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Comparison of Two Methods for Debiasing 

Before-and-After Accident Studies 

BHAGWANT N. PERSAUD and EZRA HAUER 

ABSTRACT 

When corrective treatment is applied to road 
sections, intersections, drivers, or ve­
hicles that had a poor accident record in 
the past, the safety effect of the treatment 
is properly estimated by comparing the num­
ber of accidents in a post-treatment period 
with the number of accidents that would have 
occurred in this period without the treat­
ment. Earlier papers have shown that simple 
before-and-after comparisons are consis­
tently biased; that is, treatments appear to 
be more effective than they really are. Ac­
cordingly, two methods--a nonparametric 
method and a Bayesian method--have been sep­
arately proposed for purging this bias. The 
nature of the bias and the two debiasing 
methods are reviewed, In the main body of 
the paper several data sets are used to com­
pare the performance of the methods. In 
most cases the Bayesian method was found to 
yield better estimates, 

Before-and-after ace ident comparisons a re a common 
method for assessing the safety effect of a treat­
ment applied to road sections, intersections, 
drivers, and so forth, Conclusive evidence exists 
to show that when treatment is administered to sys­
tems with a poor safety record, simple before-and­
after comparisons are biased (.!l, The bias is 
caused by the erroneous assumption that the number 
of accidents on a system in the period before treat­
ment is an unbiased estimate of what should be ex­
pected to occur on the system during an equivalent 
after period had treatment not been applied. Sys­
tems with above-average accident numbers or rates in 
one period must be expected to show a decrease in a 
subsequent period even without treatment, and vice 
versa. This phenomenon, identified as regression-to­
the mean, was demonstrated to be significant and 
can, in simple before-and-after comparisons, make 

safety treatments appear to be more effective than 
they really are. 

To illustrate, Table 1, taken from Hauer (2), 
presents accident data for 20,762 1-km road secti~ns 
in Ontario. Sections were grouped according to the 
number of accidents in 1 year. As shown by the data 
in the table, 12,859 sections had no accidents in 
that year; 4,457 had one accident, and so forth. 
Column 3 shows that, for each group, the averagP. 
number of accidents recorded in the subsequent year 
revealed a reduction in the number of accidents in 
the second year for each group of sections with ac­
cidents in the first year. These reductions are 
balanced by the 12,859 sections that had no acci­
dents in the first year but experienced an increase 
to 0.404 accident per section in the second year, 

This is the essence of the regression-to-the­
mean. When a random down-fluctuation occurs, as for 
the group with no accidents, an upward return to the 
mean for that group should be expected; when a ran­
dom up-fluctuation occurs as it does for all the 
other groups, a downward return to the group mean 
should be expected. · 

Although there has been an increasing awareness 
of the phenomenon, its effect has often been dis­
missed because it will rarely be statistically sig-

TABLE 1 Regression-to-the-Mean: Ontario Data (2) 

No . of Sections 
in Group 

12,859 
4,457 
1,884 

791 
374 
160 

95 
62 
33 
14 
33 

No. of Accidents for Avg 
Section in Group 

First Year Second Year 

0 0.404 
I 0.832 
2 1.301 
3 1,841 
4 2.361 
5 3.206 
6 3.695 
7 4 ,968 
8 4 .818 
9 6.930 

;, 100 l 0.390 

" lncreilse. h Average = I J.33. 

Change(%) . -
-16.8 
-35 .0 
-38.6 
-41.0 
-35 .9 
-38.4 
-29.0 
-39.8 
-23.0 
-22 .0 
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nificant, and it is not often likely to lead to 
serious results (according to 1965 data from the 
Road Research Laboratory). Column 4 in Table 1 con-

show that, contrary to this opinion, the phenomenon 
is consistent, real, and nothing short of dramatic. 
Hauer (2) showed that not only road sections are 
subject to this phenomenon. In fact, any element of 
the transport system f or which events occur randoml y 
will be subject to regression-to-the-mean. 

In summary, the number of accidents on a system 
in the before period does not, on average, remain 
th1> R;im .. in 11n P.q11iv11lent after period. When safety 
treatment is applied, an estimate of the number of 
accidents that would have occurred in a subsequent 
period without the treatment needs to be made. In 
the next section, procedures for doing so are re­
viewed. 

REVIEW OF METHODS FOR DEBIASING BEFORE-AND-AFTER 
COMPARISONS 

Establishment of control groups, where possible, is 
perhaps the best method for obtaining estimates of 
what the number of after period accidents would have 
been without treatment. When doing so is not prac­
tical, two analytic methods are available. Details 
of these methods are given elsewhere (.!_-!), 

Method 1 

The nonparametric (NP) method (1,2) is simple to ap­
ply yet is based on intricate ~atistical reasoning. 
To estimate the number of accidents ak expected 
to occur during an equivalent after period on a sys­
tem that had k accidents in the before period, the 
following factors need to be known: Nk = number 
of systems with k accidents in the population of 
similar systems, and Nk+l = number of s ys t ems with 
(k + 1) accidents in the popula t i on of simi l a r sys­
tems. Then, 

(1) 

The simple formula relies on the sole assumption 
that accidents on any system are Poisson distrib­
uted. Unlike the alternative method, no assumptions 
are made about the underlying distribution of acci­
dents in the population of systems. To illustrate 
the use of Equation 1, a 3 was estimated for the 
Ontario data in Table 1. Here N3 = 791 and N4 
= 374 from column 2. Thus, based on first-year data, 
the estimate of the number of accidents in the sec­
ond year on a section that in ~h.. firs~. year had 
three accidents is given by 

a3 = (4 X 374)/791 = 1.891 . 

This compares to 1.841 actually observed in that 
year. 

If there is i nterest in estimating tot al acci­
dents for cumulative groups with k or more acci­
dents, it is not necessary to apply the nonpar a­
metric method individually for each accident group. 
It can be shown [see Hauer (l ) for proof] that 

(2) 

where Ak is the estimated total number of acci­
dents on systems that in the before per i od had k or 
more accidents, and NJti is the total number 
of accidents on those systems that in the before 
period had (k + 1) or more accidents. 
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Method 2 

The empirical Bayesian (EB) method (3,4) is just as 
simple to apply as method 1, but it- is based on 
stronger assumptions and requires accident data for 
the entire population of systems, As before, it is 
assumed that the number of accidents for a system 
obeys the Poisson with a mean characteristic of the 
system. Furthermore, it is assumed that the distri­
bution of these means in a population of systems can 
be approximated by a gamma distribution. With these 
two assumptions, the number of systems of a popula­
tion with k accidents must obey the negative bino­
mial distribution except for a rare situation dis­
cus sed later in this section. 

The expected number of 
after period on a system that 
before period is given by 

°'k = [(k + l)Nk+il /Nk 

I 
accidents ak in the 
had k accidents in the 

(3 ) 

Nk is the number of systems expected by the 
negative binomial distribution to have k accidents. 
(Note the similarity between Equation 3 and Equation 
1 for the nonparametric method, and recall that in 
Equation 1, Nk was the actual number of systems 
with k accidents.) 

To employ this method, the before period accident 
data are used to get the sample mean (m) number of 
accidents and sample variance (s 2 ) for the popula­
tion of systems. From these, estimates of the param­
eters b, c of the gamma distribution can be ob­
tained, as follows: 

b = m2 /(s2 - m) m < s2 

c = m/(s2 
- m) m < s2 

(4) 

(5) 

As shown by Jarrett et al. (_!) and by Abbess et 
al. (,!) Equation 3 then reduces to 

ak = (b + k)/(c + 1) m < s2 (6) 

It should be noted that if the negative binomial 
distribution were to fit all of observed frequencies 
perfectly, then the two methods would give identical 
estimates. 

For the rare situations when the sample mean is 
not less than the sample variance (m > s 2 ), 

Equations 4, 5, and 6 do not apply. Instead, the 
distribution of means in the population of systems 
approximates the limiting form of the gamma distri­
bution, where each system has the same expected num­
ber of accidents. Therefore, instead of Equation 6, 

ak = m for m ;, s2 (7) 

To illustrate the more common case, suppose again 
that k = 3 for the Ontario data. The sample mean of 
the number of accidents in the first year is m = 
0, 707 and the sample variance is s 2 = 1. 6491. From 
Equa tions 4 and 5 the following estimates are ob­
ta ined : b = 0.5345, and~= 0,7540. Therefore, 

a]= 3.5345/1.7844 = 2.015. 

This also compares favorably with the observed 1.841 
(Table 1). A systematic comparison of the perfor­
mance of both methods is the subject matter of the 
next section. 

In us,ing the EB method to e s t i mate to t al acci­
dents Ak for cumu l a tive groups , the e quivalent 
expression to Equation 2 is 

(8) 
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where N~ft> is the total number of systems 
expected by the negative binomial distribution to 
h~ve (k + 1) or more accidents. Recall that to get 
ak in Equation 6, it was not necessary to get 
the Nk 's, so it may not always be convenient to 
apply this shortcut with the Bayesian method. 

COMPARISON OF THE TWO METHODS 

Given the differences between the two methods, .it is 
of interest to compare estimates obtained by each 
method against what was actually recorded to see if 
there are circumstances in which one or the other 
should be preferred. 

Data 

Eleven primary data sets were used in this compari­
son. Some of the data sets contain several years of 
accident history, so it was possible to effectively 
increase the number of comparisons by varying the 
before and after periods. In addition, one of the 
driver accident data sets was disaggregated into 
five age groups. Thus the comparisons were done for 
a total of 42 data sets that involved a variety of 
systems (driver accidents, driver violations, road 
sections, intersections, and roundabouts), and that 
covered a variety of countries (the United States, 
Canada, Sweden, Israel, and the United Kingdom) and 
a variety of before period lengths. A total of 293 
comparisons were obtained. These data sets are 
identified in Table 2. 

Analysis and Results 

To illustrate the n·ature of the performance compari­
sons, the data in Table 3 present the results for 
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the Ontario data set. Columns 1, 2, and 6 merely re­
peat the data in Table 1. As shown in the first 
line, by using the negative binomial distribution, 
it would be estimated that 13,222 sections (column 
3) are expected to have O accidents (column 1) com­
pared with the 12,859 sections (column 2) actually 
counted. The nonparametric method estimates that 
one such section chosen at random would average 0.35 
accident (column 4) during the second year, whereas 
by the Bayesian method the estimate is 0.31 acci­
dent (column 5). These estimates are compared to the 
0.40 accident per section actually recorded in the 
second year. In Figure 1, 0.35 on the ordinate 
plotted against 0.40 on the abscissa is point A, 
which is designated by an empty circle: 0.31 plotted 
against 0.40 is point B shown by a full circle. Thus 
data in Table 3 yield 10 pairs of circles. 

Similar tables for all of the data sets produced 
the data for Figures 1 and 2, where estimates from 
each of the two methods are plotted against what was 
recorded. For clarity and for reasons discussed 
later, the driver and the road data sets are plotted 
separately. In these figures the empty circles 
represent the nonparametric estimates, whereas the 
full circles plot the Bayesian estimates. Some ob­
servations follow. 

For both driver and road systems, the full cir­
cles tend to hug the diagonal somewhat closer than 
the empty circles. Thus it is concluded that the 
Bayesian method is likely to give somewhat better 
estimates. 

For the drivers (Figure 2), the nonparametric 
method consistently overestimates the number of ac­
cidents (or violations) per driver from about 0.2 
accident per year on. In an earlier paper (1), it 
was speculated that this is a reflection of matura­
tion and possibly the effect of accidents or convic-

TABLE 2 Comparison of Parametric and Nonparametric Bayesian Estimates 

N • indicates the non-parametric method is better ; P - ind i cates the parametric method 1s better 

x' -"'ean Vari a nee No. of Accident< 

DATASET DESCRI PTION I 
B~fore I After 

I ; I I I 1 2 I I I ' Before Mter Be fo re Mter 0 1 3 4 ~ 6 7 e 9 IO 
I I I I I ' 

p I I N. Carolina Driver Accidents I I I I (Years 1,2 Before) 156 304 . !22 I . )30 .143 . 151 N I p p p p 

I I . 
p l I .. : 

N. Carolina Ori ver Accidents I I I 
(Years 3.4 Before) I 304 I 156 . 130 ! .122 .151 . 143 NP ti I p r p 

I 
I I 

I Ontario Road Sections 100 . 
i 

. 707 . 1.649 

I 
. r1 r1 t N N p p p p N p 

I I Sweden Road Junctions I I 
I I 

"Reported" 38 I . : .833 . I. 946 . rt p I N II 

I 
p p p 

Sweden Road Junctions I i I 
[ I 

11 Person,1 Injury" I 2 . I . 197 
j . . 393 . p p p I I 

! I I I ! Driver Violations-North <aro- I I 
! I I I Jina (Years 1.2 Before) ! ' p I p I (3,4 After) 550 664 . 225 ' • 252 . 367 I . !OJ ! II I 11 I N p p I I I I 

I Driver Violations-North Carol- I I I I I I I 
11na (Years 3,4 Before) I i I i N I (1,2 After) 

! 
664 550 . 252 i . 225 .401 

I 
. 367 N I N p p p p p p 

I 

P· I I I ! I I U.K. Roundabouts 5 I . 
I 3.911 . 17. 245 

I 
. N p p p p p p p 

New Mexico Run Off Road 
i I I i 

I I I I 
i ' p I (80,Bl Before)(B2 After) 55 ' 67 . 773 . 383 I. 747 ' .659 II ! II 

I I p p p p II p p 

' 

I 
I ' : I 

I 
I New Mexico Run Off Road ' i i I I (82 Before) (80,81, After) 67 55 . 383 I . 773 .659 I. 747 I II Ii I ! p I p p p p p 

New Mexico Fixed Object I I I I I j 
J 

(80,81 Before)(82 After) 28 9 . 263 i . 129 . 459 

I 
. 184 II ' II p p p p p p p 

New Mexico Fi xed Object I l I 
I 

I (82 Before)(80,Bl After) 9 i 20 i . 129 .263 .184 

I 
. 459 I II II N : II p p 

! 
North Carolina Driver Accidents ! ! I I 

(.Yrs.1,2,3 Before)(Yr. 4 After) 473 74 .187 . 064 .231 .070 ' N I N p p I p p II 

! I I ' I 
North Carolina Driver Accidents i I I I I I (Year 4 Before)(Year 1.2,J Aft.) 74 I ~73 .064 , 1R7 .070 . 231 NP 1 N p 

' 
p p p 
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TABLE 2 (continued) 

x' Mean 

I I I DATASET DESCRIPTI ON Be fore Arte r : Before After 

i North Carolina Driver Accidents I 
(Year 1 Before)(Yrs .2,3,4 Afte r 21 i 1UJ8 .Ob! i • j~j 

North Carolina Driver Accidents . 
I (Yrs.2,3,4 Before)(Yr.l After) IOJB I 21 , .191 .061 

North Carolina, 22-25 year olds 
i 

(Y~. 1,2 Before)(Yrs ,3,4 After) 3 i 26 .160 I .170 

North Carolina, 22-25 year olds I ! I l , .... , .. ~,,. ""· ... , .. ,.. I 26 3 .170 I .160 

North Carolina, 26-39 year olds I ! I 
(Yrs.1,2 Before)(Yrs.3,4 After) 160 89 . 127 . 134 

I I 
North Carolina, 26-39 year olds I 
(Yrs:J,4 Before)(Yrs . 1,2 After) ! 09 160 : .134 I .127 

North Carolina, 40-59 year olds I i . I 

(Vrs.1,2 Before)(Yrs.3,4 After) 68 j 91 .107 ! . 114 

North Carolina 40-59 year olds I ' I (Yrs.3,4 Before)(Yrs.1,2 After ) , 91 68 I .114 . 107 
I I 

North Carolina 60+years 
After) ! 

: 
(Yrs.1,2 Before)(Yrs:J,4 17 I 115 .111 ' . 114 

North Carolina 60+years I I i I 
(Yrs.3,4 Before)(Yrs.1,2 After) ! 115 l 17 .114 : .111 

I : North Carol Ina 21 year olds , 
I l (year I Before) ( v rs. 2 ,4 After) : I 1 .106 

I 
.098 

North Carolina 2l year olds 
! 

l 
(Year 2 Before)(Year 1 Alter) 1 

! 
I .098 .106 

Israeli Road See t lo~s : 
{Yrs.2,3,4 8efore)(Yrs.5,6,7Aftj 3 : 16 1.685 I. 909 

I I 

Israel 1 Road Sections I 
(Yrs.5,6,7 Bef.)(Yrs.2,3,4 Aft. 1 17 3 I. 909 1. 685 

I 

N - indicates the non-para...,t r ic method is better; 

DATASET DESCRIPTION ~aefore'1 

Israeli Road Sections 
(Year 1 Before)(Year 2 After) I 

Israeli Road Sections 
(Year 2 Before)(Year I After) l 

Israeli Road Sections 
,:Year 6 Before) (Year 7 After) 1 

Israel 1 Road Sections 
(Year 7 Before)(Year 6 After) 2 

Israel! Road Sections 
CYrs.l,2,3 Sefore)(Yrs.4,5 Afte~ 7 

Israel I Roa~ Section; 
(Yrs.4,5,6 8efore)(Yrs.l,2,3Aft ) 9 

Israeli Road Sections 
(yrs.1,2 Bef.)(Yrs.3,4 After) 4 

1srae 11 Road Sections 
(Yrs.3,4 Bef.)(Yrs.1,2 After) 2 

Israel 1 Road Sections 
(Yrs.3,4 Before)(Yrs .5,6 Aft.) 2 

1 s rae 11 Road Sections 
(Yrs.5,6 Bef.)(Yrs.3,4 After) 0 

Westm1n1ster Blacksites 60 

f.al1forn1a Driver Accidents 
(72,73 8efore)(74 After) 9 

California Driver Accidents 
(74 Before)(72,73 After) 2 
Phl ladel phh Interi;ec:ti ons 
(68 Before) ( 69 After) 3 
Ai1 ladelph14 Ir.tersecti•Jns 
(69 Before) '.68 Before) 4 

2 

' 
"After 11 

3 

1 

2 

1 

9 

7 

2 

4 

8 

2 

-

2 

g 

4 

3 

Before 

.577 

.589 

.661 

. 705 

I. 710 

I. 799 

1.124 

1.169 

1.127 

1.220 

3.223 

.133 

.048 

. 759 

.797 

After 

.589 

. 577 

. 705 

.661 

I. 799 

1. 710 

I. !fig 

1.124 

I. 220 

1.127 

-

. 048 

. 133 

I • 797 
I 

I . 759 

- - --- o. ' - --- o.L - -' 
\.llt' 1-'C.TC.lll!:'\.I H,. lllt;'.'\.IIUU 1:) Ut"l.l.it:'I 

Variance No. of Accidents 

Before I After I 0 I i I J. I 4 I 5 6 1 8 9 10 
I ' I 

p I I I 

I .Ub 6 I . i35 NP p p p 

I 

! , 235 

I 
.066 I p N NP I p p p p 

I I 
. 191 ' . 203 NP 1• N 

l 
N p I p p 

I I 

l ! 
I 

. 203 . 191 N 

I 
II N p p I p p 

l I .151 I .158 I N II p p r p p 

I I 

i I I .150 .151 p II p p p p I r 

I 
i ! 

. 122 .129 N N l p II ,, p p p p 

I . 129 I .122 r N p p r p r p 
I 

I i 

I 
I 

I 
I ' .125 .131 I fl p " r I p p p 

I l I i I 

. 131 .125 N 

I 

N p p r p p p 
I 

I I ! ' I l I 

I 
. 118 I . 108 NP N p p N I 

I I I I I 
.108 ! .118 : NP I p II p I rt I : 

I I : : ' i ' : ' 
4. 379 l 4 .095 N p p r I• ' 

p " 1 

I 
I ; 
I l I I 4 .095 i 4. 379 ll ' p : N p I p : p p 

I 
: I i I I I 

P - indicates the parametr1 c method 1 s better 

II, ... ~ , .,,. C ~c. c f fl.cc~ dents 

' Before ' 'After ' 0 I 2 3 4 5 6 7 8 g JO 

.972 . 943 I' p l ~ 

.943 . 972 p p p N 

1.01 1.03 II II p N 

1.03 1.01 N r II p 

3.675 3.88 II r p II p II p p 

3.88 3.675 II p !I p ti p N 

7. 245 2 .30 p p p II p p 

2. 30 2 .245 H p ti N' p N 

2 .295 2 .233 N p p ti p p 

2 .233 2.295 I! N p p p p 

19 .29 - not 
h!por t e~ " p p p p p p p 

.149 .051 ~ N p p p p 

.051 .149 NP p II p 

.970 .B93 N p N p p 

.893 .970 ·P p p p p 

Note: N indicates that the nonparametric method is better, and P indicates that the parametric method is better. The North Carolina driver data sets are from Stewart and Campbell (5), 

the United Kingdom roundabout data sets are from Helliar-Symons (6), and the Sweden intersection data sets are from Brucie and Larsson (1). 
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Application of Estimating Methods to Ontario Road Sections Data 

No . of Sections 
with k Accidents 

12,859 
4,457 
1,884 

791 
374 
160~ 

95 
62 
33 
14 

0 

0 

0 

0 . 

• 00 

No. of Sections Estimated 
by Negative Binomial 
Distribution to Have k 
Accidents 

13,222 
4,029 
I ,762 

850 
428 
221 
116 
62 
33 

8 

Nonparametric Bayesian Recorded 
Estimate 

0.35 
0.84 
1.26 
1.89 
2.14 
3.56 
4.57 
4.26 
3.82 
5.71 

Estimate After 

0.31 0.40 
0.87 0.83 
1.44 1.30 
1.99 1.84 
2.59 2.36 
3.16 3.20 
3.73 3.69 
4 .30 4.96 
4 .87 4.81 
5.44 6.93 
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FIGURE I Application of debiasing methods to road data sets. 
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FIGURE 2 Application of debiasing methods to driver data sets. 
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tions on the subsequent driving record. This expla­
nation now appears to be incorrect, for, when the 
order of comparison is reversed (call a later year 
before and an earlie, yeaL afte£), the sam~ resulta 
are obtained. As indicated by the squares in Figure 
2, for the Bayesian method this problem is not as 
severe. The overestimates are not as large or as 
consistent. 

The data in Table 2 present the results in a dif­
ferent form along with some additional information 
to assist in the discussion that follows. To illus­
trate, the first line in Table 2 gives information 
for the entire North Carolina driver population, 
with the first 2 years of data representing the be­
fore period and the second 2 years representing the 
after period. In fitting a negative binomial distri­
bution to the before period frequencies, a chi­
square value of 156 was calculated (column 2), 
whereas for the after period a value of 304 (column 
3) was obtained. The average driver had 0.122 ac­
cidents (column 4) in the before period and 0.130 
accidents (column 5) in the after period. The 
sample variances associated with these two means 
were 0.143 and 0.151 (columns 6 and 7), respec­
tively. For this data set, fork= O or l accident 
(column 8), the nonparametric estimate was closer to 
what was recorded, whereas for other values of k the 
Bayesian method was closer. For the second entry, 
the second 2 years of data were used for the before 
period with the first 2 years as the after period, 
and so on. Note that when the lengths of the before 
and after periods differ, so do the orders of magni­
tude of the mean numbers of accidents (e.g., the New 
Mexico data) • 

The data in Table 2 confirm that, on the whole, 
the Bayesian method gives better results and, in ad­
dition, reveals something that is not immediately 
apparent in Figures land 2. For systems with k = 0 
or 1, the nonparametric method performs, in most 
cas~s, at least as well as the Bayesian method. This 
finding has important implications, as the effect of 
treatments on systems with k = 0 or l accident is 
often of interest. 

Discussion of Results 

Effect of Type of System 

From the data sets examined, it is apparent that 
there is a need to distinguish between road systems 
and driver systems. Why this is so remains an in­
teresting research question that is currently being 
investigated. 

Disaggregation of the data sets does not appear 
Lo have any influence on the performance of the 
methods, In a real application, a treatment program 
may be aimed at a fairly narrow group (e.g., young 
drivers, signalized intersections, head-on colli­
sions). Consequently, it is important that the 
population be defined to include only similar sys­
tems. This issue of population definition is being 
researched further. 

Effect of Number of Accidents (kl 

For any value of k larger than 1, the number of road 
(nondriver) systems tends to be relatively small, so 
it is not surprising that the nonparametric method 
does not perform as well as the Bayesian method. 
This finding lends empirical confirmation to state­
ments made by other researchers (!-!) about the in­
fluence of random variations in observed frequencies 
when the number of systems is small. By smoothing 
these frequencies, the Bayesian method provides more 
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reliable estimates for the smaller groups of sys­
tems. For a more general discussion of this issue, 
see Mari tz (!!.) • 

Effect of Number of Systems in a Group 

For road systems at least, it is expected that the 
size of a group with k accidents would be a more 
direct index of the relative performance of the 
methods than the value of k. However, from the 
examination of the data, it appears that statements 
about the relative performance of the two methods 
based on group size are not clear-cut. The best 
that can be said about the methods is that the non­
parametric method is at least as good as the Bayes­
ian method when the number of road systems with k 
accidents is larger than 200. If this was made into 
a rule, however, there would be many exceptions. For 
drivers, although it appears reasonable that the 
size of the group must play a role in the perfor­
mance of the methods, the overestimation problem 
prevents this issue from being examined. 

Effect of Chi-Square Values 

Analysis of a wide range of data sets with diverse 
chi-square values (see Table 2) suggests that, con­
trary to intuition, chi-square values for the before 
period data do not appear to be a good index of the 
performance of either of the methods. Even when the 
after period data also have small chi-square values, 
a reliable estimate is not guaranteed. 

Effect of Parameters 

For the Bayesian method, the sample parameters ap­
pear to be more relevant than chi-square values in 
determining the performance with respect to road 
systems. Once the sample means and sample variances 
for the before period data are close to these values 
for the after period, the Bayesian method tends to 
give more reliable estimates for road systems. The 
same conclusion cannot be made for the nonparametric 
method or for driver systems. 

SUMMARY AND CONCLUSIONS 

In this paper the regression-to-the-mean phenomenon 
was reviewed along with two analytic methons for 
purging the resulting bias from the results of be­
fore-and-after comparisons. 

The focus of the paper was on an empirical com­
parison of the two methods: the nonparametric 
method where only observed accident frequencies are 
used to estimate the expected number of future acci­
dents, and the Bayesian method where an assumed 
underlying statistical distribution smooths these 
frequencies before using them in estimations. The 
comparison, based on a large number and variety of 
data sets, indicated that, in general, the Bayesian 
method gives somewhat better estimates and should be 
used in assessing the safety effect of a treatment • 
However, for systems with zero or one accident, the 
nonparametric method gives slightly better results 
and might be preferred if the future expected number 
of accidents on these systems is of interest. The 
nonparametric method is also preferred if, in revis­
ing estimates for previous studies, accident data 
are only available for high-accident locations, 



Persaud and Hauer 

Discussion 

Olga J. Pendleton* 

In the paper by Persaud and Hauer, the authors at­
tempt to show that, by way of example, the Bayesian 
method for estimating accidents in the after period 
is better than the nonparametric method, Whereas the 
data sets to which this comparison was applied ap­
pear to support this claim, it should be noted that 
(al the authors do not apply any statistical methods 
in making the comparison and appeal only to graphi­
cal and numerical descriptive measures to support 
their claim, and (bl an example is not a proof, 

Addressing the first comment (al, this paper 
would be greatly enhanced if the authors applied 
relatively simple statistics in making the compari­
son between methods. For example, along with the 
plots depicting the relationships of the two methods 
that compare actual and estimated values, statistics 
such as the correlation coefficient and the mean 
squared error of deviation from the line represent­
ing equality could be reported for the two methods 
and equality could be statistically tested. It also 
appears that there is a region of accident frequency 
where the comparison of these methods may yield dif­
ferent results (e.g., <0,5 and >0,5 in Figure 
21. The nonparametric technique might even be better 
at <0, 2, Another statistical test that could be 
made is a simple t-test on the differences of the 
methods or for a more nonparametric approach, a x 2 

test of observed versus expected for each method. 
These statistics would be easy to apply and lenrl 
more credence to the authors' claims. 

The second comment (bl is motivation for futur P. 

research. Either a rigorous mathematical proof that 
compares the power of the two techniques or a simu­
lation study would be interesting. In light of the 
difficulty of this task, this paper did a suitable 
job of attempting to answer this question in a less 
rigorous but informative and interesting manner, 

Authors' Closure 

We thank Pendleton for her interest in our paper and 
for highlighting an apparent shortcoming, We think 
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that the shortcoming is not so much in the omission 
of statistical tests as in the absence of any ra­
tionalization of this omission. 

After reviewing our results, we chose not to per­
form any statistical tests as we felt that the con­
clusion that "the Bayesian method is likely to give 
somewhat better estimates" was ably supported by the 
plots. We did not seek a stronger conclusion be­
cause, as Pendleton notes, an example is not proof 
and, equally important, because a stronger conclu­
sion would have detracted from our findings with 
regard to other issues. The effects of the type of 
system and the number of before accidents are issues 
well in keeping with our original intention Rto see 
if there are circumstances in which one or the other 
method should be preferred." 

In summary, although we agree in principle with 
Pendleton's proposals, we believe that they are out­
side the scope of this paper. 
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