
Second, incorporation of limited OD data into the 
estimation method produced a substantial reduction 
in the average trip error. This suggests that even 
with the fundamental weaknesses that characterize 
simplistic algorithms like SYNODM, they could be 
useful in expanding limited survey data. 

In any case, additional research on OD estimation 
procedures is needed. In this regard, Nihan's <2.l 
incorporation of a trip impedance factor into the 
estimation method has produced some encouraging 
results. 
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Estimation of Origin-Destination Matrices 

with Constrained Regression 

CHRIS HENDR ICKSON an d SUE M('NE IL 

ABSTRACT 

The use of constrained generalized least­
squares (CGLS) regression to estimate ori­
gin-destination travel matrices from aggre­
gate data is described. The CGLS method does 
not require general surveys but allows any 
available data to be included. variances of 
matrix entry estimates can be estimated and 
used as measures of uncertainty or to sug­
gest additional sampling strategy. Two case 
studies are described from applications to 
data from Portland, Oregon. The first in-

volves expanding a matrix of transit work 
trips to all transit trips. Second, a grav­
ity-type model of trip distribution for all 
work trips is estimated. Comparisons are 
made with other estimation methods with 
respect to accuracy, computational effort, 
and the use of uncertainty measures. 

Origin-destination (OD) matrices representing the 
number of trips between zones or locations in a 
particular time period are widely used in transpor-
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tation systems analysis. In particular, they are an 
important intermediate stage in the Urban Transpor­
tation Planning System (UTPS) ( 1) • They are also 
used for modal operations planning, as in transit 
route planning [see, for example, discussions by 
Sheffi and Sugiyama (2) and Turnquist et al. (~)]. 

Surveys are widely used to estimate such ma­
trices. For example, entries may be obtained from 
estimates of household travel between specified 
zones based on home interview surveys. Unfortu­
nately, such surveys are time consuming and expen­
sive. Moreover, updating and expanding survey-based 
matrices are common problems. 

To overcome the costs and delays of general sur­
veys, several alternative methods are used to obtain 
estimates of matrix entries. Nonsurvey matrix esti­
mation methods range from applying a constant factor 
to update an existing matrix to more complicated ab 
initio estimates using, for example, gravity models. 
More recently, matrix entry estimation methods that 
include small-sample or traffic-count data or both 
have been developed. These include entropy maximiza­
tion <il and maximum-likelihood methods <2·!>· For a 
survey of these methods see the paper by Chan et al. 

<2> • 
Methods used to estimate OD matrices should meet 

the following requirements. They should be able to 

1. Include any available survey-derived or ag­
gregate data, 

2. Include socioeconomic character is tics and 
attitude such as travel time between zones, 

3. Provide some measure of the reliability of 
the estimates, and 

4. Account for errors in the available data. 

Based on these criteria, a regression formulation 
is developed of the matrix entry estimation problem 
that is equivalent to a quadratic programming formu­
lation (.2_,~). Although this formulation has been 
applied to the estimation of input-output tables (9) 
and Markov transition probability matrices (10), in 
the applications to transportation planning the 
statistical properties of the estimates have not 
been explored and these applications have been less 
general. The method is able to include any linear 
constraint on the matrix entries in the formulation 
as well as a linear-in-the-parameters distribution 
function with known or unknown parameters. The re­
sulting estimates are best linear unbiased estimates 
and an estimate of their variance-covariance matrix 
may be obtained. 

The plan of the remainder of this paper is as 
follows. The estimation problem is formulated as a 
regression problem and the assumptions that are 
required are described. The estimation method is 
applied to the problem of expanding a matrix of 
transit work trips to all transit trips for Port­
land, Oregon. A work trip OD matrix for Portland is 
estimated using a distribution function with unknown 
parameters. Last, the advantages and disadvantages 
of the regression formulation are discussed and some 
conclusions are presented. 

ESTIMATION PROBLEM FORMULATION 

The objective of matrix entry estimation is to form 

a consistent estimate (Q) of an actual but unknown 
matrix Q of size nm, It is required that the estimate 

Q be consistent with all relevant information, in 
the sense that the estimates do not conflict with 
any available data known a priori. 

To formulate the estimation problem, let the ma-

trices Q and Q be rearranged to form vectors SI and SI 
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(of size nm) with the columns of the matrices ar­
ranged end to end. (Throughout this paper capital 
letters will be used to represent matrices and un­
derlined lower-caae letters to represent vectors.) 
It is assumed that a linear-in-the-parameters func­
tional relationship exists between some set of at­
tributes x and the values of matrix entries Xa, 
where ~ is an h vector of either known or unkno;n 
parameters. For example, Xa might be a linear form 
of a gravity model. With t~se assumptions a regres­
sion equation is formulated as follows: 

9. = x~ + f. (1) 

where £ is an nm vector of errors that are described 
in the-following. 

It is often the case that observations or con­
straints exist on the sums of some s·ubsets of the 
elements of q, For example, if Q is an OD matrix, 
the row totals are the number of trips generated at 
each origin and the column totals are the number of 
trips attracted to each destination. Alternatively, 
the number of trips crossing a corridor may be known. 
Accordingly, 1~ is assumed that some linear con­
straints exist on values of SI: 

!. : Ag (2) 

where E is a p vector of constraint totals and A is 
a p x (mn) incidence matrix of zeros and weights 
(which will usually be l's). Known values of SI can 
be constrained to equal their values by a simple 
constraint q = qi. The constraint totals E may 
contain measurement errors that may be accounted for 
in the estimation procedure (11) • The existence of 
inequality constraints is alsoof interest in many 
cases, but such constraints introduce some complica­
tions. For simplicity it is also assumed that X is a 
matrix of fixed numbers of full column rank and A is 
of full row rank. Thus, constraints that are linear 
combinations of other constraints should be elimi­
nated. For example, if constraints exist on each row 
and column of Q, one of these n + m constraints is a 
1 inear combination of the others and should be dis­
carded because it adds no information for estimation 
purposes. 

The special case in which all a are known is of 
particular interest, and it will be considered 
first. This case would occur if hypothesized or 
base-period values of g were available rather than 
the functional form X~. Such base values, denoted y_, 
may be obtained from a gravity model or be outdated 
estimates. In any case, the estimates are generally 
not consistent with the constraints given in Equa­
tion 2. Consistent estimates are obtained by assum­
ing that the base matrix vector y_ is equal to the 
true vector SI plus an error term: 

(3) 

As before, a set of constraints (Equation 2) on SI is 
imposed. 

'!'he standard assumptions of the generalized 
least-squares regression model concerning the errors 
in regression Equation l are introduced: 

(4) 

(5) 

so that the expected value of entries in £ is zero 
and the covariance matrix of £ is a constant (0 2 ) 

times a known nonsingular matrix v, which is dis­
cussed in the following. In this case, the model 
given by regression Equation 3, the linear con­
straints (Equation 2), and the assumptions about the 
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error terms (Equations 4 and 5) are identical to that 
of constrained generalized least-squares regression 
(CGLS) (12). The CGLS estimate of g is 

(6) 

The estimator .9. produces best linear unbiased esti­
mates of g and has a covariance matrix: 

COV[gJ = a 2 [V - VA 1 (AVA 1 )-1AV) (7) 

where an unbiased estimator of a 2 is 

where p is the number of constraints. Assuming nor­
mality of observations, confidence intervals and 
hypothesis testing may be performed using Equations 
6 and 7. The square roots of the diagonal elements 

of cov(gl are the standard errors of estimated pa­
rameters that are normally reported in regression. 

As with other regression models, this special 
case can be formulated as a quadratic programming 
problem: 

(8) 

in which the weighted sum of squared errors is mini­
mized subject to a set of constraints. 

For the general case, parameters .!!. of regression 
Equation l are to be estimated in addition to the 

matrix entries .9.• Estimates of the model parameters .9. 

and of the matrix entries g can be obtained (13) as 
follows. Substituting Equation l into Equation 2 
yields 

!. = A(X~ + ~_) 
• AXa + A0 

= X*a + £* (9) 

This is a linear-regression model with observations 
!.•with X* =AX, and a random vector•* A0 • If it 
is assumed that the assumptions about the error term 
in Equation l are given by Equations 4 and 5, the ex­
pectation of the error term is zero, because E[0 *] • 
E[A&) = O, from Equation 4. Also, the covariance ma-
trix of- error terms is COV[&*) E[Ao(Ao'J 
AE[E:£'1A' = a 2 AVA'. Assuming that AVA' is- nonsin­
gular, this regression model fulfills the assumptions 
of Equations 3 and 4 with V* •AVA', and is a gen­
eralized least-squares model. 

Following Theil (12) , the GLS estimator of .!!. is 

.!!. = [(AX)' (AVA') -l(AXi 1-l(AX)' (AVA' i-lr 
• [X'A' (AVA')-lAX]- X'A' (AVA)-1!_ - (10) 

which has the normal regression properties of being 
a best linear unbiased estimate of .!!.• Moreover, the 

covariance matrix of~ is 

COVl.!!..l - a• [X'A' (AVA')-lAx]-1 (11) 

where an unbiased estimator of a 2 is 

s 2 • (_!: - AX~)'(_!: - AX.!)/(p - h) 

The predictor Xa provides estimates of .9. that can 
then be used in -the CGLS formulation to obtain best 
linear unbiased estimates of the matrix entries that 
are consistent with the constraints. 

In passing, it might also be noted that the GLS 
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model could be equivalently formulated as a qua­
dratic programming problem. In this case, it is 
desired to minimize the weighted sum of squared 
errors, subject to the known constraints, by 
choosing values of g + .!!_: 

(12) 

This programming problem has the same solution for a 
as the problem in Equation 8 [assuming, of course 
that (AVA')-1 exists]. 

Thus, the estimation problem can be formulated as 
either a generalized least-squares regression prob­
lem or a quadratic programming problem. A third 
interpretation as a Bayesian estimation problem with 
a quadratic loss function is also possible (11). 

Solution of the estimation equations (Equation 6 
or 10) can be performed by any general matrix inver­
sion and multiplication package. Note that estima­
tion of the covariance matrix (Equation 7 or 11) can 
use the matrix inversion required for calculation of 
the actual estimates. Alternatively, specialized 
techniques such as conjugate gradient algorithms can 
be employed to speed calculations for large prob­
lems. Sparse matrix calculation methods can also be 
used (lJ_). 

Before turning to examples, the specification of 
the error term £ deserves mention. It is assumed that 
the covariance matrix of error terms is nonsingular 
and specified in advance. Here some possible specifi­
cations for the error term covariance matrix (V) are 
considered. This is an important subject because 
specification of the covariance matrix will affect 
estimates and should reflect the analyst's beliefs 
concerning errors. In many applications of quadratic 
estimation techniques, the assumption of independent 
and identically distributed error terms seems to be 
made implicitly and without due consideration, 
solely because of analytical convenience. 

The classical assumption in least-squares regres­
s ion is that error terms are independently and iden­
tically distributed. In this case, the matrix v is 
the identity matrix (V = I) and V(£] = a 2 I. For this 
common case, the generalized covariance matrix AVA' = 
AIA' ~ AA' must be nonsingular because A is of full 
row rank. Consequently, estimates of~ can almost al­
ways be calculated from Equation lO"°i the only ex­
ception occurs in the unlikely case that the solu­
tion matrix [X'A'(AA')-1AX] is singular. 

For physical matrix entries, an appealing alter­
native to this classical assumption is that error 
variances are proportional to the corresponding 
entry in the estimate y_. Thus, entries with small 
expected value would have small variance, as might 
be expected in many situations. This assumption 
results in a weighting function in Pl similar to 
that of ' a chi-square goodness-of-fit test: 

P2: Ming[ (g - y_) 'V-l(q - y_) 1!. • Ag) 

[nm 
k!l 

(qk - Yk)'/Yki!. = A.9. ] (13) 

where qk and Yk are the kth entries in y_ and g, 
respectively. 

One practical advantage of a chi-square weighting 
scheme of this sort is that the likelihood of ob­
taining negative entry estimates is much reduced 
from the case of the classical assumption of con­
stant variance. This result is due to an assumption 
of small variance for entries of g having small 
initial estimates y_. This result may often remove 
the necessity to introduce inequality constraints to 
ensure that entry estimates are nonnegative. 
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These results are now applied to the problem of 
expanding an OD matrix. 

EXAMPLE 1: EXPANSION OF A TRANSIT WORK TRIP OD 
TRAVEL MATRIX TO ALL TRANSIT TRIPS 

The purpose of the application problems in this and 
the next section is to illustrate quadratic matrix 
entry estimation methods. The problems are intended 
to demonstrate the feasibility and flexibility of 
the methods developed in the preceding section. The 
applications also provide some experience with com­
putational problems and illustrate the formulations 
that might be appropriate for different applications 
and how these formulations might vary with the qual­
ity and quantity of data available. 

In the examples the quadratic matrix entry esti­
mation method is applied and evaluated. For valida­
tion and evaluation, matrices obtained from surveys 
are used for comparison with the quadratic esti­
mates. For estimation, a base matrix or data to 
estimate a matrix entry function as well as some 
constraints are used. The more constraints, the 
larger the degrees of freedom and the more reliable 
are the estimates. The first example expands a tran­
sit OD matrix from Portland, Oregon. The second 
estimates ab initio an OD matrix for work trips in 
Portland. 

The first application is an expansion of the 
transit work trip matrix to an OD matrix for all 
transit trips on the Portland Transit Authority's 
system (Tri-Met). In practice, the transit work trip 
matrix might have been obtained from data used for 
another purpose, inferred from census data, or esti­
mated from journey-to-work survey data. The con­
straints required to estimate the complete matrix 
might be the result of data routinely collected for 
each route and some simple surveys. The expansion 
problem might be a problem facing a transit author­
ity that does not wish to administer a general sur­
vey but would like to estimate an OD matrix from 
such available data. 

The OD matrix used as a base matrix and the 
matrix to be estimated in this application differ 
slightly from the usual OD matrices. Instead of 
using OD zones, an OD matrix with transit routes as 
origins and four types of destinations is estimated. 
The destinations are defined in two categories-­
transfer or nontransfer trips. Then within these 
categories the place where the per son alights from 
the bus is defined as in the central business dis­
trict (CBD) or outside the CBD, giving a total of 
four destinations. The transfer trips are particu­
larly interesting to transit planners because al­
though route volumes are generally known, the origin 
and number of transfer trips can rarely be estimated 
unless systemwide on-board surveys have been under­
taken. 

Therefore, the OD matrices in this example are 
estimated by origin route and four defined destina­
tions. There are 71 routes, so the matrix to be 
estimated is 71 by 4 (with 284 entries). The ijth 
element in the matrix represents the number of 
people beginning their trip on route i with destina­
tion j. The Tri-Met route numbers associated with 
each row (origin) are described elsewhere (11). The 
destinations are defined to be 

j = 1 if the destination is outside the CBD for a 
nontransfer trip, 

j = 2 if the destination is in the CBD for a 
nontransfer trip, 

j = 3 if the destination is outside the CBD for a 
transfer trip, and 

j = 4 if the destination is in the CBD for a 
transfer trip. 
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Five different formulations were used to expand 
the Portland transit OD matrix for work trips to all 
trips. The five formulations permit a comparison of 
the estimates using the biproportional method (de­
scribed in the following) and an ad hoc procedure 
with estimates obtained using the quadratic method 
as well as consideration of the effect of additional 
constraints. For comparison and basic data, a matrix 
derived from 12 percent on-board survey data is used. 

The first formulation is an ad hoc procedure for 
expanding the matrix and was devised so that the 
entry estimate equals the matrix entries for work 
trips multiplied by a factor equal to the total 
number of all transit trips divided by the number of 
work transit trips. Thus, this is simply a constant 
expansion. The expansion factor in this case was 
1.683. 

The second formulation is a quadratic method 
using a chi-square objective function, implying that 
changes in the base matrix are likely to be more 
variable (larger) if the relative magnitude of the 
entry is larger. This is believed to be a reasonable 
assumption. As base values in the formulation, the 
ad hoc estimates obtained with the first formulation 
are used. The constraints are row and column totals 
representing the total number that use a route and 
the total number that have each of the four destina­
tions, respectively. These data would normally be 
available from aggregate route counts and some sim­
ple surveys. 

The third formulation is a biproportional estima­
tion problem. The biproportional estimation is also 
known as the Fratar method, Bregman's balancing 
method, the Furness iterative procedure, or the RAS 
method. The base matrix used in the biproportional 
formulation is the work trip matrix. Again, row and 
column totals are assumed known. The biproportional 
method factors up each entry by a row and column 
factor so that the constraints are met. This method 
is a common alternative to least-squares methods. 

The fourth and fifth formulations use additional 
constraints in the form of the total number who 
transfer on each route. The fourth and fifth formu­
lations are quadratic and biproportional formula­
tions as in the second and third formulations but 
with the additional constraints. The quadratic for­
mulation simply adds the additional constraints to 
the first formulation with the row and column 
totals. To formulate the biproportional problem with 
the additional constraints, the problem can be split 
into two independent biproportional problems. The 
first problem operates on columns 1 and 3 of the 
matrix and the second problem operates on columns 2 
and 4. 

The formulations are summarized as follows, where 
Wij is the ijth entry in the matrix of work trips, 
ti is the number of transfers from route i, .!:!. and 
v are row and column totals, and all other notation 
has been defined previously. 

Ad hoc method, constant factor expansion: 

wnere a Eijqij/EijWij witn Eijqij Known from pas­
senger counts. 

Quadratic with row and column constraints: 

Biproportional with row and column constraints: 

Bl: Q = B WC 
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subject to Iiqij = vj and Ejqij = ui. (Note that B 
and care diagonal matrices of unknown factors.) 

Quadratic with row and column totals and total num­
ber of transfers on each route (identical to Ql but 
with added constraints): 

B iproportional with row and column totals and the 
total number of transfers on each route: 

subject to I qij = v1 
i 

subject to E qi2 = v2 
i 

The chi-square formulation Ql was estimated using 
a general-purpose quadratic programmi ng package, and 
both formulations Ql and Q2 were estimated using 
FORTRAN programs that used matrix manipulation meth­
ods. The speci£ic quadratic programming package used 
for estimation uses Lemke ' s method and the ma tr ix 
manipulation method used a matrix factorization 
routine from the International Mathematical and 
Statistical Library (IMSL) package. Similar results 
were obtained for formuiation Ql using both methods, 
and minor differenc es ( l ess than 1 percent) can be 
attributed to roundi ng en:ors. The quadratic pro­
gramming package has the adva·ntage that the elements 
may be const r ained to be nonnegative and inequality 
oenstraints may be included. for e xample, it is 
known that each entry in the estimated matrix of all 
ti:ips has to be greater than or equal to the corre­
sponding entry in the matrix for work trips. This 
constraint was not applied, because only 5 of the 
284 entries (less than 2 percent) violated the con­
straint. The matrix inversion routines have the 
advantage that the variance of the estimates can 
easily he calculated. 

Table 1 shows the central processing unit (CPU) 
computation time on a DEC-20 computer for the ma tr i :< 
manipuiation routines and the quadratic programming 
package. The amounts of time include setting up the 
problem from the same basic data set. It is indi-

TABLE l Computation Times for the Portland Expansion 
Example Estimates 

CPU 
Met hod Formulation Computation Ti me (sec) 

Q uadra tic Ql ma trix man ipulatjon Data preparation 14 
Esti matio n 4 1 

Q2 m at ri x mani pulat io n Data preparation 16 
Est im atio n 90 

Q I quadratic programming Data prepa rat ion 3 
package Est imation 93 

Bi proportional B I Data pre pa rat io n 
and estimat ion 2 

B2 Dau.1 prepa rati on 
and est ima tion 4 
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cated in the table that. the computation time using 
the quadratic programming package is significantly 
greater than that using the matrix manipulation 
routines. The matrix manipulation routines also 
calculate variance estimates. 

The biproportional estimates were obtained itera­
tively. The pro9urn terminated after 20 iterations 
or when all the row and column totals were within l 
percent of the constraints. Table l shows the com­
putation time for obtaining the biproportional esti­
mates on a DEC-20 to be about one-twentieth of the 
time required to obtain the quadratic estimates with 
the matrix inversion routines. 

The evaluation of the estimation results presents 
a proble.m, because there is no unique method for 
comparing two or more methods. Several testing rou­
tines are possible (11,15,16). Table 2 gives three 

TABLE 2 Average Absolute and Relative Errors for Expanding the 
Portland Work Trip Transit Matrix 

Avg Avg Ratio of Avg 
Absol ut e Relative Error to 

Meth od Error Error 3 Avg En try 

Ad hoc 97 .0 0.240 0. 166 
With row a nd colum n c o nstraints 

Q I quadratic 49.7 0. 184 0.085 
B l biproport ional 48.4 0 . 179 0 .083 

Wi th row -and column constrain ts a nd 
cons t ra in ts on t he nu m ber of t ra nsfers 

Q2 qua dra tic 35 .0 0 . 155 0 .060 
B2 biproportional 34.4 0 . 1 S I 0 .0 59 

aCalcula ted us the avcroge rat io of errors to sur vey ma trix ent ri es e xclu din g zero mat rix 
en tri es . 

aggregate measures of e s timation erro.rs . Each is 
calculated by comparison with the on-board survey 
results. As can be seen, the quadratic and bipropor­
tional methods are comparable in accuracy for each 
case and generally superior to the ad hoc estimates. 
Adding additionai information in the form of trans­
fer totals improves the accuracy of estimates, as 
expected. 

The similarity between the quadratic and bipro­
portional results is not surprising. rt has been 
shown (17) that the chi- square formulation is a 
first-order approximation to a biproportional 
problem. 

When the estimation problem is formulated as a 
CGLS regression problem, the estimates can also be 
evaluated in terms of their uncertainty. This evalu­
ation is based on the assumption that the errors are 
highly correlated with the standard deviations (var­
iances) of the estimates. Table 3 shows some corre­
lation coefficients between errors and measures of 
uncertainty for the quadratic estimates. For each 
set of estimates, there is a positive correlation 
between the standard deviation and the average ab­
solute error and the coefficient of variation and 
the average relative error. If one is interested in 
reducing a particular type of error, entries can be 
selected for special surveying or data gathering on 
the basis of the estimated uncertainty measure that 

TABLE 3 Correlation Coefficients Between Errors and 
Uncertainty Measures for Estimated Entries in Transit Matrix 

Meth od Uncert a inty Meas u re 

QI quadrntic wit h row and Sta ndard en or 
co lum n constrain ls Co effici ent of var ia tion 

Q 2 quadratic as i11 Q I with Standard error 
constrain ts on trnns fers Coefficien t o f varia ti on 

Avg Avg 
A bso lu te Relative 
Crror 

0 .509 
-0 .389 

0.475 
- 0.204 

Error 

-0.542 
0. 54 2 

-0. 187 
0.4 5 3 
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is highly correlated with that error. Using un­
ce·rtainty measures in this way can be quite helpful. 
For example, examining the standard errors from the 
quadratic estimations, a planner might choose those 
with the largest uncertainty for speciai surveys . 

Although the CGLS r egression formulation produces 
simila r results to the biproportional method a.nd is 
c omputational ly more expensive, there is no way to 
evaiuate the uncertainty of biproportional estimates 
directly. The estimated variances of the entry esti­
mates repre sent a measure of the uncertainty as­
sociated with each entry estimate and may be used to 
evaluate the estimates. 

EXAMPLE 2: AB INITIO ESTIMATION OF 
A WORK TRIP OD MATRIX 

This application illustrates the estimation of 
matrix entries ab initio using a distdbution func­
tion with unknown parameters. The formulation fol­
lows that presented in the section on estimation 
problem foi:mation, in which the ma tr ix entries are 
ass.urned to be a linea r function with unknown param­
eters (called a distribution function ) of the at­
tributes of the matrix entries. The estimation prob­
lem is then formulated as a least-squares estimation 
problem subject to the appropriate constraints. 

One of the advantages of the quadrat i c estimation 
method in this appl ication is that it uses any 
avaiiable aggregate data to estimate tbe matrix 
entries . Such data generally come from sources other 
than transportation surveys. For this application 
the requ ired data can be obtained from sources that 
are likely to continue to provide the same kinds of 
information in the future and therefore the modeling 
approach is unlikely to become obsolete because the 
required data are not available. The methods used to 
illustrate ab initio e s timation in this section also 
show how additional aggregate travel-specific data 
c an be added to improve the estimates. 

Four parameters must be specified to estimate the 
ab initio model: a definition of the origin and 
destination zones, the distribution function, the 
weighting matrix , and the constraints . 

The origin and destination zones are defined in 
terms of census · tracts. For computational ease , the 
169 census tracts of the Portland metropolitan area 
are aggregated to 44 zones . The 57 census tracts 
that are in the Portland standard metropolitan sta­
tistical area (SM.SA) but outside the metropolitan 
area are aggregated to f our zones . The aggregation 
simply joins adjacent areas except ~1here physical 
barriers such as rivets pi:ovide a natural division . 
•rhere£ore , the OD matrix has 48 zones representing 
48 x 48 ~ 2,304 trip elements to be estimated . 

To estimate a model ab initio, a distribution 
function that is lineax in the parameters is re­
qu.ired to ensure convexity . A simple model based on 
one independent. variable is used in this applica­
tion . 'l'he dependent variable is a function of the 
number of workers resident in the origin zone, the 
employment in the destination zone, and the distance 
or travel time between the two zones . The number of 
residents serves as a measure of the tr ip-qeneratino;r 
ao1.L1ty ot a zone , whereas the employment serves a 
similar purpose with respect to the attractiveness 
of the zone in the sense that it measures t he extent 
to which a zone provides employment . The distance or 
travel time are measures of the travel impedance, 
implying that large travel impedances discourage 
t r ips. The proposed model is 

(14) 

where 
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number of work trips from i to j, 
parameter to be estimated, 

=number of workers resident in zone i, 
=employment in zone j, 
= interzonal travel impedance from zone i 

to zone j, and 
tij =error term. 

The model is a simple gravity model. 
The formulation o f t he model a.lso regufres defi­

nition of the structure of the weighting matrix (V) . 
The matrix V is the matrix of weights in the qua­
dratic objective function or the va.r iance-covariance 
matrix of the error terms in the regression equa­
tion . It is assumed that V is a diagonal matrif with 
elements on the diagonal proportional to DiEi/dtj and 
therefore the Objective function is of che chi­
square type. 

'!'here are many possible constraints Rg =- .! that 
can be used to estimate the unknown parameter (a) 
and the matrix entries. The number and type of con­
straints directly affect the accuracy of the estima­
tion. Two dif-ferent sets of constraints are used to 
estimate the problem. &ach set represents feasible 
constraints that can be obtained without complete 
areawide surveys. 

The first set of constraints is the most basic, 
consisting of the row and column totals. Each row 
represents an origin zone and the row total the 
number of trips from an origin; therefore the row 
total is the number of workers residing in that 
origin zone (D1). Similarly, the column totals 
r epresent the number of trips mad t o a zone: there­
fore the column total is the employment (Ejl in 
that zone. With this set of constraints the formula­
tion is for a doubly constrained gravity model. 

The quadratic progranuning problem is then for­
mula ted as follows: 

(15) 

subject to tiqij = Ej and tjqij = 01, where the total 
employment (Ej) and the number of workers resident 
(Di) in each zone are the column and row totals, 
respectively. It is assumed that those with no fixed 
place of employment work in the zone in which they 
reside . 

The second set of constcaints is added to the 
first set. The additional data are obtained by using 
the Willamette River a s a cordon: this divides the 
Portland metropolitan area so that there are 15 
zones on the east side of the river and 33 zones on 
the west side. 

The additiona.l constraints might be obtained by 
asking those crossing the cordon in either direction 
if they are going to work and either where they work 
or where they live, thereby adding 47 linearly in­
dependent constrain·ts. For this estimation problem 
the 47 constcaints obtained by surveying traffic 
going in both directions and asking travelers where 
they 1 ive are used. Algebraically , the constraints 
are as follows: 

~ jtws'> ij 
_o 
'"iES .Lt "'" 

Ej<:ESqij 
,. co it ws 

iWS 
(16) 

where c~ES are the constraint totals for each 
of the origins on the east side, and C~ws are 
the constraint totals for each of the origins on the 
west side. 

The survey-derived matrix is from the 1976 trav­
el-to-work supplement to the annual survey of hous-
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ing foe Portland. This matrix ls used for comparison 
and to obtain much of the data foe the estimation. 
The interzonaJ. travel impedances were obtained from 
the Portland Met r opolitan Service Centec. Such data 
are commonly available within UTPS models. The peak­
period tcavel time was used in this study because 
most tc ips to work ace during the peak period and 
travel time is a more suitable measure of the travel 
impedance than distance. 

Matrix manipulation programs were used to esti­
mate the unknown parameter and matrix entries in 
each formulation. The results for estimation of the 
unknown parameter (a) were quite consistent . Using 

95 or 145 consttaints, an estimate for a of a = J.80 
x 10-4 was obtained , which was also the estimate 
obtained from :regress ion on all 2, 304 surveyed 
matrix entries . However, the t-statistic for the 
parameter ranged from 8 .15 with 95 constraints to 
B.76 with 142 constraints to 18.80 with alJ. 2,304 
observations. Clearly, more data reduced the level 
of uncertainty. 

With the estimation of the unknown parameter (a) , 
matrix entries could be calculated using Equation 

14 as qij =a D1Ej/dlj• _However, this would not en­

sure that the estimates qij were consistent with the 
known totals o1 . Accordingly, a second-stage qua­
dratic estimation was applied using the Yij as 
initial estimates and the constraints de fined 
previously. 

Concerning the accuracy of the entry estimates 
themselves, the average absolute errors were 330 and 
310 for the 95- and 142-constraint cases, respec­
tively. Average relative errors were 1.2 in both 
cases. 

In this example, the unknown parameter and matrix 
entries have been estimated using a linear form of a 
doubly cons trained gravity model and the same model 
with additional constraints. Each estimation in­
volved two stages . The first stage estimated the 
parameter in the gravity model, subject to the con­
straints , using generalized least-squares regres­
sion . The second stage uses the gravity model to 
predict the entries in the OD matrix and reconciles 
them with the constraints using CGLS regression. 
Thus, the estimation methods described here do not 
require iteration to obtain parameter estimates for 
a linear-in-the-parameters model. They also provide 
a measure of the reliability of the estimates. 

RELATIVE ADVANTAGES AND DISADVANTAGES OF 
THE REGRESSION FORMULATION 

In the preceding sections, CGLS formulations of the 
matrix entry estimation problem have been developed 
and applied to the problem of estimating two dif­
ferent OD matrices. The applications demonstrated 
that the methods are computationally feasible and 
produced estimates comparable in terms of accuracy 
with estimates obtained using other techniques. Some 
of the specific advantages and disadvantages of the 
regression formulation are as follows. 

In particular, the regression formulation pro­
vides some unique advantages: 

1. It is flexible in terms o·f the information 
that can be included as constraints. For example, 
individual elements can be constrained to particular 
values or a linear function of several entries i that 
is, the sum of two entries can be assumed known. 

2. It is flexible ~n its foi:mulation. Dis tr ibu­
tion functions with known or unknown parameters may 
be included in the formulation. 
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3 . It is able to provide a measure of the reli­
ability of the entry estimates in terms of the vari­
ances . In all the applications presented, the vari­
ances were relatively large because of the minimal 
amount of data used to estimate the matrix entries. 
The variances in turn can be used to evaluate the 
entries and derive strategies for obtaining addi­
tional information to improve estimates. I n the 
expansion exampJ.e the variance was found to be 
highly correlated with the absolute error in the 
estimates and the coefficient of variation with the 
percentage erroi:, indicati·ng that such reliability 
measures are highly desirable. The variance measures 
can also be used to derive sampling strategies for 
obtaining additional information. 

4. tt is of comparable accuracy with the bipro­
por tional methods when a chi-square focmoJ.at ion is 
us.ed . The result is not surprising because the bi­
proportional objective function may be shown to be a 
first-order approximation to the chi-square objec­
tive function . In cases in which the error distribu­
tion is not of a chi-square nature, a properly 
specified CGLS function can be expected to be more 
accurate than the biproportional method. 

5. It is able to account for errors in the con­
straint totals. The problem can be reformulated to 
account for errors in the constraint totals (_!!) • 

6. It is abie to produce estimates that acP. 
consistent with the available data. The quadratic 
methods also consistently improve the estimates and 
reduce the variance as more data are included in the 
formulation. 

7. It is able to estimate unknown parameters in 
a linear distribution function. The ab initio est i­
mation example clearly demonstrates this and the 
quadratic method is the onJ.y way of doing this wi·th­
out survey-derived data for several individuaJ. 
entries. 

The problems associated with the regression for ­
mulations are primarily related to the computational 
burden associated with calculating the estimates . 
The expansion example used approximately 20 times as 
much computer time to obtain e stimates using CLGS 
.regression compared with the bipropor tional method 
b ut also provided estimates of the reliability of 
the ent.ry estimates . However, the reduced cost of 
c<>mputer s and particularly the availability of per­
sonal computers reduces this problem considerably. 

Another problem arises if the formuJ.ation does 
not explicitly i nclude nonnegativity constraints. 
The applications indicated that regression formula­
tion is unlikely to produce negative estimates when 
a reasonable formulation is used. In the expansion 
example, no entry was estimated to be negative. For 
the ab initio estimation problem with row and column 
totals, negative estimates were not a problem. For 
the other formulation, the negative values were 
constrained to zero and the problem was reestimated. 
Although this approach is not statistically rigor­
ous, it is practically worka ble. 

Although it is generally an advantage to have the 
flexibility obtained by allowing the analyst freedom 
to specify any linear function and the structure of 
the variance-covariance matrix of the errors, it 
does create some problems if the formulation is 
incorrectly specified. Fortunately, the impact of 

the specification e rror can be eva luat ed if the 
analyst is aware of its existence (!±).For example, 
if the variance-covariance matrix is incorrectly 
specified, the estimates are unbiased but ineffi­
cient. Unfortunately, however, only linear function 
can be included in the formulation to ensure con­
vexity and a global optimal solution (~). 
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CONCLUSIONS 

In th is paper methods for es ti ma ting ma tr i x entries 
using generalized regression have been reviewed and 
developed . With these methods it is possible to 
include all available and relevant information, 
including uncertain l nformation and j udgment . As 
well as including all infocmation, the form of the 
objec tive function in the formulation is flex ible 
and the resulting estimates a.re best l i.near unbiased 
e s t ima t e s . Associated with each entry estimate is an 
estimated measure of their reliability such as the 
variance . The variance can be used to e valuate the 
estimates and derive strategies for additional sam­
pling . In applications where the quadratic method is 
the only possible formulation or the estimates of 
the entries ' unce rtainty are relevant , the quadratic 
method is a feasible estimation method a.nd should be 
used . The applications pr01rided examples of ·the use 
of the quadratic fo rmu1ation and demonstrated that 
the techniques produce reasonable results as well as 
being computationally feasible for fairly large 
matrices. 
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