of traffic distribution between two ways on speed is twice that of volume. (d) The developed models can yield site-specific speed estimates with margins of error of less than 1 percent. (e) The model developed from one site is capable of predicting the speed at other sites with similar design standards. The results of this study provide some general guidelines for road engineers and managers to use in selecting cost-effective road design standards and developing cost-effective road management programs for one-lane roads with turnouts.

ACKNOWLEDGMENTS

The research reported in this paper was sponsored by the Forest Service, U.S. Department of Agriculture. A steering committee established to direct this research included Al J. Hessel, Lee W. Collett, and Jerry Knaebel. Although the author is the major contributor to the study results reported here, the other members of the study team, which included David R. Nordengren, Robert Keeney, Clarence Petty, and Lonnie Gray, collaborated closely during the study period.

REFERENCES

The information contained in this report reflects the views, opinions, and conclusions of the author and does not necessarily represent those of the Forest Service, U.S. Department of Agriculture. This material was developed, written, and prepared by employees of the U.S. government; therefore, it is in the public domain, and private parties or interests may not hold copyright for this material.

Publication of this paper sponsored by Committee on Low Volume Roads.

ABRIDGMENT

Computer Simulation To Compare Freeway Improvements

ROBERT W. STOKES and JOHN M. MOUNCE

ABSTRACT

Use of a simulation program, FREQ6PE, to compare proposed improvements for the Southwest Freeway (US-59) in Houston, Texas, is described. The simulation model was calibrated using actual field data and was then used to identify the best of a number of proposed geometric improvements. The proposed improvements were evaluated by comparing key simulated measures of effectiveness for the proposed systems with comparable measures for the base (do-nothing) system. Based on the experience gained in using the program, it is concluded that the program can be an effective and economical tool for studying the dynamic response of a freeway to a variety of input specifications.

The Southwest Freeway (US-59) bisects one of the fastest growing corridors in the Houston region. Traffic demands on the freeway outside of I-610 (see Figure 1) have increased 45 percent over the past 5 years to an average daily volume of about 194,000 vehicles. Depressed levels of service often extend from 6:00 to 9:00 a.m. and from 4:00 to 7:00 p.m., with trip times frequently tripling from off-peak to peak periods (1).
As a consequence of the continuing growth within the corridor and the corresponding declines in freeway levels of service, a number of geometric improvements have been proposed for the corridor. The FREQ6P6 simulation program (2) developed at the University of California at Berkeley was used to evaluate the proposed geometric designs. A summary of the improvements evaluated is given in Table 1.

The objective of the computer simulations was to quantitatively assess the proposed design configurations and identify the configuration or configurations that best satisfied the objective of maximizing person throughput on the facility. The basis of comparison for the improvements was the 1995 do-nothing alternative.

APPLICATION

Model Calibration

Freeway main-lane demands were input to the FREQ6 model in the form of mode-specific origin-destination (O-D) tables by 15-min time segments for the morning peak period (6:00-9:30 a.m.). Additional input included pertinent geometric data and speed-flow curves. The calibration process involved graphically comparing measured travel times and observed queue length with model output. The capacities (service volumes) of critical (bottleneck) sections were adjusted until the model output approximated observed main-lane queueing patterns. The calibration procedures used were clearly subjective in nature. However, because the primary concern was the differential effects of the design configurations rather than the performance of a particular system, the calibration procedures employed seemed consistent with the level of precision desired.

Freeway capacity was found to be a particularly sensitive parameter in the calibration process. Even modest changes in capacity produced substantial differences between simulated and observed conditions.

The merging analysis subroutine of the model posed some initial difficulties during the calibration process. For example, the merging analysis option should be engaged only when theoretical ramp capacities are used. The merging analysis subroutine then simulates ramp operations by metering ramp volumes. If the merging analysis option is engaged when measured volumes are used, the metering effect of the merging analysis subroutine will tend to inflate the ramp delay values.

Summary of Results

The design year (1995) simulations were performed for two traffic growth scenarios. A low-growth scenario assumed a 3 percent annual increase in freeway traffic demand, and a high-growth (or worst-case) scenario assumed the existence of a base year (1981) freeway latent travel demand of 40 percent (3). Tables 2 and 3 give summaries of the key operational measures of effectiveness developed from the simulations. It should be noted that the measures of effectiveness given in Tables 2 and 3 are based on

TABLE 1 Improvements Evaluated

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Nothing</td>
<td>No Improvement.</td>
</tr>
<tr>
<td>Add One Lane</td>
<td>Add one freeway lane over the entire length of the study corridor.</td>
</tr>
<tr>
<td>Add Two Lanes</td>
<td>Add two freeway lanes over the entire length of the study corridor.</td>
</tr>
<tr>
<td>Add Shoulder Lane</td>
<td>Add a shoulder lane from Westpark Entrance to I-610 Exit.</td>
</tr>
<tr>
<td>Stack Ramps</td>
<td>Stack (elevate) ramps at: a) Buffalo Speedway Entrance/Kirby Exit; and b) Kirby Entrance/Greenbriar Exit.</td>
</tr>
</tbody>
</table>
information from the simulation summary tables and, as such, refer to the entire length of the freeway. Conditions on individual subsections of the freeway may vary considerably from these system averages.

To get a feel for the potential localized effects of the system configurations evaluated, the queueing contours output by FREQ6 were examined. Figure 2 shows a summary of these contours for the "with latent demand" scenario. The queueing contours depict those freeway subsections operating at or below 35 mph. As shown in Figure 2, the "stacked ramps" alternative and the "add two lanes" alternative could have significant clearing effects on those sections of the freeway downstream of the I-610 interchange. Note, however, that only the "add two lanes" alternative appears to have the potential to produce any substantial improvement in system operating speeds (see Table 3). Consequently, in terms of the study objective of maximizing person throughput, the "add two lanes" alternative appears to be the best of the improvements evaluated.

CONCLUSIONS

Given the growth rates and travel patterns that characterize the freeway corridor, none of the improvements evaluated (with the possible exception of the "add two lanes" alternative) appears capable of doing much to alleviate the peak-period congestion problems that plague the corridor. Because of their propensity to attract traffic from other routes and to generate additional (or at least previously un-

ACKNOWLEDGMENT

The contributions of Dick McCasland, Gene Ritch, and Danny Morris of the Texas Transportation Institute were of great value to this effort and are gratefully acknowledged.
FIGURE 2 Simulated 1995 a.m. peak-period queueing contours (with latent demand).
Development and Application of a Macroscopic Model for Rural Highways

JUAN C. SANDAY and ADOLO A. MAY

ABSTRACT

The development of a macroscopic computer simulation model is presented. The simulation model, RURAL!, calculates traffic performance given road supply (geometrics) and demand (traffic) information. The model can analyze four types of subsections: freeway, multilane, two-lane, and passing-lane. To perform the simulation, the roadway must first be divided into subsections; users can specify up to 100 subsections. Subsection boundaries are established on the basis of changes in road geometrics, or traffic demand characteristics, or both. RURAL! calculates traffic performance measures, such as average speed, travel time, and vehicle delay, on a directional basis for each subsection and summarizes performance results for the entire roadway section. The simulation model was applied to an actual field site where the existing condition was evaluated against two additional cases.

In recent years road maintenance budgets have increased substantially, affecting the availability of funding for new construction. Thus, state transportation agencies have been looking for new ways of managing the existing transportation system more effectively, using an approach called transportation system management (TSM). This approach is now being applied to the rural road system.

New techniques are needed to evaluate the cost-effectiveness of rural road improvements and to provide planners and decision makers with more accurate information on which to base their decisions. Sophisticated computer models, all microscopic, have been developed to study traffic operations on rural roads. Although these models offer great capabilities for analyzing traffic behavior, their applications are limited. Particularly important is the restriction these models impose on the size of the road section that can be simulated. Because of their simpler structure and logic, macroscopic models can easily be used to study longer sections of roadway where several improvements are to be implemented. However, as a result of their simplified logic, macroscopic models offer less detail and precision in performance and measures of effectiveness (MOEs) than microscopic models do and should be treated as a supplement to microscopic models rather than as a replacement.

Historically, macroscopic models have been derived after the development of, and with the use of, microscopic models. In freeway corridors, for example, the development of the macroscopic FREQ model followed early microscopic models used in the analysis and study of freeway operations. The need to consider additional impacts and to study more control strategies played an important role in the creation of FREQ. Another example is TRANSYT, a macroscopic model for the analysis and optimization of traffic flow.