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Testing Disaggregate Travel Demand Models by 
Comparing Predicted and Observed Market Shares 

JOEL L. HOROWITZ 

ABSTRACT 

An intuitively appealing and popular method 
for testing a disaggregate choice model of 
travel demand, such as a logit model, con
s is ts of comparing the model's predictions 
of the market shares of travel alternatives 
in population groups with observations of 
these shares. Excessively large differences 
between the predicted and observed shares 
indicate that the model being tested is 
incorrect. In current practice, the decision 
whether differences between predictions and 
observations are large is made judgmentally, 
thereby raising the possibility that a cor
rect or approximately correct model will be 
rejected because of the effects of random 
sampling errors. A statistical test is de
scribed that enables one to distinguish 
between the effects of random sampling er
rors and those of true model errors when 
predicted and observed market shares are 
compared. Five easily programmable steps for 
implementing the test are given, and com
mercially available software that can help 
with the computations is identified. A nu
merical example of the application of the 
test is presented, and the role of the test 
in practical model development is discussed. 

An intuitively appealing way of testing any model of 
travel behavior is to compare its predictions with 
actual observations. In the case of disaggregate 
choice models, such as logit and probit models, that 
predict individuals' choices among sets of discret.e 
alternatives, this approach to testing often con
sists of comparing predictions of market shares of 
alternatives in population groups with observations 
of the actual market shares in the same groups. 
Large differences between predicted and observed 
shares constitute grounds for rejecting the model. 
For example , to test a model of mode choice the 
population of interest might be grouped according to 
characteristics such as income, automobile owner
ship, location of residence or work, and so forth. 
The model ' s predictions of the proportions of in
dividuals in each group that use each mode would be 
compared with the observed proportions. The model 
would be rejected as incorrect if the differences 
between the predicted and observed proportions were 
excessively large. 

In current practice, the decision whether dif
ferences between predictions and observations are 
excessive is made judgmentally. This is unsatisfac
tory because differences between predicted and ob
served market shares are subject to random sampling 
errors. These errors are not relevant to the ques
t ion of whether the model under consideration is 
correct. However, depending on the details of the 
model, selection of population groups, and size of 
the data set being used, they can produce differ
ences between predictions and observations that are 

large by reasonable judgmental sta.ndards, even if 
the model being tested is con:ect. In other words, 
when predictions and observations are compared judg
mentally, random sampling errors may cause a correct 
model to be rejected. 

To minimize the likelihood of this undesirable 
outcome, it is necessary to have a method for dis
tinguishing between random sampling errors and true 
model errors in comparisons of predicted and 
observed market shares. In the terminology of sta
tistics, it is necessary to have a test of the sta
tistical significance of differences between predic
tions and observations. The main objectives of this 
paper are to describe such a test and to present a 
numerical example illustrating its use. Subsidiary 
objectives are to discuss briefly two important 
questions relating to the use of the test. These are 
as follows: 

l. In carrying out the test, should the data 
used for testing (i.e., for computing predicted and 
observed market shares) be independent of the data 
used for model estimation or should all of the 
available data be used for both estimation and 
testing? 

2. The test based on comparisons of predicted 
and observed market shares is only one of several 
procedures that are available for testing disaggre
gate choice models. How should one choose among 
these procedures in practical, empirical work? 

The remainder of this paper is organized as fol
lows. The test statistic is described in the next 
section and the first question posed previously is 
answered. Then the numerical example of the use of 
the test statistic is presented. In the final sec
tion the second question posed previously is an
swered and some concluding comments are presented. 

THE TEST STATISTIC 

The most frequently used form of disaggregate choice 
model is the multinomial logit model with a linear
in-parameters utility function. Therefore, to mini
mize the complexity of the discussion, it will be 
assumed here that the model being tested has this 
form. The test statistic for a general choice model 
is given by Horowitz (_!). 

In the multinomial logit model with a linear-in
parameters utility function, the probability P(i1m,e) 
that individual m chooses alternative i from a set 
of I available alternatives is (~·~) 

(J) 

where ~k (k 1, I) is a row vector of 
explanatory variables evaluated for individual m and 
alternative k, is a column vector of constant 
parameters, and the sum in the denominator is over 
all available alternatives. In practice, the values 
of the parameters a usually are not known a priori 
and must be estimated by fitting the model to data. 
In accordance with usual practice, it is assumed in 
this paper that e is estimated by the method of 
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maximum likelihood using a disaggregate data set 
consisting of observations of the choices and X
values corresponding to M randomly selected in
dividuals. This data set will be called the estima

tion data set, Let S denote the estimated values of 
the parameters e. Then the estimated probability that 

individual m chooses alternative i is P(i1m,e). 

Derivation 

Suppose that the model is to be teste d by using a 
test data set consisting of observations of the 
choices and X-value s cor responding to N randomly 
selected individuals . The test data set is assumed 
to be either the same a s t he e stimation data s e t (in 
which case N = Ml o r independen t o f it. r.et the 
individuals in the test data s et be organized i nto J 
mutually exclusive g ro ups (J > l) either randomly 
or acco r ding to the value s of characteristics such 
as inc ome , a utomobile o wnersh i p, locat ion o f r esi
dence or work , a nd so o n a nd let Nj denote t he number 
of i ndiv i duals assig ned to group j (j = l, ..• , J). 
Let 1-nl ~ l if ind i v idual n i n t he tes t data set 
chose alternative i and let zni = O otherwise. Then 
the observed market share of alternative i in popula-

tion group j of the test data set (Q i jl is 

0;; = E (·l n;/N;) 
n rn 

grou p j 

(2) 

The predic t ed market share of alternative i in popu

lation group j according to the estimated model (Pijl 
is 

n in 
P(iln,O)/Nj (3) 

group j 

The difference between the predicted and observed 

shares (Dijl is Qij - Pij or 

D;j = E [Zni - P(i ln,O)] /N; 
n in 

grnup j 

(4) 

Dij contains two sou r ces of random er ror that 
cause it to d iffer from zero in general, e ve n if the 
model P(i1n, e ) with suitably chosen parameter values 
is correct. F i rst, the individuals in the test data 
set are sampled randomly, so their choice indicators 
zni are random. Second, the estimated parameter 

values e are r andom because they depend on the 
choices of the randomly selected indi v i duals in the 
estimation data set. To develop a test statistic that 
enables one to distinguish between the effects on 

Dij of random sampling errors a nd those of true 
errors in the model, it is necessa ry to know how 

large the sampling errors mi g h t cause Dij to be if 
the model be i ng tested is in f act correct. [Through
out this paper, the term "large" refers to both large 

positive and large negative values of Dij·l This in 
turn requires knowledge of the probability distribu-

tion of the random variable Dij for the case of test
ing a correct model. 

'l'o obtain this d i str ibution, let e 0 denote 
the true (but unknown) valu.es of the parameters. In 
other words, P(i1n, ~ ol is a correct model. Then as 
discussed by Chernoff (_!), P(i1n,e) is given approxi
mately by 

P(iln,O)=P(i ln,0 0 )+ E P(iln.00 )(X~; - X~ k ) 
k 

x P(kin,li0 ) (0 - 00 ) (5) 
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where the sum on the right-hand side is over all of 
the available alternatives. Substituting Equation 5 
into 4 yields 

E { [zn; - P(i ln ,00 )] /Nj }- K;j (0 - Bo) 
n !n 

grou p j 

(6) 

where Klj is the row vector defined by 

K;j = E E P(iln,00 ) (X~ 1 - X~k) P(k ln,Oo )/Nj 
n in k 

(7) 

group j 

The first term on the right-hand side of Equation 6 

gives the e ffect on Di j of random variatio ns in the 
zni's . This term is no r mally dis t ributed with a mean 
of zero by virtue of the central limit theo r em and 
the mean value of zni of P(i1n,0 0J. The second term 
in the right-hand side of Equation 6 gives the effect 

on Di· of random sampling errors in the estimated 
parameler values. This term also is normally distrib-

uted wi th mean zero because e is normally distrib

uted with mean eo when e is obtained by the method 
of maximum likelihood (5). [The Nj values and the 

te r m Kh t hat multiplies o - &o i n Equation 6 can 
be tr eated a s c onstants i n samples of practical 
size.] Because s ums a nd differences o f no r ma lly 
distribu ted random variabl es a r e normally dis tr ib-

uted, it follows that for each i and j, Dij has the 
normal d istribut ion with a mean of zero when the 
model being tested is correct. 

To complete the derivation of the probability dis-

tribution of ftDij• it is necessary to calculate the 

variance of Di j • Before do i ng this, howe ver , it is 
important to ooserve that t here are IJ d ifferent val-

ues o f Di j• o ne f o r each alternative-popul~tion 
group pai r. To c o ncl ude that the model being tested 
is incorrect, i t is necessary for these IJ values t o 
be excess ively large collectively rather than in
div idually . As will be s een, carrying out a test of 

the s izes of the Dij ' s considered collectively re~ 
quires knowledge o f t he covariances o f Di· 's corre
spond i ng to d iffer ent alternative-populalion group 
pa i rs as well as knowledge of the variances of in-

dividual Dij's. Thu~ itftis necessary to obtain the 

covariance terms cov(Dij•Drs> for each combination of 
pairs ij and rs. 

It can be seen from Equat ion 6 
ta ins two parts, one associated 
tions in the Zni's (i.e., the 
right-hand side of Equation 6) 

that each Dij con 
with random varia
first term on the 
and one associated 

with random variations in e (i.e., the second term 
on the righ t-ha nd side of Equation 6). Let Aijrs de
note the c o variance of the first term on the right
hand side of Equation 6 and let Di jrs denote the 
covariance of the second term . Then as shown by 
Horowitz (_!), 

A;;rs = E [P(iln,00 ) 51r - P(i ln,0 0 ) P(r ln,00 )] Ojs/NJ 
n in 

group j 

(8) 

where 6ir = l if i = r, 6ir = 0 if i = r, and 6js is 
defined similarly. Bijrs is given by (.!,) 

(9) 

where V is the covariance matrix of the parameter 

est i mates a. Note that Aijrs is associated with 
random variations in the z n i ' s, whftereas Bijrs is 

associated with random variations in e. 
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The covariance cov(Dij• Des> can be obtained by 
combining Ai jrs and Bijrs in the appropr iate way. 
Cors i der first the case of independen t estimat i o n 
and test data sets. In this cas e the t .wo terms on 
the right- hand side of Equation 6 are i ndependent 
(because they are computed u s ing diffe r ent data 

sets), so Di j is the difference ?f t":o i ndependent 

random variables. Theref ore, cov(Dij• Drsl is simply 
the sum of the covariances a r ising from the indepen-

A A 

dent components of Dij and Drs (~). In other words, 

(10) 

when the estimation and test data sets are indepen
dent. 

Derivation of cov(Dij•Drs > for the case in which 
the estimation and tes& data sets are the same is 

more complicated because 0 depends On the Zn i ' S in 
this case, which causes the two terms on the r i ght 
hand side of Equation 6 to be correlated. Horowitz 
has shown (l) that when the estimation and test data 

- A A 

sets are the same , cov(Dij•Drs> is the di f ference be-
tween Aijrs and Bijrs· Thus , 

civ(Dij, Drs) = A ijrs - 13 ijrs (J j J 

when the estimation and test data sets are the same. 
To obtain a statistic that tests whether the 

Dij 's considered collectively are larger than can 
be explained by random sampling errors, it is con-

venient to organize the Dij's into a vector and the 

covariances cov(Dij•Drs> into a matrix. The appro
priate vector is given in row vector form by 

~ . . .. 
D'=(D 11 .0,,, ... ,D11 . D12 . D2 2 .... ,D1 2 ... .,D 1J,D2J•·"•DIJJ (12) 

Let D denote the corresponding column vector. The 
appropriate matrix is most conveniently defined in 
terms of submatr ices. Define the I x I submatr ix 
Sjs (j,s = l, J) by 

n ~ 0 • 

cov(Dlj ,0 2,) •.. cov(D1j,D1s) 

cov(D 2j,D 2,) .. . cov(D 2i,D1,) (l 3) 

. . . 
cov( D1j ,D 1 5) cov(D1j.D 2,) . . . cov(D 1i,D1,) 

Then the desired IJ x IJ covariance matrix S is 

[" S1 2 .. 

'"] S = S21 S22 . .. S2 J (14) 

S11 S12 JJ 

This matrix contains all the covariances cov(Dij•Drs> 
organized in a way that is conformable wit!\ the 

vector o. In matrix notation B(DD ') = s. If the esti
mation and test data sets ate independent, the ele
ments of s are given by Equation LO. If the estima
tion and test data sets ai:e the same , the elements 
of S are given by Equation 11. 

The matrix S is singular (i.e., its determinant 
is zero) owing to the existence of exact linear rela-

3 

tions among the Dij's. Foe example, for any popula
tion group j 

I . 
E Dii =O (1 5) 

i == l 

because tbe sums over all a l ter natives of the pre
dicted and observed market shares mus t both equal 1. 

Thus, the elements of D ace normal ly distributed with 
mean zero and singular covariance matrix S when the 
model being tested is correct. 

Define the random variable C by 

( 16) 

where s- is any matrix satisfying 

ss- s = s (17) 

s- is called a generalized inverse of s and, as 
will be explained shortly, can be computed from s 
using standard computer softwa~e. C is a collective 

indicator of the sizes of the Dij's. Roughly speak

!ng, i f the Dij's are large, C i s large , and if the 

Di j ' s are s mall, C is s mall. Moreover, Chas a known 
p robability distribution when the model being tested 
is correct. Specifically, C has the chi-square dis
tribution with degrees o f freedom equal to the rank 
of s (fil. As a result, C can be used to test whethe r 
the differences between the predicted and observed 
market s hares are larger than ca.n be explained by 
random sampling errors. If the Di j 's differ from 
zero only because of random sampling errors, with 
probability l - o. the value of C will be less than 
the l - o. quantile of the chi-square distribution 
with degrees of freedom equal to the rank of S. 
Therefore, i f t he va lue of C exceeds the 1 - o. 
quantile of this distribution, the model being 
tested is rejected at the o. significance level 
(i.e., either the model being tested is incorrect or 
an event of probability a has occurred). By choos
i ng a small enoug.h value of a (value s of 0.05 a nd 
o.Ol a.re used frequently in pract i ce), one ensures 
that there is little likelihood of rejecting a cor
rect model because of the effects of random sampling 
errors. 

Two problems remain to be solved before the test 
based on the c statistic of Equation 16 (hereafter 
called the C test) can be implemented in practice . 
First, the elements of the matrix S depend on thP. 
unknown true parameter values o0 and on the 
covariance matrix V of the parameter estimates (see 
Equations 7-9). A means must be f ound for estimating 
these quantities. Second , a method is needed for 
computing the matrix s-. The f irst problem can be 

solved by using the parameter estimates e in place 
of the u.nknown true values Oo in Equations 7 and 
8. The matrix V can be estimated by the inve.rse o f 
the Fisher information matrix of the estimation data 

set evaluated at the parameter values a (2,5), This 
estimate of V is one of the standard outputs of many 
log.it estimation computer programs. 

The matrix s- can be obtained in several dif
ferent ways . One is by using a commercially avail
able software package for computing generalized 
inverses of matrices. For example, the operator GINV 
in the SAS procedure MA.TRIX computes the generalized 
inverse of a matrix that is supplied as input to the 
procedure <2.> • Another way to compute s- is b y 
using the eigenvalues and eigenvectors of S. Let W 
be the matrix whose columns are the eigenvectors of 
S and let Ak (k = l , ••• , IJ) denote the cor
responding eigenvalues of s. The >,' s and the ma-
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trix W can be ob·tained using commercially available 
compute r softwa re s uch as the subroutine ElGRS of 
the tnter:national MathematicaJ. and Statistical Li
brary (IMSL) (!!_) or the operator EI GEN in the SAS 
MATRI.X procedure. For each k define Ak* by Ak * = l/Ak 
i f Ak ~ 0 and )..k* = 0 otherwise. Then the matrix 
whose (p,q) element is 

(J 8) 

i s a 9enera li2ed inverse of s (5) . h singular matrix 
has infinitely many generalized inverses, and not 
all procedures for computing generalized inverses 
yie.ld the same results. However, any generalized 
inverse can be used in carrying out the C test. 

Implementation 

The results of the preceding discussion can be or
ganhed into five steps for; compar in9 predicted and 
observed market shares by means of a c test. These 
steps, which can easily be programmed for imple
mentation by computer, are as follows: 

1. use the method of maximum likelihood to esti
mate the values of the parameters e of the model to 
be tested and the covariance matrix V of the param
eter est.I.mates. 

2. Organize the test data set into the desired 
population groups. For each alternative i and group 

j , compute the observed market share Qij (Equation 
2), "the predicted market share Pij (Equation 3), and 
the difference Dij between the observed and pre
dicted shar~s. Organize the elements Dt j into the 
vector O (Equation 12) • 

3. Using the estimate of V and the estimated 
parameter values e in place o: So! compute the quan

tities Ai j rs• Bijrs• and cov (Dij• Drs> (Equations 7-9 
and either 10 or 11, depending on whether the estima
tion and test data sets are independent or the same). 

~ ~ 

Organize the quantities cov(Dij•Drsl into the matrix 
S (Equations 13 and 14). Determine the rank of S . An 
easy way to do this is by computing the eigenvalues 
of S using one of the methods described earlier . The 
rank of S equals the number of nonzero eigenvalues . 

4. Compute s- using one of the methods described 
earlier . 

5. Compute the test statistic C (Equation 16). 
Reject the model under consideration at the a 
si9nificance l'evel if the value of C exceeds the 
l - a quantile of the chi- square distribution with 
degrees of freedom equal to the rank of s. 

A numerical example illustrating the application 
of these steps is given later is this paper. 

Division of Data 

1\ statistical test oan identify an incorrect model 
with high probability only if the effects of random 
sampllng errors on the test sta tistic are less than 
l;.?':;::.zc c~ ~i:'t:Via .;. .. \.in~ mociel . J.n otnec words, tO 
maximize a test's power (or ability to identify 
erroneous models) it is necessary to minimize the 
effects of random sampling errors. 

In the case of t .he c test , Equations 10 and 11 
indicate that the effects ·of random sampling errors 
are likely to be smaller when the estimation and 
test data s.ets are the same than when they are in
dependent. There are two reasons for this. First, 
recall that the covariance components Aijrs and 
Bijrs respectively represent the effects on the 
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Dij 's of random sampling errors in the Zni 's and 
the parameter estimates a. Equations 10 and 11 show 
that the latter errors are added to the former when 
the estimation and test data sets are independent, 
whereas the latter ar e subtracted from the former 
when the estimation and test data sets are the same. 
This causes the sampling errors in the Dij's to be 
smaller when the estimation and test data sets are 
the same than when they are independent. Second, use 
of independent estimation and test data sets means 
that only part of the available data is used in each 
of the two stages, estimation and testing, whereas 
all of the data is used in both stages when the 
estimation and test data sets are the same. This also 

makes the random sampling errors in the Dij's smaller 
when the estimation and test data sets are the same 
than when they are independent. 

Because the random sampling errors in the D· ·'s 
are smaller when the estimation and test data iJts 
a re the same than when they are independent, the 
power of the C test usually is larger when the same 
data are used for estimation and testing than when 
independent data sets are used. [A more formal pre
sentation of th is argument is given elsewhere ( 1) • J 
In summary, when a mode l ls tested by comparing pre
dicted and observed market shares in population 
groups, all the avallabJ.e data shoul.d be used for 
both estimation and testing whenever this is feas
ible (i.e., whenever the full data set is not too 
large for use in model estimation). The data should 
not be divided into separate estimation and test 
data sets. 

A NUMERICAL EXAMPLE 

The example consists of testing the logit model of 
mode choice. The modes are automobile and transit. 
The data used in the example consist of 500 observa
tions of choices and the relevant explanatory vari
ables. The observations were generated by simulation 
from a logit mode-choice model specified as in Equa
tion l with 

where 

i automobile or transit, 
Tmi individual m's travel time (min) by mode 

i, 

(19) 

Cmi individual m's travel cost (cents) by mode 
i, 

Ym = individual m's annual income ($10,000s), 
Aro number of automobiles owned by individual 

m's household, and 
Ri 1 if mode i is automobile and O if mode 

i is transit. 

[Those who wish to work through this example in 
detail may obtain a copy of the data set and the 
FORTRAN program that generated it from the author on 
.L~yut:::;\...j 

The legit model that is tested in the example has 
the specification 

This model is incorrect because it does 
the variable AmRi· To maximize the 
that the C test will identify the model 
20 as incorrect, the same data set will 
both estimation and testing. 

(20) 

not include 
probability 
of Equation 
be used for 
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The c test will now be implemented by carrying 
out the five steps given in the previous section. 

The maximum-likelihood estimates of the parameters 
of the model of Equation 20 and the estimate of the 
covariance matrix V are given in Table 1. Note that 
the signs of the time and cost coefficients are 
consistent with expectation and that the t-statis
tics of these coefficients are satisfactory. Thus, 
neither the signs nor the t-statistics suggest that 
the model is incorrect . The nonsignificance of the 
estimated coefficient of Ri does not indicate that 
the model is incorrect because there are no strong a 
priori expectations concerning the importance of 
this variable. 

Two population groups are used in this example: 
Group 1 consists of individuals whose households own 
one car, and group 2 consists of individuals whose 
households own two cars. All individuals in the data 
set used in the example are from one-car or two-car 
households. The values of the Oij's, Pjj's, and oij's 
are shown in Table 2. Organizing the Dij values into 
the vector D yields 

[o " ~] . 0. 11 ~4 
D = (21) 

O.O'J4_ 

-0.0<'142 

TABLE 1 Estimation Results for the Logit Model of Equation 20 

Estimated 
Parameter Value t-Statietic: 

0 -0.05056 -2.494 
l 

e -0.2148 -9.382 2 

e 0.3194 J. I 58 
3 

v -
[ 

0.4110 -0.3542 

-0.3542 0.5242 

4.318 -2.388 

4.318] 
-2. 388 

76.08 

TABLE 2 Values of Q;j, P;j, and D;j for the Numerical Example 

('Mode)8 (Grauel %- ~ ~ 
0.3465 0.4588 -0.1123 

o. 6535 0.5412 0.1123 

0.6618 0.5676 0.0942 

0.3382 0.4324 -0.0942 

a Mode 1 is automobile, and mode 2 is transit .. 

The row vectors Kij defined in Equation 7 are 

Ki1 = (-0.9799, 0.4670, 0.09388) 

K~l (0.9799, -0.4670, -0.09388) 

Ki2 = (-0.8070, 0.2279, 0.08145) 

K~2 = (0 . 8070, -0.2279, -0.08145) 

5 

(22a) 

(22b) 

(22c) 

(22d) 

A A 

The covariance terms Aijrs• Bijrs• and cov(Dij•Drsl 
are shown in Table 3. Organizing the quantities 

cov(Dij•Drsl into the matrix s yields 

[ 02033 -0.2033 - 0.1704 017°] 
0.2033 0.2033 0 .1704 -0 .1704 

S= x 10-3 (23) 
0.1704 0.1 704 0. 1429 -0.1 429 

0.1 704 - 0.1704 -0. J 429 0.1419 

The eigenvalues of S were computed using the sub
routine EIGRS of the IMSL and are (0, O, o, 6.923 x 
10-3 ). Because there is only one nonzero eigen
value, the rank of s is 1. 

The generalized inverse of s as computed from Equa
tion 18 is 

['"' -4H.2 - 355 .6 '"] 424.2 4'.'4.2 355.6 - 55.6 

- 355.6 (14) 
355.6 298.0 - ~'Jtl.0 

35 .6 - 35 5.6 - 29 8.0 298.0 

~ 

The test statistic C is computed by substituting 
Equations 21 and 24 into Equation 16. The result is 
C = 62.15. The 0.95 quantile of the chi-square dis
tribution with 1 degree of freedom is 3.841. Because 
the computed value of C exceeds this, the model of 
Equation 20 is rejected as incorrect at the o.os 
significance level. 

CONCLUSIONS 

Testing a disaggregate choice model by comparing 
predicted and observed market shares has much in
tuitive appeal, but it is not the only way in which 
these models can be tested. A large number of test 
procedures based on likelihood ratio tests, La
grangian multiplier tests, and the likelihood ratio 
index goodness-of-fit statistic are also available 
(2,,10). It is worthwhile to consider how one might 
choose among these tests in practical model de
velopment . 

An important difference be tween the c test dis
cussed in this paper and the other tests is that the 
other tests require the analyst to specify an alter
native model (e.g., a log it model with a diffe1ent 
specification of the utility function XmiD) 
against which the model under consideration is to 'be 
tested. In effect , these tests attempt to determine 
whether the alternative model fits the available 
data better than the model under consideration does, 
in which case the model under consideration is re
jected as being incorrect. In contrast, the c test 
does not require specification of an alternative 
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TABLE 3 Covariance Terms for the Example 

Aijre 

• - 1 8 - 2 

!:!. 

1 - 4.117xl0-4 

j - 1 
1 - 2 -4.117xl0-4 

1 - 0 
j - 2 

1 - 2 0 

e • I 

.!.:! 

1 - 2.084xl0-4 

j - 1 
1 - 2 -2.084xlo-4 

1 ~ l.704xl0-4 

j - 2 
1 - 2 -1. 704"10-4 

. -l 

.!.:! 

1 - 2.033xlo-4 

j - 1 
1 - 2 -2.033"10-4 

1 - -1. 704xlo-4 

j - 2 
1 - 2 I. 704xl0-4 

model. In effect, it tests the model under consider
ation against all alternatives simultaneously. 

The ability of a test against a specific alterna
tive to identify an erroneous model and the relative 
power of the C test and a test against a specific 
alternative depend on the choice of the alternative . 
As is discussed elsewhere <!•ill• a test of an er
roneous model against an alternative that is a good 
approximation to the correct model is likely to be 
m.uch more powerful than a c test. However, a test 
against an alternative t .hat is a poor approximation 
to the correct model can be less powerful than a C 
test. 

These considerations suggest that the c test and 
tests against specific alternatives are complements , 
rather than substitutes, and that both types of 
tAsts should be carried out during the process of 
developing empirical models. A practical approach to 
this begins by formulating several alternatives to 
the model currently under consideration. The devel
ope1 of an empir ica.l model can virtually always do 
this . A.lthough there can be no assurance that any of 
these alternatives is correct or approximately cor
;:e-.. ;. (ir Lhere cou.La oe such assurance, the tests 
being discussed here would be unnecessary), one or 
more of the alter natives may nonetheless provide a 
power fl.ll test of the cuci::ent model if tbe model ls 
seriously erroneous <2>. Accordingly, the current 
model should be tested against the alternatives 
using like ibood ratio tests or other appropriate 
procedures <i,lQ). However , it is not possible to 
test a model against all reasonable alternatives , 
anc:t failure to reject the current moc:tel in tests 
against specific nl t e r na tives may be the res ulL of a 

r•2 .!.:! r•2 

-4.117"10-4 0 0 

4.117x10-4 0 0 

0 2.995xl0-4 -2.995xlo-4 

0 -2.995xlo-4 2 ,995xl0-4 

81jrs 

• - 2 

r•2 .!.:! r•2 

-2.084xlo-4 l.704xlo-4 -l.704xlo-4 

2.084xlo-4 -l.704xlo-4 1. 704xlo-4 

-l.704xl0-4 l.566xl0-4 -l .566xl0-4 

1. 704xlo-4 -!. 566xlo-4 1. 566xl0-4 

cov(Dij ,Dr
8

) 

• - 2 

r•2 .!.:! .!:l. 
-2 .033xlo-4 -l.704xl0-4 I. 704xlo-4 

2.033xlo-4 l.704xl0-4 -1. 704xl o-4 

1. 704x!o-4 !.429xl0-4 -l .429x!0-4 

-l.704xl0-4 -l.429xl0-4 l .429xto-4 

poor choice of alternatives rather than an indica
tion that the cunent model is correct. Therefore , 
if the current model is not rejected in tests 
against specific alternatives, a C test should be 
carried out . The C test amounts to a test of the 
current model against all remaining alternatives and 
may have a higher probability of detecting errors in 
the current model than do the tests against specific 
alternatives if the specific alternatives are them
s elves highly erroneous. 
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Evaluation of Heuristic Transit Network Optimization 

Algorithms 

KAY W. AXHAUSEN and ROBERT L. SMITH, JR. 

ABSTRACT 

Changes in urban land use and travel demand 
have created the need to restructure many 
existing mass transit networks. Heuristic 
network optimization as one of the available 
methodologies to improve transit networks is 
described. The characteristics and results 
of the algorithms developed in Europe are 
summarized and a short description of the 
1\merican algorithms is given. The potential 
for applying network optimization method
ologies in the conte.xt of small to medium
s ·ized Arner ican cities is evaluated. The 
review and evaluation of 13 heuristic meth
odologies revealed a wide range of ap
proaches that are generally theoretically 
sound, have reasonable potential for gen
e rating improved networks, and are computa
tionally and otherwise feasible. Application 
of an unproven new algorithm by Mandl to the 
bus network for Madison, Wisconsin, and the 
light .rai l network for Duesseldorf, West 
Germany, showed that a fairly complex heu
ristic al.gor ithm can be implemented quickly 
and easily. Mandl' s a.19orithm, however, did 
not generate an improved network, primarily 
because the initial computer-generated net
work does not follow demand. Better results 
were obtained with two other heuristic meth
odologies that have been applied to the 
Duesseldor f netwoi:k. The Madison and Dues
seldor f applications form the basis for 
recorrunendations for further improvement of 
heuristic methodologies. 

The bus transit networks that are the predominant 
form of public transit in American cities have 

changed only slowly since the elimination of the 
streetcar in the 1930s and 1940s. Often the major 
bus lines still run on the same streets that the 
streetcars used. Because of the major shifts in 
population and employment that have occurred in 
recent years, the bus networks in many cities could 
probably be restructured to serve the existing de
mand better and reduce operating costs at the same 
time. Transit managers are often reluctant to make 
major changes in routes because of the almost ce.r 
tain political opposition by those who think they 
will receive poorer service. Also, transit managers 
generally do not have analytical tools readily 
available to aid them in generating and evaluating 
alternative networks. As the result of the current 
fiscal crisis in transit, transit managers should be 
more interested in methodologies for restructuring 
their bus networks. 

Chu.a and Silcock Ill identify six methodologies 
for transit network restructuring and optimization: 
manual approach using service standards and guide
lines, systems analysis using sta·ndard travel demand 
and trip assignment models, market analysis using 
manual trip assignment for coi:ridors or small ser
vice areas, systems analysis with interactive 
graphics, heuristic procedures, and mathematical 
optim.ization. The first three methodologies are 
limited by the number of alternative networks that 
can be evaluated in a reasonable amount of time. By 
adding interactive graphics to systems analysis, 
network development and evaluation are greatly en
hanced. Many more networks can be tested in much 
less time. The methodology, however, tends to be 
biased toward the existing network, so unconven
tional solutions may not be examined. Furthermore, 
there is no guarantee that solutions near the 
optimum will be f ound. 

In contrast, mathematical optimization using 
linear programming or general integer programming 
will produce an optimal network within the specified 




