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Forecasting Groundwater Levels: A Stochastic Procedure 
SiV AjOGi D. KOPPULA 

ABSTRACT 

In many existing and potential landslides, 
groundwater is a ml'ljnr f11r.t:or contributing 
to the reduction in soil strength and sub­
sequent movement. One prerequisite for 
evaluation and effective implementation for 
remedial measures in landslide manaqement 
is the prior knowledge of temporal varia­
tion of groundwater levels, which may be 
computed by using deterministic methods 
based on meteorological data and soil-water 
parameters, for example, permeability. The 
reliability of such methods depends on the 
accuracy of the data used. Alternatively, 
mathematical models, which use historical 
groundwater data as the sole input, may be 
employed to yield results satisfactory for 
planning needs. By considerinq the occur­
rence of groundwater levels as a stochastic 
process, that is, as random sequences in 
time, the problems of parameter estimation, 
hydrometerological factors, and so on, are 
eliminated. In this study monthly water­
level observations from an observation well 
were used in model building by fittinq an 
exponentially weighted movina averaqe 
(EWMA). The EWMA forecasts and those from 
the Box-Jenkins stochastic procedure are 
used for comparison with observed values. 
It is shown that both EWMA and Box-Jenkins 
forecasts are statistically indistinguish­
able from the actual observations. Several 
statistical tests applied to the two sets 
of forecasts indicate that EWMA estimates 
are significantly closer to the actual ob­
servations. It is concluded that ground­
water levels can be economically and confi­
dently predicted based solely on past 
historical data. 

Groundwater ii! defined as that part of the coil­
water system that is free to move from point to 
point under the influence of qravity. The surface of 
that body of free water, which is at atmospheric 
pressure, is the groundwater table. Below this level 
the groundwater will be more or less continuous and 
pressure increases hydrostatically. 

Groundwater plays an important role in the sta­
bility of a soil mass. The presence of qroundwater 
can cause excess pressures in the soil or excessive 
drainage from the soil, depending on its permeabil­
ity (l,pp.65-82). The problems associated with ex­
cessi~ drainage may be remedied with proper drain­
age control methods. Excess pressure reduces the 
normal effective stress in the soil, and the resis­
tance to shear decreases. Draining will reduce the 
pressures and increase the shear strength. A ratio­
nal stability analysis or design of a drainage sta­
bilization scheme thus requires a knowledge of 
qroundwater (pressure) distribution. Therefore iden­
tification of the sources, movement, amount of 

water, and water pressure is as important as the 
identification of the soil or soils. 

The factors governing the flow of water through a 
soil mass and those predicting the water pressure 
niRtrihntinn 1HP. wP-11 understood, but the inherent 
nonhomoqeneous nature and anisotropic behavior of 
the natural soils make the computation of water 
pressure distribution difficult. Hence it is often 
recommended that reliance be placed on water pres­
sures observed directly in the soil mass. Ground­
water levels or pressures can be measured by a 
variety of commercially available piezometers. The 
most common water-level recording technique, despite 
more sophisticated methods, is the measurement of 
the depth to the water table in an uncased bore hole 
or observation well. 

PREDICTION OF GROUNDWATER LEVELS 

One prerequisite for the evaluation and effective 
implementation of remedial measures in landslide 
management is the advance knowledge of the ground­
water levels. Engineers and groundwater hydrologists 
are currently using a variety of methods that cover 
a wide spectrum from subjective intuitive methods to 
rigorous deterministic methods. The latter tech­
niques depend entirely on hydrometeroloqical and 
soil-related factors that cause groundwater levels 
to fluctuate and are relatively difficult and expen­
sive to develop. Further, such models do not provide 
much lead time to develop and implement preventive 
measures. Statistical models based only on histori­
cal groundwater data, however, project future occur­
rences of groundwater levels, which estimates may be 
satisfactory for planning purposes. Such models have 
proven to be useful in predicting lake levels (2,3) 
and forcasting engineering costs CJ). - -

The purpose of this study is to utilize a fore­
casting technique called the exponentially weighted 
moving average (EWMA), which has its roots in the 
mathematics of the time-series analyses and has been 
proven to be sufficiently flexible to account for 
both seasonal and trend variations. The predictive 
accuracy of EWMA is compared with other available 
results (_~,pp.153-159). 

EWMA METHOD 

Let dl' d2' ••• , dt-l • dt be the depths to 
the water table measured at equal intervals of time. 
To estimate the depth to Athe water table (dt+1> at 

time (t+l), the estimate (dt+i> may be obtained as a 
weighted sum of the past observations: that is, 

(1) 

in which w0 , w1 , w2 , •.• are the weights attached to 
the known observations of water-table depths. It 
would seem reasonable and sensible to attach more 
weight to recent observations and progressively less 
weight to observations further in the past. An intu­
itively appealing set of weiqhts are those that de­
crease in geometric progression (1). Equation 1 may 
then be expressed as 
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( 2) 

in which >. is called a smoothing constant and lies 
in the range of O < >. < 1. Equation 2 implies an in­
finite number of past observations that are required 

to estimate dt+l i in practice, ho we ve r, only a finite 
number of o bservations are ava ilable . Let Equation 2 
be expressed in the following form: 

).dt + (1 - >.)J>-dt-1 + >.(l - >.)dt-2 + ••• ] 

).dt + (1 - >.ldt (3) 

which is an EWMA. 
Equation 3 may be written as follows: 

(4) 

in which et is the error in estimati ng the depth 
to the water table at time t. The magnitude of the 
smoothing constant >. depends on the characteris­
tics of the time series. For a chosen value of >., 
the expression 

t 
l: e• 

i=l i 

is calculated. This computation is repeated for 
several values of ). in the ranqe of zero to unity. 
That value of >. corresponding to the minimum such 
computation is the optimum >. that is used in esti­
mating the depth to the water table at time (t + 1). 

Winters (.1) has generalized the fo regoing method 
to deal with time series that contain trend and sea­
sonal variations. Let Mt be the estimated current 
mean, Tt be the estimated trend (i.e., the ex­
pected change in c u rrent mean), and St be the 
estimated seasonal factor in period t. As each set 
of new observations becomes available, the terms 
Mt, Tt, and St are updated. The seasonal 
variation in the time series may possess either a 
multiplicative or an additive effect. Should the am­
plitude of the seasonal pattern be proportional to 
the level of the o bservations, a multiplicative, or 
ratio, seasonal effect is said to exist. If the 
amplitude, however, is independent of the levels, _an 
additive effect should be considered. A graphical 
plot of the data must be examined to determine 
whether an additive or multiplicative seasonal ef­
fect is present . The updating equations for Mt and 
St in an additive seaso nal effect are as follows: 

o!dt - St-sl + (1 - a) !Mt-1 + Tt-1> 

B!dt - Mt) + (l - B)St-s 

(5a) 

(5b) 

in which a and B are the smoothing constants with 
0 < a < 1 and O < 8 < 1 ands is the seasonal span 
(s = 12 for monthly data). The current mean and sea­
sonal factors are thus updated by linear superposi­
tion of known past values. If the seasonal variation 
is multiplicative, the updating equations will be as 
follows: 

(6a) 

(6b) 

The updating equation for the current trend term in 
both the Reasonal effect& is 

0 < y < 1 (7) 

The forecast dt+h for time (t + h) is given by the 
following: 

17 

h=l,2, ••• ,s (8) 

Equations 5, 6, and 7 are of such a nature that if 
the state of a time series is known at an initial 
time t = to, a solution can be obtained fort > to 
and is uniquely determi ned by Equation 8. The start­
ing values of Mt, St, and Tt for this iterative pro­
cess may be calculated from the initial observations 
of the time series; that is, 

2s 
M2 "' L (dt/S) 

t=s+l 

and 

i=l,2, ••• ,s (9) 

For example , for mont hly groundwater da.ta the fi r st 
( 2s=) 24 obse r vations a re used t o cal culat e M1 , M2 , 
Ti , S1, Si, .•• , 812• 

The t hree s moothing c onstants a , B, a nd y are 
varied i n the r a ng e of zero and un ity , a nd t he quan ­
t ity Ee ' i s compu ted. The set of values for 
(o, B,y) correspond i ng t o t he minimum o f t he com­

pu ted i:e 1 is t he optimum set for ( o. , B, y ) , whi ch is 
used in upda t i ng the e q uations f or Mt , S t, and Tt , 
wh ich in t u c n ar e substi tu ted in Equation 8 t o es­
timate dt+h for the hocizon of time h. 

Few comments may be made about the magnitudes of 
the smoothing constants . Some time-series components 
experience little random effect; therefore the value 
of the corresponding smoothing constant will be 
s mall o r e ven zero , because t here i s no use cha ng ing 
t he o riginal and still accurate estima te. I n o ther 
t ime s e ries t here may exist s ubstantial d rift , in 
which case t wo possibil i ties may occ ur : (a ) little 
random effect will lead to large values for the 
smoot hing c onstant, weighting current estimates 
h eavily, a nd ( b l a large random effect will yield 
relat ively smaller values. 

DATA CHARACTERISTICS 

The a ve rage mo n t h ly water.-level dep ths in an o bser­
vatio n well (Figure 1 ) are taken as the data f or 
this study. The depth t o t he water tabl e i s measure d 
bel ow a fi xe d i:-efere nce d a t um. The observation well 
c onsists. o f a 3 . 50-in. - diameter hole d rilled to a 
dep th of 210 f t below the ground s urface 1 the t o p 80 
f t is enclosed i n a 4 . 25-in. -diamete r stee l casinq. 
The gene r a l sequenc e o f soils c o nsists of bluish ­
b rown medium-plas ticity c lay t o an approx imate depth 
o f 65 ft l y i ng over 65- f t - t hick greenish-bro wn high­
plastici t y s hale , wh i c h is unde r lain by 8- ft - t h ick 
greyish-blue sandstone : the remainder of the bore 
hole consists of grey i sh-brown shale and siltstone. 

The average depths to the water table were 
recorded on the hydroqraphs for the period January 
1961 to December 1976. The data for the initial 14 
years (a total of 168 observations) were used in 
building the mathematical model employing the EWMA 
method. The next 24 observations were used to test 
the forecasting model: making a forecast, moving 
along one set of observations of period s (cl2 for 
monthly data), comparing the forecasts with recorded 
data, absorbing the actual observations into the 
forecasting model, making the forecasts for the next 
period, and repeating the cycle. Such a method of 
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FIGURE 1 Water levels in an observation well. 

model building for a certain time period and compar­
ing the (model) forecasts with known observations of 
a subsequent time period is called ex post forecast­
ing, 

The first step in model building is to study a 
plot of the groundwater data (Figure 1), A visual 
inspection of the plot suggests that the data have 
no fixed periodicity and do not exhibit any discern­
ible trend, 

STUDY RESULTS 

The calculated values of mean squared error, 
t (actua l minus forecast) 2 /24, are presented in 
Tables 1 and 2 for a grid of values of the s moothing 
constants a, i3, and -,. . A coa:rsa qrid cf all pos­
sible combinations of the values 0,0, 0.2, 0.4, 0.6, 
0,8, and 1.0 for the smoothing constants is given in 
Table 1, which shows a minimum value of 5. 25 for 
te 2 , in which e, the error, which is the actual 
value minus the forecast value, is obtained. A finer 
grid of a, B, and y in steps of 0.01 yields the 
results shown in Table 2; the value of re• is 
rather flat near its minimum. The grid of values for 
a, a, and y was further refined and the optimum 
set of the smoothing constants is a = O. 295, B = 
0.999, and y 0.026. The smoothing constant B 
associated with the seasonal var ation is large, in­
dicating that seasonal adjus t ments are quite pro­
nounced in the groundwa ter data. The smooth ing con­
stant a corresponding to the current mean is 
small, suggesting that the mean values of the 
groundwater data require occasional updat i nq, The 
v alue for y is neglig ibly small; t hat is , the 
trend parameter needs slight o r no revision. This 
shows that no abrupt shifts in groundwater-level 
trends occur. A comparison of EWMA forecasts with 
the observed groundwater levels for the years 1975 
and 1976 is presented in Figure 2 and Table 3. A 
visual appraisal of Figure 2 reveals that the fore­
casts are in excellent agreement with the recorded 
observations and the largest deviation appears to be 
of the order of 0,30 ft. 

COMPARISON OF FORECASTS 

Koppula (j) applied the Box-Jenkins stochastic time­
series method (_!!) to model a nd estimate the depths 
to groundwater. The Box-Jenkins. approach identifies 

96 112 128 144 160 176 192 

the stochastic components in a time series, that is, 
the autoregressive and moving average components, 
whereas the EWMA incorporates readily any drifts 
over time into its model and filters out substantial 
random effects that may be present in the recorded 
observations. 

A summary of the comparison among the EWMA 
method, the Box- Jenkins forecasts, and the actual 
observations is presented in Table 3. The predictive 
accuracy is evaluated by using the mean error 
(te/24), mean absolute error (tlel/24), and the 
mean squared error (te 2 /24); the lower the 
values for these quantities, the better are the 
forecasts. As may be seen, EWMA forecasts are closer 
to the actual observations. Both the criteria 
rlel/24 and re 2 /24 are important because it is 
difficult to determine the consequences of forecast 
errnr", WhP,nev<1r t:h'l consequence or consequences of 
one large error are more serious than that of sev­
eral small errors, the mean squared error will be a 
more appropriate criterion. The mean absolute error 
gives the total absolute deviation over the horizon 
of forecasts; in this case it is over a period of 24 
months. 

Mincer and Zarnowitz (_2,pp.15-25) define the ac­
curacy of a set of forecasts F (t) based on the 
following: 

A(t) = a 0 + o 1F(t) 

where 

A(t) ~ the observation at time t, 
F(t) the corre~ponding forecast, and 

constants. 

If ao a O and a1 + 1, the forecast is sa id to be ac­
curate . The constants a 0 and a 1 are determi ned by the 
applicat i on of linear least-squares regression to 
the actual observations for the period 1975-1976 and 
to the corresponding forecasts. By r egressinQ the 
actual observations the following equations were ob­
tained: 

Actual= -3.14 + 1.18 EWMA R• 
SE 

Actual -0.27 + 1.02 Box-Jenkins 

50 percent 
0,16 

R2 

SE 
19 percent 
0.21 

The coefficients 1.18 and 1.02 are not significantly 
different from unity at the 95 percent confidence 
level. Also the constants of regression -3, 24 and 
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TABLE 1 Sum of Mean Squared Error: Coarse Grid 

A A 

0.0 0.2 o.4 0.6 o.e 1.0 0.0 0.2 0.4 0.6 a.a 1. 0 

a• 0. a •0.6 

a~o.o * * * * * * 8=0.0 18.91 52,55 45. 19 28.70 29.58 42. 17 

0.2 * * * * * 0.2 11.39 57. 94 63 . 12 27. 72 46.22 

o.4 * * * * * 0.4 9.86 39. 14 l': ;': 64.57 

o.6 87,65 87 .54 87. 46 87 .35 87. 15 as . 57 o.6 11. 41 12 .52 ;': 1: ,1 

0.8 41. 84 41. 79 41. 75 41. 70 41.61 40.87 a.a 13, 77 15. 15 ;': .. ;': ;': 

1.0 22.85 22.82 22.80 22. 77 22. 72 22.34 1. 0 14.91 37.53 ;': ;': :': * 

a= 0,2 a •0.8 
B•O.O 35, 36 37. 11 71. 48 * * ;': B=O.O 18.52 48. 32 43.07 38.66 42.91 48.27 

0.2 26.21 6. 71 10. 10 13.41 ;, ,, 0.2 14.49 53. 14 47,72 30.09 30,52 39.05 

0.4 22.41 s. 75 10.69 19,37 * * 0.4 11. 87 60.35 62.79 25. 77 20.81 31. so 

o.6 18.86 5,63 12.3b 33.21 ;': 0.6 10 .03 68.04 95.63 27 .20 23.95 30,70 
/ 

0.8 16.36 s.45 16.59 ,, ,, 0.8 8.82 73. 79 ;': 35,59 76, 70 28. 17 

I 1.0 14 .62 5.28 ,, 
* .. ~': 1.0 8.18 74.83 .. 60.18 * 

a• 0.4 a • 1.0 
B•D.O 20.80 57.93 ~o. 73 ~ * " B=D.O 18.43 46.26 42 .67 38.27 35 . 15 29.38 

0.2 13.80 16.36 57, 10 ,, 
* * 0.2 18.43 46.26 42.67 38.27 35. 15 29,38 

0.4 1).68 5.25a 36. q3 * ~ ,I 0.4 18.43 46.26 42.67 38.27 35 . 15 29.38 

0.6 15.99 5.40 72,95 ;': * * 0.6 18.43 46.25 42.66 38.26 35. 15 29,38 

0.8 16.75 15.38 * * * 0.8 18.43 46.25 42.66 38.26 35. 14 29.37 

1.0 17,42 lb.SO * * * ,I 1. 0 18.43 46.25 42 .67 38,27 35. 15 29.38 

* The value Is larger than lxlo2 

• Minimum Ee
2 

TABLE 2 Sum of Mean Squared Error: Finer Grid 

A 

0.02 0,03 0.04 0.05 0.06 0.02 0. 03 0.04 0.05 0.06 
a =0.28 a •0.31 

B•O. 96 2.65 2. 18 2. 83 3. 34 3. 72 B=O. 96 2. 45 2.19 2.88 3.42 3.82 

0.97 2,63 2. 17 2. 81 3. 32 3.70 o. 97 2.44 2. !8 2. 86 3. 39 3, 79 

0.98 2.62 2. 17 2.80 3, 30 3.68 0.98 2. 43 2. 17 2. 84 3, 37 3. 77 

0, 99 2.60 2. 16 2.78 3.28 3,66 0.99 2. 44 2. 16 2. 83 3.35 3. 75 

1.00 2.61 2. 17 2.79 3. 29 3.67 1.00 2. 45 2. 17 2.84 3. 36 3.76 

a •D.29 a •O. 32 
B• O. 96 2.43 2. 18 2.83 3. 35 3.74 B=0.96 2.64 2.2 1 2.9 1 3. 46 3.88 

0.97 2. 42 2. 17 2.82 3,33 3, 72 0.97 2.63 2.20 2.90 3.44 3. 85 

0.98 2.40 2. 16 2.80 3. 32 3.70 0.98 2.63 2. 19 2.88 3. 42 3,83 

0.99 2. 38 2. 15a 2. 79 3,30 3.68 0.99 2.61 2. 17 2. 86 3.40 3. 80 

1.00 2.39 2. 16 2,79 3.30 3.69 1.00 2.63 2. 19 2.87 3. 39 3. 82 
a =D.30 

B•D.96 2,35 2. 18 2.85 3.38 3, 77 

0.97 2.33 2. 17 2.83 3. 36 3. 75 

0,98 2.32 2. 16 2. 82 3. 34 3,73 

0. 99 2. 31 2. 16 2.80 3.32 3. 71 

I.OD 2.33 2. 17 2.81 3, 33 3, 73 

a Minimum Ee
2 
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FIGURE 2 Forecast comparison of groundwater levels. 

TABLE 3 Depth to Groundwater: Forecast Evaluation 

EWMA Method" 

Actual Estimated Error 
Date Observation Value (e) 

i975 
January 18.47 18.42 0.05 
February 18.25 18.45 -0.20 
March 18.30 18.41 -0 .11 
April 18.20 18.40 -0 .20 
May 18.10 18.20 -0.10 
June 18.20 18.41 -0.21 
July 18.22 18 .14 0.08 
August 18.43 18.40 0.03 
September 18.50 18.39 0.11 
October 18.77 18.45 0.32 
November 18.60 18.49 0.11 
n ... ,..,,.. ..... i..nr !~L6E ! S.55 0.!3 

1976 
January 18.63 18.71 -0 .08 
February 18.64 18.59 0.05 
March 18.69 18.68 0.01 
April 18.70 18.60 0.10 
May 18.77 18.52 0.25 
June 18.94 18.60 0.34 
July 18.80 18.47 0.33 
August 18.75 18.63 0.12 
September 18.53 18.61 -0.08 
October 18.52 18.58 -0.06 
November 18.45 18.52 -0.07 
Dece mber 18.38 18.40 -0.02 

•i:o/24 = 0.037S; E lel/24 = 0 . 1317; Ee 2/24 = 0.0265, 
bto/24 = 0.0812; Elel/24 = 0.1871; Ee 2/24 = 0.0467. 

le l 

0.05 
0.20 
0.11 
0.20 
0.10 
0.21 
0.08 
0.03 
0.11 
0.32 
0.11 
Q.13 

0.08 
0.05 
0.01 
0.10 
0.25 
0.34 
0.33 
0.12 
0.08 
0,06 
O.D7 
0.02 

-0.27 are not significantly different from zero. 
Thus the accuracy criterion defined by Mincer and 
Zarnowitz is satisfied by the two mathematical 
models. The Box-Jenkins method yields results that 
can explain only 19 percent, whereas EWMA forecast~ 
explain 50 percent of the variations inherent in the 
actual observations: further EWMA forecasts possess 
smaller standard error of regression. Thus a com­
plete statistical evaluation suggests that the fore­
casts of groundwater levels from the EWMA method are 
significant and are closer to the actual observa­
tions. 

CONCLUDING REMARKS 

The description of a mathematical procedure, EWMA, 
to forecast future occurrences of groundwater levels 
is presented. The EWMA estimates are compared with 

Box-Jenkins Methodb 

Estimated Error 
~.2 Value (e) lei ~e2 

0.0025 18.61 -0.15 0.15 0.0225 
0.0400 18.50 -0.25 0.25 0.0625 
0.0121 18.48 -0 .18 0.18 0.0324 
0.0400 18.44 -0.24 U.24 0.0576 
0.0100 18.40 -0.30 0.30 0.0900 
0.0441 18 .35 -0.15 0.15 0.0225 
0.0064 18.20 0.02 0.02 0.0004 
0.0009 18.37 0.06 0.06 0.0036 
0.0121 18.38 0.12 0.12 0.0144 
0.1024 18.37 0.40 0.40 0.1600 
0.0121 18.38 0 .22 0.22 0.0484 
Q.0]6Q 18 40 n 28 0 28 0.0784 

0.0064 18.50 0.13 0.13 0.0169 
0.0025 18.51 0.13 0.13 0.0169 
0.0001 18.54 0.15 0.15 0.0225 
0.0100 18.53 0.17 0.17 0.0289 
0.0625 18.62 0.15 0.15 0.0225 
0.1156 18.59 0.35 0.35 0.1225 
0.1089 18.42 0.38 0.38 0.1444 
0.0144 18.40 0.35 0.35 0.1225 
0.0064 18.40 0.13 0.13 0.0169 
0.0036 18.42 0.10 0.10 0.0100 
0.0049 18.40 0.05 0.05 0.0025 
0.0004 18.35 0.03 0.03 0.0009 

those made by the Box-Jenkins method. It is shown 
that both methods yield results that are statisti­
cally indistinguishable from the actual observa­
tions. The EWMA method, however, provides better 
forecasts, is relatively simple to use, and is inex­
pensive. 

The object of this study has been to demonstrate 
the availability of stochastic methods, which use 
historical data as the sole input, to estimate 
future groundwater levels for use in the evaluation 
of the stability of existing or potential land­
slides. Having obtained reasonably accurate fore­
casts, advance strategic planning and design may be 
undertaken for remedial measures in landslide man­
agement. 

The time-series analysis is a useful and powerful 
predictive tool. It should be emphasized that model 
building and forecasting therefrom are a continuous 



process; as new observational data become available, 
they should be used to update the mathematical model. 
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Predictions of Pore-Water Pressure and Soil Suction 

Conditions 1n Road Cut Slopes 1n St. Lucia, West Indies: 
A Methodology to Aid Cut Slope Design 

M. G. ANDERSON and P. E. KNEALE 

ABSTRACT 

There is evidence in the tropics that soil 
suction may play a most significant role in 
slope stability. In many developing areas 
of the tropics, relatively rapid assess­
ments of both road alignment and road 
maintenance frequently have to be made. A 
prediction capability is sought for soil 
suction in selected residual soils of rele­
vance to road cut slopes in St. Lucia, West 
Indies, and the topographic, material, and 
precipitation controls on the soil suction 
are established. It is shown that a dummy 
variable regression model employing mate­
rial permeability, precipitation, and 
qualitative site factors provides good 
estimat@s of the recorded soil Buction. In 
addition, the variable importance of three­
dimensional slope topography on soil suc­
tion is identified. Failures logqed durinq 
the study period conform to the high-risk 

sites estimated by the soil suction predic­
tion model. The low site investigation re­
quirement combined with the accuracy of 
soil suction prediction render such a 
procedure of potential use to road desiqn 
and maintenance in tropical areas where 
only limited geotechnical investigations 
are possible. 

There is mounting evidence within the tropics that 
soil suction might make a significant contribution 
to slope stability. Sweeney and Robertson (!) , for 
example, stated that although the influence of soil 
suction on soil strength has not yet been quanti­
fied, there is the likelihood that soil suction con­
tributes to soil strength, especially in the finer­
grained soils. More recently, Ho and Fredlund (1, 
pp. 263-295) were able to demonstrate with a sinqle 
triaxial test the increase in strength due to soil 
suction. In addition, they remark that there is no 
reason to expect a reduction in suction during rain-


