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Problem of Identifying Hazardous Locations 
Using Accident Data 
EZRA HAUER and BHAGWANT N. PERSAUD 

ABSTRACT 

Most agencies with responsibility for exten
sive road systems use some variant of the 
rate-and-number method to identify hazardous 
locations or blackspots. Sites so identified 
are later examined in detail to diagnose 
deficiencies and to suggest remedial mea
sures. In this paper the degree to which 
the rate-;;,pd-nnmh<>r m1>thod is successful in 
identifying the unidentified, and what pro
portion of the sites that are subjected to 
detailed examination are not deviant at all, 
is examined. The first part of the paper is 
devoted to the analysis and development of 
the mathematical machinery. In the second 
part the use of the analytical results is 
illustrated by application to two data 
sets--one dealing with highway ramps in On
tario and the other with California drivers. 
The main result of this research is the fa
cility to examine the performance of various 
identification procedures on the basis of 
measures of performance that are easy to 
understand. Such an examination should lead 
to a realistic assessment uf wlidl can be at
tained when identification for treatment is 
made on the basis of past accident history. 

In most agencies with jurisdiction over extensive 
road systems it is common practice to try and rec
tify so-called accident blackspots. Ordinarily a 
two-stage process is used. In the first stage the 
past accident history of all sites is reviewed to 
select a limited number of apparently dangerous lo
cations for further examination. In the second stage 
the selected sites are studied in more detail, often 
in the field, in order to devise cost-effective re
medial projects for some of the sites. 

The two-stage process is required because de
tailed examination of all sites is impractical. It 
is hoped that the first stage of the process will 
act as a sieve. A good sieve is one that allows 

through all sites that do not require remedial ac
tion and retains all sites that do require detailed 
study. Conversely, an inefficient sieve is one that 
retains a large number of sites that do not need 
close scrutiny and allows most blackspots to pass 
through its holes and thus escape identification. 
The purpose of this paper is to examine the quality 
and performance of a commonly used sieve. 

Most sieves in current use are a variant of the 
rate-and-number method. Sites that register an un
•.1sually hi<Jh nnmhl"r of accidents during a specified 
period of time or an unusually high ace ident rate 
(accidents per vehicle kilometer) are selected for 
inspection. Accidents are often weighted according 
to their severity. The rationale for the rate-and
number method appears to be left unspecified in the 
literature. However, a plausible line of reasoning 
for its raison d'etre goes as follows: 

If the accident history of a site is 
found to deviate from the norm for its 
class, there surely is some reason for 
it. If so, a responsible agency and its 
professionals should examine the cause 
for this deviation and, if a cost-effec
t ive remedy can be found, should remove 
the oaucc of aubstandard performan~"'• 

It should be evident that a sieve that screens 
sites on the basis of number of accidents, accidents 
per vehicle kilometer, or accident severity is aimed 
only at establishing deviancy. It is not an indica
tion of how easy or how difficult remedial treatment 
might be. 

Some causes of substandard performance are random 
and fleeting in nature and essentially unrelated to 
the physical characteristics of the site. (Consider, 
for example, a local snow squall or rainstorm that 
causes several accidents to occur within a few min
utes.) Other causes for deviation from the norm are 
more permanent in nature (sharp curves, polished 
pavement, narrow bridge, and so forth). These are 
the causal factors that are subject to remedial ac
tion. Accordingly, the object of the exercise is to 
identify sites for which the deviation from the 
safety norm is attributable to some permanent prop
erties of the site. 

• 
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It is well-known that the actual number of acci
dents occurring on a site fluctuates from year to 
year. It is only the average number of accidents in 
the long run that can be linked to the permanent 
properties of the site. This gives rise to the fun
damental difficulty facing the screening process. 

Researchers wish to identify those sites 
for which, say, the "average number of 
accidents in the long run" deviates from 
the norm. However, in the identification 
process, researchers are restricted to 
the use of accident histories that are 
subject to pronounced random fluctuation. 

This inescapable difficulty affects the quality 
of all sieves. When the number of accidents occur
ring on a site in the last 2 or 3 years is higher 
than the average in the long run for that site, the 
site will be caught by the sieve and subjected to 
detailed inspection, possibly unnecessarily. Con
versely, sites with permanent properties such that 
their average in the long run is considerably higher 
than the norm will often escape detection because of 
a random down-fluctuation. 

Accordingly, several questions are raised: How 
good are the accident-history-based sieves for 
blackspot identification? Do they capture most of 
the truly deviant sites? How many normal sites are 
lumped with the deviant ones that are labeled 
blackspots? How many deviant sites escape detection? 

These questions translate into the following 
figures of merit by which the quality of the sieve 
should be measured: 

1. The number of sites selected for closer ex
amination (this is a measure of the effort required 
at the later stage when site-specific deficiencies 
are identified, remedies are designed, and economics 
are examined); 

2. The number of truly deviant sites among those 
selected for closer inspection (these are often 
called correct positives); 

3. The number of sites that are not deviant yet 
have been captured by the sieve and selected for 
closer inspection (these are the false positives); 
and 

4, The number of truly deviant sites that are 
not identified as requiring attention (these are 
called the false negatives). 

The central issues are easy to visualize with the 
aid of a Venn diagram, Let the box in Figure 1 sym
bolize the collection of all sites. The set of all 
deviant sites is delimited by curve 1. Thus all 
nondeviant sites are outside curve 1. The set of all 
sites selected for closer inspection is enclosed by 
curve 2. An ideal sieve would be one for which 
curves 1 and 2 coincide. However, no real sieve or 
screening process is ideal. Therefore, curves 1 and 
2 delineate three distinct sets. Set A contains 
sites that are deviant but are not selected for 
closer inspection. These are the false negatives. 
Set B contains deviant sites that are selected for 
inspection. These are the correct positives. Set C 
contains sites that are not deviant but are selected 
for inspection. These are the false positives. 

The union of sets A and B is the collection of 
all deviant sites in the population. Curve 1 cor
responds to a specific definition of what site is 
considered deviant. A more stringent definition of 
deviancy would be associated with a smaller ellipse. 
This will result in fewer deviant sites captured by 
the sieve (smaller set B) (i.e., the rarer the 
hunted animal, the more difficult is its capture). 

The union of sets B and C is the collection of 

.. , ·,: 

X 

-c 

FIGIJ ltE 1 False negatives { A}, correct positives { B}, and 
fa lse positives { C } . 
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all sites selected for inspection. Curve 2 corres
ponds to a specific criterion by which sites are 
selected for further examination. A less-stringent 
selection criterion corresponds to the large circle. 
This results in a larger number of sites that re
quire close inspection and also a larger number of 
deviant sites captured by the sieve. 

In general, the more stringent the criterion of 
deviancy, the more difficult it is to identify de
viant sites. The more stringent the selection cri
terion, the smaller the number of deviant sites cap
tured by the sieve. 

In present practice a site is considered to be a 
blackspot if its accident record deviates k standard 
deviations from the norm. The value of k is linked 
to statistical level of significance, and the prac
tice in th is case is borrowed from industrial qual
ity control. What value to use for k is largely a 
matter of custom, with no apparent rationale. This 
is why it appears sensible to examine whether it is 
possible to discard what is arbitrary and use in
stead measures of performance that have clear mean
ing. 

In this paper the focus is on blackspots that 
occur on a road system. This is why researchers 
speak of sites, road sections, ramps, intersec
tions, and so forth. It is worth noting that iden
tical issues arise when trying to identify deviant 
drivers, and that the results of analysis apply 
equally in both cases. To underscore this point, one 
example will deal with the population of drivers in
stead of the population of road sections. 

MEASURES OF EFFICIENCY FOR A SIMPLE SIEVE 

The simplest case is usually the easiest to analyze. 
Once the categories of thought and lines of argument 
for the simple case are established, the examination 
of more complex sieves can be undertaken. 

A mathematical notation was not introduced in the 
first section because the central issues could be 
explained without burdening the reader with symbols. 
However, the main content of this section is analy
sis, and it would be inefficient to postpone the use 
of a precise notation any longer. Therefore, let , 
be the expected (average in the long run) number of 
recorded accidents prevailing at a site during a 
specified period of time, and let x be the number of 
accidents actually recorded for that site and period 
of time. 

In this section the performance of a sieve is 
examined, the aim of which is to identify sites for 
which , is larger than some limiting value ,*, 
This is done by selecting for inspection sites for 
which xis not less than some limiting value x*. 

For a specific site, , is never known. What is 
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known is x. Therefore, the question is: What can be 
said about the A of a site if its xis known? The 
answer is best stated in terms of a conditional 
probability distribution. ~h 6 rnrrocpnnning symbol 
has to be added to the notational arsenal. Thus let 
F ( A Ix) be the probability that the expected number 
of accidents at a site was less than or equal to A 
when the number of accidents actually recorded was x. 

To provide the reader with a sense of direction, 
it is best to first show that F(AIX) is the king
pin on which everything hinges. Indeed, when 
F (A Ix) is known, the performance of a sieve can be 
described with 11a&11 and pracillion. How to eRtimate 
F(AIX) will be described later. 

The information on which analysis is based is the 
knowledge of x for each site . Let n(x) be the 
number of sites (N) that had x accidents, x = 0, 1, 
2, 

1. When sites for which x > x* 
for inspection, the number of sites 
spected is 

S(x') =; n(x) 
x• 

are selected 
(S) to be in-

(I) 

This corresponds to the number of sites in the union 
of sets Band C in Figure 1. 

2. When sites for which A > >.* are considered 
deviant, the expected number of deviant sites (D) in 
the population is 

D(A
0

) =; n(x) [1 - F(A'lx)] (2) 
0 

This corresponds to the expected number of sites in 
the union of sets A and Bin Figure 1. 

3. With x• as the selection criterion and ,* 
as the criterion for deviancy, the expected number 
of false positives (FP) is 

FP(x' , A')= r n(x) F(A" Ix) (3) 
x• 

This is the expected number of sites in set C of 
Figure 1. 

4. Because S (x*) corresponds to the union of B 
and C, whereas FP(x*, ,*) corresponds to set C 
alone, it follows that the expected number of cor
rect positives (CP) is 

CP(x', A') = S(x")- FP(x" , A') (4) 

This corresponds to the number of sites in set B, 
5. Because D (, *) corresponds to the union of A 

and B, whereas CP(x*, ,*) corresponds to set B 
alone, the expected number of faloc ncgativco (FN) is 

FN(x', A')= D(A ') -S(x ') + FP(x', A') (5) 

This corresponds to the number of si tes in set A. 

It follows that knowledge of n(x) and F(,1x) 
will enable researchers to find all figures of merit 
that describe the performance of the screening pro
cess. Because n(x) is obtained from the raw data, it 
remains to find F(>. 1x). This is the subject of the 
next section. 

ESTIMATION OF SIEVE EFFICIENCY 

Each site of a population of sites has associated 
with it an unknown value >,. Regarding >. as a 
continuous random variable within the population of 
sites, let g (>.) denote its probability density 
function, Furthermore, let P (x 1 >.) denote the 
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probability of recording x accidents on a site where 
their expected number is >.. According to Bayes' 
theorem, 

f(A I x) o: P(xl A)g(A) 

Integration 
efficient of 

l F(A lx)dA = 1. 
0 

of f(,1x) yields 
proportionality is 

F(>.1x). The 
selected to 

(6) 

co
make 

It is assumed, as is common, that accident occur
rence obeys the Poisson probability law. Thus 

(7) 

The only missing link in Equation 6 is g(>,). The 
clues for the estimation of g (>.) are hidden in the 
numbers n (x) . Because the number of ace idents re
corded on a site is a reflection of , for that 
site (see Equation 7), the number of sites with x 
accidents [n(x)] must be a reflection of the distri
bution of >. among all sites. This is captured by 
the following relationship: 

Expected proportion of sites with x accidents= E{n(x)/[l:n(x)]} 

= f P(x[ A)g(A)dA (8) 
u 

The problem here is to extract the function g (A) 
from Equation 8. It is a well-researched problem 
[see, for example, Maritz OJ]. In consequence, it 
is possible to make use of results obtained by 
others. One specific case that appears to be of 
practical interest when g (,) is a gamma probabil
ity density function will be described

1 
in detail. 

This assumption is common in actuarial literature 
[see, for example, Buhlmann (2) or Freifelder (3)] 
and is used to describe the diitribution of expected 
claim frequencies for a population o:f ins ureas. 'l'he 
results to follow were obtained and used by Jarrett 
et al. (!) when estimating the magnitude of the re
gression to the mean in before-and-after comparisons. 

When g(>.l is a gamma probability density func
tion and Equation 7 holds, the probability that a 
site selected at random has x accidents is given by 
the negative binomial probability law. Therefore, 
the parameters of g(>.) can be estimated easily 
from the sample mean and sample variance of x as 
follows. 

1. Calculate sample mean and variance (unless 
indicated otherwise, summation is over all values of 
X): 

x = r x n(x)/l:n(x) 

s2 = [r (x - x)2 n(x)] /rn(x) 

(9) 

(10) 

2. Estimate parameters a and B and write 
g (>.): 

& = x /(s2 - x) (II) 

13 = x2/(s2 - x) (12) 

With this, 

(13) 

By using the results of Equations 7, 8, and 13, 

which is also a gamma probability density function 
with 
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E{Alx} =(x+/J)/(1 +c,) 

VAR{ Alx} = (x + /J)/(1 + c,)2 

(15) 

(16) 

It follows that f(A*ix) is a gamma probabil
ity distribution function and estimates of its 
parameters a and B are known. F (A* 1 x) may 
be found by using numerical integration on 

,_' 
J Ax+~-le-7'(1+a)dA/J=Ax+~-1e-'-(l+a)dA (17) 
0 0 

What remains to be done is to apply these results 
to some actual cases. 

TWO ILLUSTRATIVE EXAMPLES 

The theory developed so far suffices to describe the 
performance of a simple screening process. The nu
merical examples in the following sections will 
serve to show what may have been obscured by convo
luted mathematical arguments. 

Illustrative Example 1: Ontario Hig hway Ramp s 

The second column of Table 1 lists the number of On
tario highway ramps that, in 1978, had x = O, 1, 
2, ••• ,14 accidents. The third column lists what 
should be expected if, indeed, the distribution of 
;>. is as has been assumed in Equation 13. It ap
pears that there is satisfactory support for making 
this assumption. 

TABLE 1 Accidents on Ontario Highway Ramps in 1978 

No , of Accidents 
(x) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

No . of Ramps with 
x Accidents [n(x)] 

2,254 
286 

95 
48 
21 

7 
8 
6 
5 
3 
0 
I 
0 
1 
1 

By using Equations 9-12, 
0.3414, S 2 = 1.0677, a= 0.47, 
fore, by using Equation 13, 

No . of Ramps Expected by 
Negative Binomial Model 

2., 278 
249 

98 
48 
26 
15 

9 
5 
3 
2 
1 
1 

it is shown that x = 
and 8 = 0.16. There-

(18) 

This is an estimate of how ;>. was distributed in 
the population of Ontario highway ramps in 1978 and 
is of considerable interest by itself, 

In Figure 2 the probability distribution function 
(PDF) of A, based on Equation 17, is shown. It ap
pears that 10 percent of the ramps (276 ramps) have 
;>. > 1 accidento per year, 5 percent of the ramps 
have ;>. > 1.8 accidents per year, and so forth. 
It is the ramps with relatively high values of A 
that may demand closer examination and that the 
screening procedure should identify. 

The probability distribution of ;>. in the sub
population of sites that had x accidents can also be 

>- 1.0 
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CD 
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>-
<t: 
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EXPECTED NUMBER OF ACCIDENTS 

FIG URE 2 PDF of A in the population of Ontario highway 
ramps (1978). 
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10 \ 

shown. This is accomplished by making use of Equa
tions 14-16. In Figure 3, F(A = l1x) for x = 1, 
2, 3, 5, and 10 are shown. 

Suppose that on the basis of Figure 2 researchers 
wish to identify those ramps for which A> 1. 
There are some 276 such ramps. By using the termi
nology established earlier, A* = 1. This is shown 
by the vertical line in Figure 3. 

,< 

,< 1.0 
i:i'. 
>-
t:: 0.8 
...J 

CD 
<t: 0.6 
CD 
0 
a: 
Cl. 0.4 
w 
> 
~ 0.2 
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::J 
::;; 
::J 2 3 4 5 6 7 8 0 

EXPECTED NUMBER OF ACCIDENTS 

FIGURE 3 PDF of A on ramps with 1, 2, 3, 5, and 10 
accidents in 1978. 

9 10 /,. 

Consider now the 95 ramps that had two accidents 
(Table 1). From Figure 3, some 39 percent of those 
are expected to have ;>. < 1. Thus in this group 
of ramps it should be expected that 95 x 0.39 = 37 
false positives and 95 - 37 = 58 correct positives. 
Similarly, the 48 ramps with three accidents each 
are expected to contain 48 x O .16 = 8 false posi
tives and 40 correct positives, Proceeding in this 
fashion, the data in Table 2 can be generated. 

Columns 1 and 2 of Table 2 are the raw data 
copied directly from Table 1. The cumulation from 
below of the entries in column 2 yields S (x*) in 
column 3. Thus if sites with three or more acci
dents are selected for detailed scrutiny, 101 ramps 
have to be inspected. 

The mathematical machinery assembled in the pre
vious section and, in particular, Equations 14-16 
facilitate the calculation of F(A* = l1x) in 
column 4. Because the computation is tedious, a 
FORTRAN computer code has been written for that pur
pose. 

The products of entries in columns 2 and 4 are 
estimates of the number of false positives to be ex
pected in the group of ramps that had x reported ac
cidents, as explained earlier. Column 6 is the cumu
lation from below of the entries in column 5 and are 
therefore the estimates of the number of false posi-
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TABLF. 2 Measures of Performance for Ontario Highway Ramps with A• = I 
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tives in the selected ramp s. Thus if x* = 3, then in 
the 101 selected ramps it should be expected that 
there will be 9 ramps for which A< 1, This 
makes the number of correct positives equal to 92, 
which is the entry in column 7. 

The topmost entry in column 7 is the number of 
correct positives in the entire set of 276 ramps. It 
is, therefore, the expected number of deviant sites 
in the population: D(),*) = 276. The number of 
false negatives ( those ramps not captured by the 
sieve) is calculated by subtracting from 276 the 
entry in column 7. Thus if x* = 3 in the group of 
101 ramps selected for inspection, there a r e 92 
ramps that have A> 1, which leaves the remain
ing 276 - 92 = 184 deviant ramps undetected in the 
population. 

For caoc of vioual representation, the main re
sults from Table 2 are shown in Figure 4. Thus 84 
percent of the deviant sites can be captured with 
x* = 1. But this means that more nondeviant than 
deviant sites are selected for close inspection and 
the inspection effort is large. With x* = 2, the in
spection effort and the number of false positives 
are reduced, However, almost half of the deviant 
ramps remain undetected. This illustrates the main 
tradeoffs and also describes the power and limita
tions of this screening process. With a small x*, 
the majority of deviant sites can be identified at 
the cost of having to examine a large number of them 
i n the field. Included in the selected sites will 
be many that are not deviant, and their inspection 
may be a waste of time. With a large x*, the number 
of sites to be inspected can be reduced and it can 
also be ensured that almost all inspected sites are 
deviant. In this case, however, many deviant sites 
will not be selected for inspection. 

Thus if A* is given as a criterion of deviancy, 
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the analyst can trade the cost of field inspection 
against the penalty of leaving a deviant site un
detected, 

The last issue to explore is the effect of decid
ing on what is to be considered deviant by the 
choice A*. 

There are, on average, 0,34 accident per ramp. 
Setting :1. * = 1, as in Table 2, defines as deviant 
ramps for which the expected number of accidents is 
about 3 times the population average. Had A*= 
1. 5 been chosen (Table 3) , the number of deviant 
ramps is, of course, much smaller (176), Because the 
obj ect of the search is now rarer, it is more diffi
cult to capture. Thus, although for :1.* = 1, x = 3, 
[100 (48 - 8)/48] = 84 percent of the 48 sites with 

x = 3 were correct positives, for A*= 1.5 the 
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TABLE 3 Measures of Performance for Ontario Highway Ramps with "/,. * = 1.5 
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same 84 percent yield is reached only for a larger 
X = 4. 

The variation in the measures of performance of 
this screening process in dependence on A* is 
shown in Figure 5. 

Illustrative Example 2: California Drivers 

The records of 86,726 California drivers have been 
examined, and the number of reported accidents 
during 1961 have been noted (2). The number of 
drivers with O, 1, 2, or 3 accidents is given in 
column 2 of Table 4. Column 3 gives the number of 
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drivers in each category if the distribution of A 
is as in Equation 13. This assumption is well sup
ported. From this, 

x = 0.08839, s = 0.0939, & = 16.092 j = 1.422, and g(X) 
= 58 _7 ;,._0.4224 e-16.11>. 

On this basis, the data in Tables 5 and 6 are 
constructed, as in the previous numerical example. 
In Table 5, A* = 0.25, which is about 3 times the 
average number of accidents per driver. The diffi
culties of identifying deviant drivers are obvious. 
With x* = 3, only half of those identified are de
viant, yet the overwhelming majority of the 3,425 
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FIGURE 5 Measures of performance as a function of X *. 
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TABLE 4 Accidents to California Drivers in 1961 

No . of Accidents 
{x) 

0 
I 
2 
3 

No. of Drivers 
[n(x)] 

79,595 
6,638 

45] 
42 

No . or Drivers Predicted by 
Negadve Binomial Model 

79,598 
6,624 

469 
3] 

drivers remain unidentified. It does not help much 
to select drivers with x• = 1 because a large major
ity are false positives (6,205). The performance of 
the sieve is even worse when a more severe criterion 
of deviancy is considered (A*= 0.50 in Table 6). 

SUMMARY, DISCUSSION, AND FUTURE RESEARCH 

Normally, a two-stage process is used for the iden
tification of blackspots. In the first stage a 
limited number of apparently dangerous locations are 
selected from all sites on the basis of their acci
dent history. The sites so selected are examined in 
more detail in the second stage. 

The data in this paper deal with the first stage 
of the blackspot identification process, which is 
likened to a sieve. A good sieve retains most sites 
that :require detailed examir',ation and allows through 
most sites that need not be examined any furthec. 

Accordingly, a concept of sieve efficiency is 
proposed in which the number of sites to be in
spected and the expected numbers of correct posi
tives, false positives, and false negatives serve as 
measures of performance. 

This concept is converted into a procedure tor a 
special but common case, and it is applied to two 
illustrative examples. One deals with the population 
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of Ontario highway ramps, and the other deals with 
California drivers. 

In both cases the objective of the screening pro
cess is '-'-' identify units fo:t which the expected 
number of accidents exceeds a given norm. What can 
and cannot be achieved is illustrated. Because the 
measures of performance are explicit, rationality in 
decision making and design are facilitated. 

The screening process used in practice is more 
complex than what has been analyzed. In particular, 
the accident rate (accidents per vehicle kilometer), 
which is the most important selection criterion, is 
not used here. Thus the theory and computational 
process need to be extended so as to be applicable 
to the realistic blackspot identification proce
dures. This extension appears to be straightforward. 
The corresponding research work is under way. 

The procedure relies on the assumption that A 

obeys the gamma distribution. This may not be a 
good assumption in some cases. Accordingly, it is 
necessary to develop numerical methods to free the 
procedure from reliance on this assumption. 

Therefore, the quality-control approach to black
spot identification does not give the analyst clues 
about how well or how poorly his sieve is working. 
In contrast, the approach suggested in th is paper 
provides measures of performance that describe the 
efficiency of the sieve in intuitively clear terms. 
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TABLE 6 Measures of Performance for California Drivers with 'A• = 0.50 Accidents per Year 
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Comparison of Two Methods for Debiasing 

Before-and-After Accident Studies 

BHAGWANT N. PERSAUD and EZRA HAUER 

ABSTRACT 

When corrective treatment is applied to road 
sections, intersections, drivers, or ve
hicles that had a poor accident record in 
the past, the safety effect of the treatment 
is properly estimated by comparing the num
ber of accidents in a post-treatment period 
with the number of accidents that would have 
occurred in this period without the treat
ment. Earlier papers have shown that simple 
before-and-after comparisons are consis
tently biased; that is, treatments appear to 
be more effective than they really are. Ac
cordingly, two methods--a nonparametric 
method and a Bayesian method--have been sep
arately proposed for purging this bias. The 
nature of the bias and the two debiasing 
methods are reviewed, In the main body of 
the paper several data sets are used to com
pare the performance of the methods. In 
most cases the Bayesian method was found to 
yield better estimates, 

Before-and-after ace ident comparisons a re a common 
method for assessing the safety effect of a treat
ment applied to road sections, intersections, 
drivers, and so forth, Conclusive evidence exists 
to show that when treatment is administered to sys
tems with a poor safety record, simple before-and
after comparisons are biased (.!l, The bias is 
caused by the erroneous assumption that the number 
of accidents on a system in the period before treat
ment is an unbiased estimate of what should be ex
pected to occur on the system during an equivalent 
after period had treatment not been applied. Sys
tems with above-average accident numbers or rates in 
one period must be expected to show a decrease in a 
subsequent period even without treatment, and vice 
versa. This phenomenon, identified as regression-to
the mean, was demonstrated to be significant and 
can, in simple before-and-after comparisons, make 

safety treatments appear to be more effective than 
they really are. 

To illustrate, Table 1, taken from Hauer (2), 
presents accident data for 20,762 1-km road secti~ns 
in Ontario. Sections were grouped according to the 
number of accidents in 1 year. As shown by the data 
in the table, 12,859 sections had no accidents in 
that year; 4,457 had one accident, and so forth. 
Column 3 shows that, for each group, the averagP. 
number of accidents recorded in the subsequent year 
revealed a reduction in the number of accidents in 
the second year for each group of sections with ac
cidents in the first year. These reductions are 
balanced by the 12,859 sections that had no acci
dents in the first year but experienced an increase 
to 0.404 accident per section in the second year, 

This is the essence of the regression-to-the
mean. When a random down-fluctuation occurs, as for 
the group with no accidents, an upward return to the 
mean for that group should be expected; when a ran
dom up-fluctuation occurs as it does for all the 
other groups, a downward return to the group mean 
should be expected. · 

Although there has been an increasing awareness 
of the phenomenon, its effect has often been dis
missed because it will rarely be statistically sig-

TABLE 1 Regression-to-the-Mean: Ontario Data (2) 

No . of Sections 
in Group 

12,859 
4,457 
1,884 

791 
374 
160 

95 
62 
33 
14 
33 

No. of Accidents for Avg 
Section in Group 

First Year Second Year 

0 0.404 
I 0.832 
2 1.301 
3 1,841 
4 2.361 
5 3.206 
6 3.695 
7 4 ,968 
8 4 .818 
9 6.930 

;, 100 l 0.390 

" lncreilse. h Average = I J.33. 

Change(%) . -
-16.8 
-35 .0 
-38.6 
-41.0 
-35 .9 
-38.4 
-29.0 
-39.8 
-23.0 
-22 .0 




