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ABSTRACT

An intuitively appealing and popular method
for testing a disaggregate choice model of
travel demand, such as a logit model, con-
sists of comparing the model's predictions
of the market shares of travel alternatives
in population groups with observations of
these shares. Excessively large differences
between the predicted and observed shares
indicate that the model being tested is
incorrect. In current practice, the decision
whether differences between predictions and
observations are large is made judgmentally,
thereby raising the possibility that a cor-
rect or approximately correct model will be
rejected because of the effects of random
sampling errors., A statistical test is de-
scribed that enables one to distinguish
between the effects of random sampling er-
rors and those of true model errors when
predicted and observed market shares are
compared. Five easily programmable steps for
implementing the test are given, and com-
mercially available software that can help
with the computations is identified. A nu-
merical example of the application of the
test is presented, and the role of the test
in practical model development is discussed.

An intuitively appealing way of testing any model of
travel behavior is to compare its predictions with
actual observations. In the case of disaggregate
choice models, such as logit and probit models, that
predict individuals' choices among sets of discrete
alternatives, this approach to testing often con-
sists of comparing predictions of market shares of
alternatives in population groups with observations
of the actual market shares in the same groups.
Large differences between predicted and observed
shares constitute grounds for rejecting the model.
For example, to test a model of mode choice the
population of interest might be grouped according to
characteristics such as income, automobile owner-
ship, location of residence or work, and so forth.
The model's predictions of the proportions of in-
dividuals in each group that use each mode would be
compared with the observed proportions. The model
would be rejected as incorrect if the differences
between the predicted and observed proportions were
excessively large.

In current practice, the decision whether dif-
ferences between predictions and observations are
excessive is made judgmentally. This is unsatisfac-
tory because differences between predicted and ob-
served market shares are subject to random sampling
errors. These errors are not relevant to the ques-
tion of whether the model under consideration is
correct. However, depending on the details of the
model, selection of population groups, and size of
the data set being used, they can produce differ-
ences between predictions and observations that are

large by reasonable Jjudgmental standards, even if
the model being tested is corzect. In other words,
when predictions and observations are compared judg-
mentally, random sampling errors may cause a correct
model to be rejected.

To minimize the 1likelihood of this undesirable
outcome, it is necessary to have a method for dis-
tinguishing between random sampling errors and true
model errors in comparisons of predicted and
observed market shares. In the terminology of sta-
tistics, it is necessary to have a test of the sta-
tistical significance of differences between predic-
tions and observations. The main objectives of this
paper are to describe such a test and to present a
numerical example illustrating its use. Subsidiary
objectives are to discuss briefly two important
questions relating to the use of the test. These are
as follows:

1. In carrying out the test, should the data
used for testing (i.e., for computing predicted and
observed market shares) be independent of the data

used for model estimation or should all of the
available data be wused for both estimation and
testing?

2. The test based on comparisons of predicted
and observed market shares is only one of several
procedures that are available for testing disaggre-
gate choice models. How should one choose among
these procedures in practical, empirical work?

The remainder of this paper is organized as fol-
lows. The test statistic is described in the next
section and the first question posed previously is
answered. Then the numerical example of the use of
the test statistic is presented. In the final sec-
tion the second question posed previously is an-
swered and some concluding comments are presented.

THE TEST STATISTIC

The most frequently used form of disaggregate choice
model is the multinomial logit model with a linear-
in-parameters utility function. Therefore, to mini-
mize the complexity of the discussion, it will be
assumed here that the model being tested has this
form. The test statistic for a general choice model
is given by Horowitz (1).

In the multinomial logit model with a linear-in-
parameters utility function, the probability P(iim,p)
that individual m chooses alternative i from a set
of I available alternatives is (2,3)

P(ilm.0) = (cxp Xem; 0)/% (exp Xpu i ) H3

where (k = 1, ..., I) is a row vector of
explanatory variables evaluated for individual m and
alternative k, 8§ is a column vector of constant
parameters, and the sum in the denominator is over
all available alternatives. In practice, the values
of the parameters § usually are not known a priori
and must be estimated by fitting the model to data.
In accordance with usual practice, it is assumed in
this paper that 9 is estimated by the method of



maximum likelihood using a disaggregate data set
consisting of observations of the choices and X~
values corresponding to M randomly selected in-
dividuals. This data set will be called the estima-

tion data set. Let 3 denote the estimated values of
the parameters p. Then the estimated probability that

individual m chooses alternative i is P(i(m,d).
Derivation

Suppose that the model is to be tested by using a
test data set consisting of observations of the
choices and X~values corresponding to N randomly
selected individuals. The test data set is assumed
to be either the same as the estimation data set (in
which case N = M) or independent of it. Let the
individuals in the test data set be organized into J
mutually exclusive groups (J > 1) either randomly
or according to the values of characteristics such
as income, automobile ownership, location of resi-
dence or work, and so on and let Nj denote the number
of individuals assigned to group ' (j =1, ..., J).
Let 2z,; = 1 if individual n in the test data set
chose alternative i and let zp; = 0 otherwise. Then
the observed market share of alternative i in popula-

tion group j of the test data set (6ij) is

Q= T (zailN) @

group j

The predicted market share of alternative i in popu-

lation group j according to the estimated model (Pij)
is

Bj= X
nin
group j

The difference between the predicted and observed

shares (ﬁij) is éij = ﬁij or

P(iln 8 )/N; €

Dij= I [ta;- PIO/N ®
nin
group j

-~

Dj4 contains two sources of random error that
cause” it to differ from zero in general, even if the
model P(i(n,s) with suitably chosen parameter values
is correct. First, the individuals in the test data
set are sampled randomly, so their choice indicators
Znj are random. Second, the estimated parameter

values § are random because they depend on the
choices of the randomly selected individuals in the
estimation data set. To develop a test statistic that
enables one to distinguish between the effects on
Djy of random sampling errors and those of true
errors in the model, it is necessary to know how
large the sampling errors might cause Djj to be if
the model being tested is in fact correct.  [Through-
out this paper, the term "large" refers to both large
positive and large negative values of Dj3.] This in
turn requires knowledge of the probability distribu-

tion of the random variable Djj for the case of test-
ing a correct model.

To obtain this distribution, 1let @ denote
the true (but unknown) values of the parameters. In
other words, P(iin,ag) is a correct model. Then as
discussed by Chernoff (4), P(iin,8) is given approxi-
mately by
P(iln0) =P{ nb,) + z P(iln.0g ) (Xni = Xpk )

x P(kin,dg ) (6 - bg) (5)
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where the sum on the right-hand side is over all of
the available alternatives. Substituting Equation 5
into 4 yields

Dy= 2 { i Pilno)) /Ny }- Kij 6 - o) ©
group j

where Kij is the row vector defined by

Kj = 2 2 Rinde) (X
nin
group j

- Xpk) P(kIn,00)/N; )

The first term on the right-hand side of Equation 6

gives the effect on Dj5 of random variations in the
z,;"'s. This term is normally distributed with a mean
of zero by virtue of the central limit theorem and
the mean value of znhi of P(iln,eo). The second term

in the right-hand side of Equation 6 gives the effect

in the estimated

on Dj3 of random sampling errors
1er values. This term also is normally distrib-

parame
uted with mean zero because § is normally distrib-

uted with mean §g when p is obtained by the method
of maximum 1likelihood (5). [The Nj values and the

term K}j that multiplies ¢ - 9y in Equation 6 can
be treated as constants in samples of practical
size.] Because sums and differences of normally
distributed random variables are normally distrib-

uted, it follows that for each i and j, Bij has the
normal distribution with a mean of zero when the
model being tested is correct.

To complete the derivation of the probability dis-

tribution of ﬁij' it is necessary to calculate the
variance of Dj3. Before doing this, however, it is
important to observe that there are IJ different val-

ues of Bij' one for each alternative-population
group pair. To conclude that the model being tested
is incorrect, it is necessary for these 1J values to
be excessively large collectively rather than in-
dividually. As will be seen, carrying out a test of
the sizes of the ﬁij's considered collectively re-
quires knowledge of the covariances of Dji's corre-
sponding to different alternative—popula%ion group
pairs as well as knowledge of the variances of in-

dividual Bij's. Thus it is necessary to obtain the

= =
covariance terms cov(Dij,Drs) for each combination of
pairs ij and rs.

It can be seen from Equation 6 that each Djjy con-
tains two parts, one associated with random varia-
tions in the z,j's (i.e., the first term on the
right-hand side of Equation 6) and one associated
with random wvariations in ¢ (i.e., the second term
on the right-hand side of Equation 6). Let Ajj g de-
note the covariance of the first term on the right-
hand side of Equation 6 and let Bj4,q denote the
covariance of the second term. Then as shown by
Horowitz (1),

Ajis= 2 [P(iln8) 8i - P(iln00) P(rInf)] §;5/NF 8)
nin
group j

where §;, =1 if i =1, §4, =0 if i = r, and st is

defined similarly. Bijrs is given by (1)

Bijrs = Kij VK ©)

where V is the covariance matrix of the parameter

estimates §. Note that Aj4rg 1s associated with
random variations in the Z;'s, whereas Bijrs is
~

associated with random variations in ¢.
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The covariance covtﬁij, Brs’ can be obtained by
combining Ajjrg and Bjj.e in the appropriate way.
Copsider first the case of independent estimation
and test data sets. In this case the two terms on
the right-hand side of Equation 6 are independent
(because they are computed using different data
sets), so Dij is the difference of two independent
random variables. Therefore, cov(Djj, Dyg) is simply
the sum of the covariances arising from the indepen-

dent components of 6ij and ﬁrs (5) . In other words,

cov(Dij ,Drg) = Aijys + Bijes (10)

when the estimation and test data sets are indepen-
dent.

Derivation of cov(Djj,Dyg) for the case in which
the estimation and test data sets are the same is

more complicated because § depends on the zni's in
this case, which causes the two terms on the right-

hand side of Equation 6 to be correlated. Horowitz
has shown (1) that when the estimation and test data

sets are the same, cov(ﬁij,ﬁrs) is the difference be-
tween Aijrs and Bijrs' Thas,

CiV(DiJ.Drs)zA ijrs Bijrs 11
when the estimation and test data sets are the same.

To obtain a statistic that tests whether the

Bij's considered collectively are larger than can
be” explained by random sampling errors, it is con-

venient to organize the Djj's into a vector and the

covariances cov(Dij,Brs) into a matrix. The appro-
priate vector is given in row vector form by

D'=(D,;. Dy, s D1y, D12, Dagy ooy Digs v, Dy, Doy e D) (12)

Let 6 denote the corresponding column vector. The
appropriate matrix is most conveniently defined in
terms of submatrices. Define the I x I submatrix
st (Jr»,s =1, ¢ee, J) by

cov(Dy;,Di5)  cov(Dyj,Doy) - .. cov(D,,—,D Is)

Sjs =| cov(D3;Dys)  cov(D,,Dy4) . .. cov(Dy;,Dyg) (13)
cov(Dy;. D)  cov(Dyj,Dyg) . . . cov(Dy;,Dg)

Then the desired IJ x IJ covariance matrix S is

Si1 Sz ... 8y
S=| S Sy ... Sa (14)
Siy S5 ... Sy

This matrix contains all the covariances cov(sig,ﬁts)
organized in a way that is conformable with the
vector D. In matrix notation E(ﬁD'] = §, If the esti-

mation and test data sets are independent, the ele-
ments of S are given by Equation 10. If the estima-

tion and test data sets are the same, the elements
of S are given by Equation 11.

The matrix S is singular (i.e., its determinant
is zero) owing to the existence of exact linear rela-

tions among the Bij's. For example, for any popula-
tion group j

o
2 D=0 (15)
i=1

because the sums over all alternatives of the pre-
dicted and observed market shares must both equal 1.
Thus, the elements of D are normally distributed with
mean zero and singular covariance matrix S when the
model being tested is correct.

Define the random variable C by

C=D'S"D (16)
where S8~ is any matrix satisfying

§§°§8=8§ (17)

ST 1is called a generalized inverse of S and, as
will be explained shortly, can be computed from S
using standard computer software. C is a collective

indicator of the sizes of the Dij's. Roughly speak-

ing, if the Dij's are large, C is large, and if the
Di-'s are small, C is small. Moreover, C has a known
probability distribution when the model being tested
is correct. Specifically, C has the chi-square dis-
tribution with degrees of freedom equal to the rank
of S (6). As a result, C can be used to test whether
the differences between the predicted and observed
market shares are larger than can be explained by
random sampling errors. If the Dji's differ from
zero only because of random sampling errors, with
probability 1 - q the value of C will be less than
the 1 - a quantile of the chi-square distribution
with degrees of freedom equal to the rank of S.

Therefore, if the value of C exceeds the 1 - ¢
quantile of this distribution, the model being
tested is rejected at the g4 significance level

(i.e., either the model being tested is incorrect or
an event of probability a has occurred). By choos-
ing a small enough value of a (values of 0.05 and
0.01 are used frequently in practice), one ensures
that there is little likelihood of rejecting a cor-
rect model because of the effects of random sampling
errors.

Two problems remain to be solved before the test
based on the C statistic of Equation 16 (hereafter
called the C test) can be implemented in practice.
First, the elements of the matrix S depend on the
unknown true parameter values @5 and on the
covariance matrix V of the parameter estimates (see
Equations 7-9). A means must be found for estimating
these quantities. Second, a method is needed for
computing the matrix S8~. The first problem can be

solved by using the parameter estimates 3 in place
of the unknown true values 6y in Equations 7 and
8. The matrix V can be estimated by the inverse of
the Fisher information matrix of the estimation data
set evaluated at the parameter values § (2,5). This
estimate of V is one of the standard outputs of many
logit estimation computer programs.

The matrix S~ can be obtained in several dif-
ferent ways. One is by using a commercially avail-
able software package for computing generalized
inverses of matrices. For example, the operator GINV
in the SAS procedure MATRIX computes the generalized
inverse of a matrix that is supplied as input to the
procedure (7). Another way to compute S~ is by
using the eigenvalues and eigenvectors of 5. Let W
be the matrix whose columns are the eigenvectors of
S and let A (k = 1, ..., IJ) denote the cor-
responding eigenvalues of S. The 3's and the ma-



trix W can be obtained using commercially available
computer software such as the subroutine EIGRS of
the International Mathematical and Statistical Li-
brary (IMSL) (8) or the operator EIGEN in the SAS
MATRIX procedure. For each k define )y* by ag* = 1/xy
if A, =0 and ) * = 0 otherwise. Then the matrix
whose (p,q) element is

Sp =X A Wi W (18)
is a generalized inverse of S (5). A singular matrix
has infinitely many generalized inverses, and not
all procedures for computing generalized inverses
yield the same results. However, any generalized
inverse can be used in carrying out the C test.

Implementation

The results of the preceding discussion can be or-
ganized into five steps for comparing predicted and
observed market shares by means of a C test. These
steps, which can easily be programmed for imple-
mentation by computer, are as follows:

1. Use the method of maximum likelihood to esti-
mate the values of the parameters g of the model to
be tested and the covariance matrix V of the param-
eter estimates.

2. Organize the test data set into the desired
population groups. For each alternative i and group
j, compute the observed market share Qij (Equation
2), the predicted market share Pij (Equation 3), and
the difference Dij between the observed and pre-
dicted shares. Organize the elements Dij into the
vector D (Equation 12).

3. Using the estimate of V and the estimated
parameter values § in place of gp, compute the quan-
tities Aj4rgs Bjjrse and cov(Dj4,Drg) (Bquations 7-9
and either 10 or El depending on whether the estima-
tion and test data sets are independent or the same).
Organize the quantities cov(Dlj,Drs) into the matrix
S (Equations 13 and 14) . Determine the rank of §. An
easy way to do this is by computing the eigenvalues
of S using one of the methods described earlier., The
rank of S equals the number of nonzero eigenvalues.

4. Compute S~ using one of the methods described
earlier,

5. Compute the test statistic C (Bguation 16).
Reject the model wunder consideration at the ¢
significance level if the value of C exceeds the
1 - ¢ guantile of the chi-sqguare distribution with
degrees of freedom equal to the rank of S.

A numerical example illustrating the application
of these steps is given later is this paper.

Division of Data

A statistical test can identify an incorrect model
with high probability only if the effects of random
sampling errors on the test statistic are less than
these of erivis is the model. Ln other words, to
maximize a test's power (or ability to identify
erroneous models) it is necessary to minimize the
effects of random sampling errors.

In the case of the C test, Eguations 10 and 11
indicate that the effects of random sampling errors
are likely to be smaller when the estimation and
test data sets are the same than when they are in-
dependent. There are two reasons for this. First,
recall that the covariance components Ajj,g and
Biits respectively represent the effects "on the
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Dij's of random sampling errors in the 2z,;'s and

the parameter estimates §. Equations 10 and 11 show
that the latter errors are added to the former when
the estimation and test data sets are independent,
whereas the latter are subtracted from the former
when the estimation and test data sets are the same.
This causes the sampling errors in the ﬁi-'s to be
smaller when the estimation and test data sets are
the same than when they are independent. Second, use
of independent estimation and test data sets means
that only part of the available data is used in each
of the two stages, estimation and testing, whereas
all of the data is used in both stages when the
estimation and test data sets are the same. This also

makes the random sampling errors in the Bij's smaller
when the estimation and test data sets are the same
than when they are independent.

Because the random sampling errors in the D1
are smaller when the estimation and test data sets
are the same than when they are independent, the
power of the C test usually is larger when the same
data are used for estimation and testing than when
independent data sets are used. [A more formal pre-
sentation of this argument is given elsewhere (1).]
In summary, when a model is tested by comparing pre-
dicted and observed market shares in population
groups, all the available data should be used for
both estimation and testing whenever this is feas-
ible (i.e., whenever the full data set is not too
large for use in model estimation). The data should
not be divided into separate estimation and test
data sets.

A NUMERICAL EXAMPLE

The example consists of testing the logit model of
mode choice. The modes are automobile and transit.
The data used in the example consist of 500 observa-
tions of choices and the relevant explanatory vari-
ables. The observations were generated by simulation
from a logit mode-choice model specified as in Equa-
tion 1 with

Xmi 8¢ =~0.0865Tp; - (0.24881C,;/Ym) + 3AnR; - 4.5R; (19)

where

i = automobile or transit,
Thi = individual m's travel time (min) by mode
r
Cni = individual m's travel cost (cents) by mode
i,
Yn = individual m's annual income ($10,000s),
Ap = number of automobiles owned by individual
m's household, and
1 if mode i is automobile and 0 if mode
i is transit.

o)
[
[}

[Those who wish to work through this example in
detail may obtain a copy of the data set and the
FORTRAN program that generated it from the author on
feyuesi. ]

The logit model that is tested in the example has
the specification

Xmi0=0;1Tmi+ (0,Cni/Ym) +03R; (20)

This model is incorrect because it does not include
the wvariable ApR;j. To maximize the probability
that the C test will identify the model of Equation
20 as incorrect, the same data set will be used for
both estimation and testing.
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The C test will now be implemented by carrying
out the five steps given in the previous section.

Step 1

The maximum-likelihood estimates of the parameters
of the model of Equation 20 and the estimate of the
covariance matrix V are given in Table 1. Note that
the signs of the time and cost coefficients are
consistent with expectation and that the t-statis-~
tics of these coefficients are satisfactory. Thus,
neither the signs nor the t-statistics suggest that
the model is incorrect. The nonsignificance of the
estimated coefficient of Ry does not indicate that
the model is incorrect because there are no strong a
priori expectations concerning the importance of
this variable.

Step 2

Two population groups are used in this example:
Group 1 consists of individuals whose households own
one car, and group 2 consists of individuals whose
households own two cars. All individuals in the data
set used in the example are from one-car or two-car
households. The values of the Qij's, Pij's, and Dij's
are shown in Table 2.

the vector D yields

Organizing the Dj4 values into

=0.1124
0.1124
- l
D 0.0942 (2n

~0.0942

TABLE 1 Estimation Results for the Logit Model of Equation 20

Estimated
Parameter Value t-Statistic

01 -0.05056 -2.494
82 -0.2148 -9.382
93 0.3194 1.158

0.4110 -0.3542 4.318
V= -0.3542  0.5242 -2.388 x1073

4.318 -2.388 76.08

TABLE 2 Values of Qij, Pij, and Dij for the Numerical Example

1 (Mode)® ] (Group) Q ' Pll D||
1 1 0.3465 0.4588 -0.1123
2 1 0.6535 0.5412 0.,1123
1 2 0.6618 0.5676 0.0942
2 2 0.3382 0.4324 -0.0942

4 Mode 1 is automobile, and mode 2 is transit.

Step 3

The row vectors K{j defined in Equation 7 are

K1y = (-0.9799, 0.4670, 0.09388) (22a)
K1 = (0.9799, -0.4670, —0.09388) (22b)
Kip = (-0.8070, 0.2279, 0.08145) (22¢c)
Ky, = (0.8070, -0.2279, -0.08145) (22d)

The covariance terms Ajjrgs Bjjrss and cov(Djj,Drg)
are shown in Table 3. "Organizing the quangities

cov(ﬁij,ﬁrs) into the matrix S yields

02033 -02033 -0.1704  0.1704
-02033 02033 01704 -0.1704

S=| o104 orfon  Olaz -oxams | 1O 3)
0.1704 -0.1704 -0.1429  0.1429

The eigenvalues of S were computed using the sub-
routine EIGRS of the IMSL and are (0, 0, 0, 6.923 x
10'3). Because there is only one nonzero eigen-
value, the rank of S is 1.

Step 4

The generalized inverse of S as computed from Equa-
tion 18 is

4242 -4242 -355.6 355.6
-424.2 4242 355.6 =355.6
S~ =
-355.6 355.6 2980 -2980 W
355.6 -355.6  -298.0 298.0
Step 5
The test statistic C is computed by substituting

Equations 21 and 24 into Equation 16. The result is
C = 62.15. The 0.95 quantile of the chi-square dis-
tribution with 1 degree of freedom is 3.841. Because
the computed value of C exceeds this, the model of
Equation 20 is rejected as incorrect at the 0.05
significance level.

CONCLUSIONS

Testing a disaggregate choice model by comparing
predicted and observed market shares has much in-
tuitive appeal, but it is not the only way in which
these models can be tested. A large number of test
procedures based on likelihood ratio tests, La-
grangian multiplier tests, and the likelihood ratio
index goodness-of-fit statistic are also available
(9,10). It is worthwhile to consider how one might
choose among these tests in practical model de-
velopment,

An important difference between the C test dis-
cussed in this paper and the other tests is that the
other tests require the analyst to specify an alter-
native model (e.g., a logit model with a diffegent
specification of the utility function Xpje)
against which the model under consideration is to be
tested. In effect, these tests attempt to determine
whether the alternative model fits the available
data better than the model under consideration does,
in which case the model under consideration is re-
jected as being incorrect. In contrast, the C test
does not require specification of an alternative
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TABLE 3 Covariance Terms for the Example

a = 1
=]
1=1 4.117x107%
11
1=2 -4.117x107%4
1=1 0
§=2
1a2 0
8 = 1
r=1
1=1 2.084x10™%
J =il
1=2 -2.084x10™%
1 =1 1.704x107%
J=2
1=2 -1.704x107%
8 = 1
r=1
1=1 2.033x1074
J =4 "
1 =2 -2.033x10"
1=1 -1.704x10"%
) =2
1=2 1.704x10™4

Aijra
8 = 2
=2 r=1 r=2
~4.117x1074 0 0
4.117x1074 0 0
0 2.995x10™%  ~2.995x1074
0 ~2.995x107%  2.995x107%
Bijrs
8 = 2
r=2 r=1 r=2
~2.084x107% 1.704x10™%  -1.704x107%
2.084x10™% ~1.704x107%  1.704x107%
~1.704x107% 1.566x107%  —1.566x107%
1.704x10™% -1.566x107%  1.566x107%
cov(Dij'Drs)
g8 = 2
=2 =1 =2
~2.033x107% -1.704x107%  1.704x107%
2.033x1074 1.704x107%  -1.704x107%
1.704x107 1.429x107%  -1.429x107
-1.704x1074 ~1.429%10™%  1,429x107%

model. In effect, it tests the model under consider-
ation against all alternatives simultaneously.

The ability of a test against a specific alterna-
tive to identify an erroneous model and the relative
power of the C test and a test against a specific
alternative depend on the choice of the alternative.
As is discussed elsewhere (1,11), a test of an er-
roneous model against an alternative that is a good
approximation to the correct model is likely to be
much more powerful than a C test. However, a test
against an alternative that is a poor approximation
to the correct model can be less powerful than a C
test.

These considerations suggest that the C test and
tests against specific alternatives are complements,
rather than substitutes, and that both types of
tests should be carried out during the process of
developing empirical models., A practical approach to
this begins by formulating several alternatives to
the model currently under consideration. The devel-
oper of an empirical model can virtually always do
this. Although there can be no assurance that any of
these alternatives is correct or approximately cor-
il uhere coula be such assurance, the tests
being discussed here would be unnecessary), one or
more of the alternatives may nonetheless provide a
powerful test of the current model if the model is
seriously erroneous (9). Accordingly, the current
model should be tested against the alternatives
using likelihood ratio tests or other appropriate
procedures (9,10). However, it is not possible to
test a model against all reasonable alternatives,
and failure to reject the current model in tests
against specific alternatives may be the result of a

rect

poor choice of alternatives rather than an indica-
tion that the current model is correct. Therefore,
if the current model is not rejected in tests
against specific alternatives, a C test should be
carried out. The C test amounts to a test of the
current model against all remaining alternatives and
may have a higher probability of detecting errors in
the current model than do the tests against specific
alternatives if the specific alternatives are them-
selves highly erroneous.
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Evaluation of Heuristic Transit Network Optimization

Algorithms

KAY W. AXHAUSEN and ROBERT L. SMITH, JR.

ABSTRACT

Changes in urban land use and travel demand
have created the need to restructure many
existing mass transit networks. Heuristic
network optimization as one of the available
methodologies to improve transit networks is
described. The characteristics and results
of the algorithms developed in Burope are
summarized and a short description of the
American algorithms is given. The potential
for applying network optimization method-
ologies in the context of small to medium-
sized American cities is evaluated. The
review and evaluation of 13 heuristic meth-
odologies revealed a wide range of ap-
proaches that are generally theoretically
sound, have reasonable potential for gen-
erating improved networks, and are computa-
tionally and otherwise feasible. Application
of an unproven new algorithm by Mandl to the
bus network for Madison, Wisconsin, and the
light rail network for Duesseldorf, West
Germany, showed that a fairly complex heu-
ristic algorithm can be implemented quickly
and easily. Mandl's algorithm, however, did
not generate an improved network, primarily
because the initial computer-generated net-
work does not follow demand. Better results
were obtained with two other heuristic meth-
odologies that have been applied to the
Duesseldorf network. The Madison and Dues-
seldorf applications form the basis for
recommendations for further improvement of
heuristic methodologies.

The bus transit networks that are the predominant
form of public transit in American cities have

changed only slowly since the elimination of the
streetcar in the 1930s and 1940s. Often the major
bus lines still run on the same streets that the
streetcars used. Because of the major shifts in
population and employment that have occurred in
recent years, the bus networks in many cities could
probably be restructured to serve the existing de-
mand better and reduce operating costs at the same
time. Transit managers are often reluctant to make
major changes in routes because of the almost cer-
tain political opposition by those who think they
will receive poorer service. Also, transit managers
generally do not have analytical tools readily
available to aid them in generating and evaluating
alternative networks. As the result of the current
fiscal crisis in transit, transit managers should be
more interested in methodologies for restructuring
their bus networks.

Chua and Silcock (1) identify six methodologies
for transit network restructuring and optimization:
manual approach using service standards and guide-
lines, systems analysis using standard travel demand
and trip assignment models, market analysis using
manual trip assignment for corridors or small ser-

vice areas, systems analysis with interactive
graphics, heuristic procedures, and mathematical
optimization. The first three methodologies are

limited by the number of alternative networks that
can be evaluated in a reasonable amount of time. By
adding interactive graphics to systems analysis,
network development and evaluation are greatly en-
hanced. Many more networks can be tested in much
less time. The methodology, however, tends to be
biased toward the existing network, so unconven-
tional solutions may not be examined. Furthermore,
there is no guarantee that solutions near the
optimum will be found.

In contrast, mathematical optimization using
linear programming or general integer programming
will produce an optimal network within the specified





