the case may not be tried until several years after
the accident. Some of the perishable conditions such
as the specific pavement, shoulder, and sign condi-
tions may be quite different at the time the claim
is filed or tried compared with when the accident
occurred. In such cases the plaintiff's attorney may
have considerably more knowledge of the highway con-
ditions than the agency's attorney. In those acci-
dents in which there is likelihood that a claim may
be filed against the agency, it may be beneficial to
obtain highway condition information, usually photo-
graphs, shortly after the accident occurs.

Manuals and regulations should be reassessed
periodically to determine whether the criteria and
requirements specified reflect the actual capabili-
ties and priorities of the agency in addition to the
latest acceptable standards and techniques avail-
able. Violating a nonpriority requirement specified
in an out-of-date manual may put the agency's at-
torney at a disadvantage.

SUMMARY

In summary, it is important that maintenance func-
tions and tort liability relations undergo close
scrutiny. Generated from these analyses are means by
which future tort claims may be reduced. It is im-
perative, however, that an agency not lose sight of
its primary maintenance goals. As such the measures
implemented to reduce tort liability should comple-
ment the agency's ability to obtain established
maintenance goals rather than force the agency to
make a choice between goals and tort liability.

Publication of this paper sponsored by Committee on
Traffic Safety in Maintenance and Construction.

Abridgment

Sign Maintenance Management

H. L. WOLTMAN

ABSTRACT

Sign maintenance management requires a sys-
tematic approach beginning with an inventory
of traffic control devices that is updated
with work orders. The initial inventory pro-
cedure can be accomplished either manually
or by photologging followed by data entry in
a computer file. The data base is required
for management of maintenance procedures,
materials purchase, inventory control, fore-
casting, and budget planning. A benefit of
an ongoing inventory is the accurate identi-
ﬁcation of such problems as theft, vandal-
ism, installation deficiency, and durabil-
ity. Suggestions for correcting such chronic
sign maintenance problems as weathering
failure, accident damage, vandalism, theft,
defacement, and gunshot damage are made. Re-
ﬁbishment of sign faces in the ﬁeld may
be possible in a number of such situations.
A maintenance system is required for cost
justification and control and is a useful
adjunct in the defense of tort liability.

INVENTORY

With proper records, the age of sign installations
can be traced, and exact numbers of signs by type
are known; information is available that is helpful
in planning and budgeting as well as in tort liabil-
ity. In their review of tort liability case law, Ekk
and Malaeb (1) found a pattern that claims for deﬁ-
cient construction signs and traffic control devices
had the highest dollar award per claim. They recom-
mended inspection, record keeping, and warning sys-
tems. This review will address these activities.

Proper planning requires the collection of infor-
mation from the field, and this invariably involves
an inventory of devices. Field data can be collected
either manually or with photologging equipment.
Automated pictorial logging is often more economical
than the manual process and offers numerous other
advantages. Videotaping is a relatively new method
used to collect data and is also satisfactory.

Each technique has its advantages and disadvan-
tages. Manual techniques (Table 1, Figure 1) are
most appropriate for low-volume roads and where la-
bor may be readily available for such work. The mul-
-tipurpose form in Figure 1 employs a keysort needle
for sorting and collating. The Utah form is designed
for field use with later data entry in a computer
file. The advantages of the manual method of col-
lecting data are that it requires no special equip-
ment or skills. The disadvantage is that it is ex-
ensive and time consuming for routes with a normal
amount of traffic. In addition, it is difﬁcult to
check the accuracy of the information once it has
been collected. Other ﬁeld trips may be required
for veriﬁcation.

The objective is to be able to reconstruct in
some detail a description and location of devices
TABLE 1 Sign Maintenance Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Purpose Manual Traffic Sign</td>
<td>Traffic Control Materials, Division/3M, 3M Center 223-3N, St. Paul, Minn. 55144</td>
</tr>
<tr>
<td>Inventory System: LM-INVGUIDE-R1</td>
<td></td>
</tr>
<tr>
<td>Computerized sign inventory system:</td>
<td></td>
</tr>
<tr>
<td>The Sign Manager</td>
<td>Barter, Betrose Roje, Inc., 7101 York Avenue South, Minneapolis, Minn. 55435</td>
</tr>
<tr>
<td>Retroreflectometer: model 910</td>
<td>Retro-Tech, P.O. Box 3101, La Mesa, Calif. 92041</td>
</tr>
<tr>
<td>Field weathering test deck program:</td>
<td></td>
</tr>
<tr>
<td>Plans GIP 13 (4.5.0)</td>
<td></td>
</tr>
<tr>
<td>Graffiti defense: No. 1100</td>
<td>Sign Materials Project, 3M Center 220-6W, St. Paul, Minn. 55144</td>
</tr>
<tr>
<td>graphic overlay film</td>
<td></td>
</tr>
<tr>
<td>Vandal-resistant fasteners:</td>
<td>Voi-Shan, division of VSI Corporation, 8463 Higuera Street, P.O. Box 517, Culver City, Calif. 90230</td>
</tr>
<tr>
<td>Vandegard VCN 15-5 Green</td>
<td></td>
</tr>
<tr>
<td>Tufnut</td>
<td>The Tufnut Works, division of Santa Fe Systems, Inc., 236 Monteguma Street, Santa Fe, N. Mex. 87501</td>
</tr>
<tr>
<td>Sign-cleaning equipment: Highway</td>
<td>Highway Handyman Products, 2447 University Avenue, St. Paul, Minn. 55114</td>
</tr>
<tr>
<td>Handyman Sign Cleaner, TM-60</td>
<td></td>
</tr>
<tr>
<td>12V electric or gasoline</td>
<td></td>
</tr>
<tr>
<td>Field-applied overlay faces: System 5</td>
<td>Traffic Control Materials, Division/3M, 3M Center, St. Paul, Minn. 55144</td>
</tr>
</tbody>
</table>

with respect to mileage, specific intersections, and road features. Such information must be available for each direction of travel and include approaches to intersections where cross traffic is controlled by signs. The specific details include sign size, type, color, mounting (i.e., one or two posts, offset, and height), and installation date. A most important activity is continual updating by the recording of any changes or improvements. This is accomplished with the work order form, which is employed for updating the file.

Computer data processing is a practical way to handle the inventory. Furthermore, collation, cross reference, and inventory control can be accomplished with accuracy. Programs exist in most of the common computer languages to segment information in virtually any manner desired. Most software programs have search routines that can select one or more identifiable criteria. For example, the criterion determining the replacement of signs might be for low reflectivity of a group of signs by year of installation or by manufacturer.

MAINTENANCE

Sign maintenance generally involves replacement of devices but as a practical matter also includes many
other activities such as manufacture, procurement, inventory, and field inspection. Replacement of signs may be required for the reasons discussed in the following.

Weathering

Over time, the effects of weathering will reduce the night reflectivity of most reflective materials used for traffic signs and delineators. There is a serious lack of understanding of the impact of this gradual degradation of performance.

In the Manual on Uniform Traffic Control Devices (2) it is stated that signs having significance during hours of darkness should be reflectorized or illuminated. The question of whether signs are adequately visible at night can be most easily determined in a night inspection. It is essential to inspect such roadways with low-beam headlights to determine the adequacy of reflection, visual obstructions to the device, and specific visibility needs if signs, delineators, or markings are missing or should be added. Often such omissions are more obvious at night than in the day. The extensive use of low beams even on low-volume rural roads has been well documented. It is essential to inspect night reflective devices under conditions generally similar to those employed by the average motorist. Clusters of signs, such as assemblies of route shields, should be examined. Occasionally the contrast of one or two signs of low brightness makes the entire assembly appear to be confusing and poorly maintained. Daytime inspection is important, but unless instruments are available to measure retroreflectivity, the inexperienced observer will not be able to determine whether signs are capable of performing adequately at night.

The effective reflectivity can be measured in daytime in terms of candlepower (candlepower per in-

![Figure 2: Sign identification labels combining installation date, warning, and identification information.](image-url)
clock face. Thus the year 1984 would be coded by a logo in the border at 4 o'clock, 1985 at 5 o'clock, and so on. At the next decade the logo shape would change but the clock code would continue.

Mass replacement of signs at an interval of 5 years is performed by one city. Their procedure is to change all Stop and Yield signs within one-fifth of the city each summer. These are then reworked during the winter months.

Weathering progress can be monitored by reviewing a representative sampling of signs (from 3 to 5 percent by direction and age is suggested). A weathering test deck (Table 1) can be employed for monitoring samples, and additional locations in the field can be reviewed to sample weathering progress. Above all, adequate record keeping and truly representative signs are required. Such weathering test samples are best cut from production signs because metal treatment, adhesives, application techniques, process colors, and so on, are then accurately represented. The rates of natural deterioration for signs facing west, south, and east are approximately equal. North-facing signs and signs otherwise shaded will generally last 150 percent of the time for those facing south. A test deck should include both 45-degree south facing and vertical exposure racks because 45-degree exposure proceeds at a rate of approximately two times normal vertical south-facing exposure. The test deck can provide useful comparative information for sign materials.

Accidents

Records may reveal that certain locations require most sign replacements because of accidental damage. A review of roadway elements at these locations may suggest alternative mounting locations, for example, wider offset, greater height, larger or brighter signs. Posting signs on both sides of the road, particularly if signs are missed because of background clutter or visual noise, is frequently helpful.

Additional advance-warning signs on both sides of the road are often a solution to locations with a high incidence of accidents. Above all, consultation of the signing manuals (2,5) for review of warrants, appropriate signs, and roadway markings for recommended solutions should precede action for the particular situation.

Vandalism

Vandalism on traffic signs falls into three categories: defacement, theft, and gunshot. Often defacement and theft can be reduced by placing signs above reach. Such height is approximately 2.5 m (8 ft) to the bottom edge. At this height, sign visibility is generally improved by being above the height of most parked vehicles and vegetation. In addition, this height removes signs from the intense splash and spray of passing vehicles. A number of investigations have shown that dirt can reduce sign reflectivity up to 50 percent. Most of this soil accumulates only during winter freeze-thaw cycles.

Vandalism in some jurisdictions has been reported in the form of theft of metal sign posts. The most satisfactory low-cost alternative proved to be transite (asbestos cement) pipe. Other posts, such as treated wood, are more expensive. The poorly fitted transite posts, however, provide a technique that permits punching holes in the new overlay at bolt-head locations; and applying the pressure-sensitive film applied when the sign is new, which when peeled off takes the graffiti off and leaves a clean sign surface. New film must be reapplied for continued protection. Liquid graffiti removers contain solvents that are intended to remove spray paint. Such removers will generally remove screen process colors used for sign legends but may not otherwise damage reflective sign material. They must be used with care.

Sign theft and defacement are discouraged at the recommended 2.5-m mounting height and can be further discouraged with nonremovable fasteners. Such fasteners cannot be removed with common tools. Some examples are rivets that may be set with swaged sleeves or carriage bolts having specially formed nuts that require special wrenches and removal means (Table 1, Figure 3).

Gunshot damage to signs is occasionally a problem. The solution that appears to have the greatest effect rests on an educational campaign of both short- and long-range nature. The perpetrator is generally a youthful individual. The forum for educating the young hunter (in the United States) is the Hunter Safety Training Course, the completion of which is often required for issuance of a hunting license. Emphasis against such shooting damage varies from program to program but can often receive added emphasis once hunter safety training coordinators are alerted to the problem by their state departments of conservation or departments of natural resources. If action is required, costs and photographic evidence in the form of slides may be required. Key sportsmen’s groups are also sensitive to the “slob hunter,” as are public utilities. Sign stickers for dating the installation should carry some message such as “Warning: $500 fine and/or imprisonment for defacing or removal of this sign. To report damaged sign phone ________. ” (Figure 2).

The educational campaign requires a sustained commitment for long-term benefits and together with appropriate stickers or other local warnings includes both long- and short-range efforts.

The extent of vandalism and the perception of vandalism vary greatly and cannot be defined without records. Some jurisdictions report an extensive and costly problem; others (2) with accurate records report the incidence of vandalism to be 0.7 percent annually, a relatively negligible level.

SIGN CLEANING

Removal of dirt, tar, crayon, and road salt is occasionally necessary. A wet nonabrasive detergent cleaner suitable for automotive finishes is satisfactory. With equipment designed for this purpose (Table 1), the sign is flushed with clean water to remove loose dirt particles, washed with detergent and a soft brush, and rinsed with clean water. Use of a mild solvent such as mineral spirits or kerosene can remove most other materials from non-screen-processed areas. Such localized cleaning should be followed by cleaning with detergent and flushing with water.

Replacement of sign faces due to weathering or minor surface damage where the sign backing is still intact may be accomplished in the field with overlay faces (Table 1). Such prefabricated retroreflective faces can be applied over the existing face without removal of the sign from the post. The complete procedure involves minor straightening, cleaning, and in some cases priming the existing face; punching holes in the new overlay at bolt-head locations; and applying the pressure-sensitive face. This procedure eliminates considerable transportation and handling but, more important, it reuses existing sign back-
Say "nuts" to thieves and vandals with TUFNUT®

Delineation

Delineation of curves can often be simplified by reducing the number of shoulder-mounted delineators. Snowplowing, mowing, and other shoulder maintenance can also be somewhat simplified.

Consideration should be given to the use of the chevron alignment signs (W1-8) (fig). These should be mounted on the outside of curves and should begin at the end of the tangent section and terminate at the beginning of the tangent section following the curve. Frequently the chevrons can be placed back to back on the same post to serve traffic from both directions. The usual spacing practice is to mount chevrons so that two to three are visible throughout the curve.

For more abrupt curves, the large arrow sign (W1-6) is a single device installed on the outside of the curve that may suffice if adequate [minimum 30 m (500 ft)] sight distance is available. Both signs have the effect of reducing the number of individual devices needed, which in turn reduces installation, replacement, mowing, snowplowing, or other maintenance requirements.

Conclusion

Proper sign maintenance requires continued management of inventories, production, installation, and theft and vandalism, as well as day and night inspection to ensure continued satisfactory performance. Inventory techniques that offer district offices flexibility and adequate inventory control together with simple record-keeping procedures are an essential part of a total maintenance system.

References

Publication of this paper sponsored by Committee on Maintenance and Operations Management.