness model 
for the attainment of ozone standards in Bal­
timore is described. Cost-effectiveness pro­
grams for Baltimore are designed taking into 
account direct implementation costs and user 
costs. The mix of controls in the cost-ef­
fective solution varies when either direct 
implementation costs or social costs are 
considered. The economic and social impacts 
of the cost-effective solutions are dis­
cussed. Finally, the results of the Balti­
more application are contrasted with the 
results of an earlier study in Philadelphia. 

Under the provisions of the Clean Air Act ( 40 CFR 
50, revised July 1, 1980) each state must prepare a 
state implementation plan (SIP) for meeting air 
quality goals. The SIP, which is usually prepared by 
a designated metropolitan planning organization 
(MPO), contains programs for c.ontrol of mobile 
sources of air pollution (including transportation 
control measures (TCMs)] and stationary sources to 
meet the air quality emission goals. However, the 
plan may also consider other important socioeco­
nomic, mobility, and environmental factors in the 
design and choice of pollution abatement and control 
strategies. A review of SIPs conducted by BKI As­
sociates, Inc. (1) found that the SIP planning meth­
odologies were -applied separately to control of 
transportation sources and to stationary sources, a 
procedure that limit.ed the opportunities for coordi­
nation and trade-off of mobile-source and station­
ary-source controls with the concomitant loss of 
information and opportunities for optimization of 

the strategies contained in the SIPs. The results of 
the development and application of a cost-effective­
ness model for the analysis of trade-offs between 
controls of stationary sources and transportation 
sources for hydrocarbons in the Baltimore standard 
metropolitan statistical area (SMSA) are summarized. 

BASIC COST-EFFECTIVENESS CONCEPTS 

Cost-effectiveness analysis provides an efficient 
method for coordinating and trading off stationary­
source and mobile-source control options. The method 
consists of defining a measure of effectiveness 
(MOE), in this case the reduction of hydrocarbon 
(HC) emissions, and then estimating costs of abate­
ment control per unit of HC removed. Abatement 
strategies in specific pollutant-emitting industries 
are next ranked in terms of cost-effectiveness 
ratios (i.e., dollar costs divided by units of HC 
removed). Then, given an objective of total HC 
reductions derived from air quality standards for 
the region, the least-cost package of abatement 
strategies for meeting the standard is selected by 
picking those strategies with lowest cost per unit 
of HC removed and avoiding the higher-cost strat­
egies and alternatives. Designing the least-cost 
package, sometimes called the cost-effective pack­
age, enables environmental planners to consider and 
trade off abatement strategies, such as those for 
stationary point sources versus those for mobile 
sources, an important featur e sometimes lacking in 
the methodology used in developing the SIPs. 

At the outset it should be noted that cost-effec­
tiveness analysis per se is neutral with respect to 
the definition of the target level of emission re­
ductions. In addition, cost-effectiveness analysis 
assumes that the effectiveness target is valuable in 




