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Horizontally Curved I-Girder Bridge Analysis: 

V-Load Method 
MICHAEL A. GRUBB 

ABSTRACT 

The V-load method is a widely used approxi
mate method for the analysis o f horizontally 
curved !-girder highway bridges. Previously, 
this method had been proven valid only for 
noncomposite I-girder bridges with radial 
supports. Thus, a study was made to extend 
the method to compos ite I - girder bridges 
with any general support configura.t ion. V
load-analysis results for noncomposite and 
composite I-girder bridges under dead load 
and live load were compared with the corre
sponding results from three finite-element 
curved bridge models with different combina
tions of radial and skewP.n $Upports. The 
dead-load V-load results were extremely ac
curate. The live-load v-load results we.re 
strongly influenced by the lateral distribu
tion factors that were used; specification 
distribution factors gave acceptable V-load 
results for exterior girders and conserva
tive results for interior girders. More ac
curate results were obtained with more re
alistic factors. It is also shown that the 
V-load method is not a valid approximation 
for closed-framed I-girder systems with 
horizontal lateral wind bracing. Approximate 
expressions are presented to compute the 
warping stresses in the girder flanges, an 
important consideration in curved I-girder 
bridges. 

Horizontally curved composite I-girder bridges are 
being increasingly used for highway interchanges and 
river crossings. Curved bridge girders offer sev
eral inherent advantages. They are more aesthetical
ly pleasing than a sec ies of straight girders along 
the chords of a roadway curve, and curved girders 
allow designers to use longer spans, thus eliminat
ing much of the substructure. Curved bridges may 
also result in simpler and more uniform construction 
details because girder spacing and concrete slab 
overhang are generally constant along the length of 
the structure. One problem with curved !;>ridge de
sign, however , has been the difficulty in mathemati
cally analyzing curved girders; curvature causes 
torsional loadings that compl icate the stress analy
sis. Rigorous methods have been available for the 
structural analysis of curved bridges, but highway 
engineers generally prefer simplified techniques. 

In 1963 a report was published <!l that presented 
a simplif ied approximate analysis technique for 
open-framed curved I-girder bridges [open framing 
was def i ned originally in that report as noncompos
ite I-girders connected by diaphragms (floorbeams ) 
or cross frames (K- or X-bracing) with no horizontal 
lateral bracing near, or in, the plane of the bottom 
flanges] . The method was modified and greatly sim
plified f or multigirder systems a few years late r 
(~). Agreement with more complica ted analyses was 

excellent . This approx imate method eventually became 
known as the V-load method because a large perc_ent
age of the torsional load on the girders is approx
imated by sets of vertical shears known as V-loads. 
The V-load method has been widely used in consulting 
engineering offices . According to a 1969 survey the 
method was used for the design of approximately 7 5 
percent of the curved steel !-girder bridges in the 
United States (3). 

One limitation of the V-load method, however, was 
that ii: had only been proven valid for noncomposite 
curved open-framed systems with the bridge piers on 
a radial alignment. !n reality, curved I-girder 
bridges have a reinforced concrete slab and often 
depend on composite action to resist the loads . 
Al.so , horizontal lateral bracing is sometimes in
cluded nc:ir 1 or in , the plant! VL the bottom flanges 
to help resist wind loads (a so-called closed-frame 
system). Furthermore, many curved bridges have foun
dations on skewed alignments because of geometric 
restrict ions . Thus, for the V-load method to be gen
eral, it must be established that the v-load-analy
sis results are valid approximations for these cases. 

Recent efforts to extend the V-load method to 
composite curved open-framed bridges (no horizontal 
lateral bracing) with any general suppor t configura
tion by comparing the V-load-method results to the 
results from several finite-element bridge models 
are discussed. Noncomposite and composite bridges , 
with combinations o f radial and skewed supports, 
were analyzed with both methods under the cor_rect 
dead and live loadings. The effect of horizontal 
lateral bracing was also studied for selected cases. 

Another important consideration in t he design of 
curved I-gi rder bridges is the warping stresses 
(lateral bending stresses) that develop in the gird
er flanges. These stresses arise from resistance to 
the out-of-plane warping of an I-girder cross sec
t ion that is caused by the applied torsional loads. 
The approximate calculation of these warping 
stresses is also presented. 

V-LOAD THEORY 

Conceputally, the V-load method can be considered as 
a two-step process. First, the curved structure is 
straightened out so that the applied vertical loads 
are assumed to induce only longitudinal girder 
stresses. Next , external forces are applied to the 
straight structure such that the resulting internal 
forces are the same as those that exist in the 
curved structure subjected to only vertical load. To 
satisfy static constraints, the applied external 
forces must be determined such that they result in 
no net vertical, longitudinal, or transverse forces 
on the total structure. Thus, in the V-load devel
opment, the curvature forces on the equ ivalent 
straight structure are treated as externally applied 
loads. 

To illus·trate this, the curved bridge system 
shown in Figure 1 consists of two prismatic girders 
continuous over one interior support with full- depth 
c ross frames spaced a distance d along Girder l . The 
cross frames provide the primary resistance to the 
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FIGURE 1 Curved bridge-plan view. 

torsional loads caused by the bridge curvature. They 
must, therefore, be designed as primary load-carry
ing members. Girder 1 has a radius of R, and the 
distance between the girders is o. In the V-load 
method, the curved girders are analyzed as isolated 
straight girders with developed span lengths equal 
to their respective arc lengths, L1 and Lz. 

Torsional Load 

A plan view of the top flange of one of the girders 
in the example curved bridge is shown in Figure 2. 
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FIGURE 2 Curved top flange-plan view. 

When the flanges are assumed to resist the full mo
ment, the axial force in the flange at any point is 
equal to the bending moment on a transverse section, 
M, in the girder at that point divided by the depth, 
h, between the midthickness of the top and bottom 
flanges. Because of the bridge curvature, these 
axial forces are not collinear along any given seg
ment of the flange. Thus, to maintain equilibrium, 
radial components of the internal flange forces are 
developed. These distributed radial forces have a 
magnitude of M/(h•R) for small angles. Note that 
the radial forces are directed outward where the 
flange is in compression (positive bending) , and in
ward where the flange is in tension (negative bend
ing). The corresponding radial forces in the bottom 
flange are in the opposite direction. It is these 
equal opposing forces times the depth, h, that cause 
twisting of the girders about their longitudinal 
axes. 

Development of V-Loads 

Consider a segment of the curved top flange of the 
outside girder, a distance d/2 on either side of a 
cross frame. To determine the torsional load re-
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sisted internally by the girder at the cross frame, 
the assumption is made (2) that the distributed ra
dial flange force has a- constant value of M/(h•R) 
over the segment, where M is the bending moment in 
the curved girder at the cross frame. The force ex
erted on the flange by the cross frame is, there
fore, equal to (M•d)/(h•R) for small angles. 
Equal and opposite reaction forces are developed in 
each flange of each curved girder in the system 
(H1 and Hz) at every' cross frame (it is assumed 
that no internal reactions are developed in the 
web). Hi and Hz are shown in Figure 3 acting on 
the flanges of each girder on a free-body diagram of 
the cross frame at Section A-A of the example curved 
bridge. These forces create counterclockwise tor
sional couples at each end of the cross frame and 
corresponding clockwise resisting couples in each 
girder. 

FIGURE 3 Section A-A of curved bridge. 

To equilibrate the torsional couples on the cross 
frame, vertical shear forces, V, develop at each end 
of the cross frame as a result of cross-frame rigid
ity and end fixity. These shear forces then react 
on the girders resulting in a set of self-equili
brating girder shears. The net effect of the shears 
is to shift the total load on the curved bridge to
ward the outside girder. These girder shears, which 
are applied as the external loads to the equivalent 
straight structure to account for the curvature, are 
known as the V-loads. Application of the external 
V-loads ensures that the internal forces in the 
straight structure will be nearly the same as those 
that exist in the curved structure under applied 
vertical loads. 

Thus, in a V-load analysis of a system, the bend
ing moments at the cross frames, M1p and M2p• in 
each of the isolated developed straight girders, 
caused by applied vertical loads, are first deter
mined by applying those loads to the straight gir
ders. These vertical bending moments will hereafter 
be referred to as primary moments. The corresponding 
V-load moments caused by the V-loads, M1 and 
Mzv• are then determined by applying the V-loads, 
in the proper directions, to the straight girders at 
the cross frames. The final moments in the curved 
girders, M1 and Mz, are then ob,tained by simply 
summing the respective straight-girder primary and 
V-load moments. The shears, reactions, and deflec
t ions in the curved girders are also determined in 
the same manner. First, however, a method is needed 
to calculate the V-loads. 

Calculation of V-Loads 

In the calculation of V-loads, the distribution of 
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cross-frame shears across the section becomes impor
tant, and the relative stiffnesses of the adjacent 
girders must be considered. The problem is simpli
fied if it is assumed that (a) all the girders in 
the section have nearly the same vertical stiffness, 
(b) the girder shears across the section are self
equllibnting, and (e) the locding u11 ylrders 
outside the longitudinal centerline of the system is 
increased, and the loading on girdeis inside the 
longitudinal centerline is decreased. An important 
assumption can then be made about the apportionment 
of the cross-frame shears to the individual girders. 
The assumption is that the shear on a girder is pro
portional to the distance of that girder from the 
longitudinal centerline of the bridge, which, based 
on the preceding assumptions, implies a linear dis
tribution of girder she.ars across the section. This 
is a reasonable approximation because the assumption 
that all girders have nearly the same vertical 
stiffness is good foe curved bridges under normal 
highway loadings, However, for curved bridges under 
exceptional conditions, which result in girders with 
large stiffness variations, the girder-shear distri
bution may be nonlinear and the method would not 
give a valid approximation of actual behavior. For 
such cases, a more detailed analysis should be made. 

The calculation of the V-loads, based on the pre
vious assumptions, will be illustrated with refer
ence to the tour-girder system shown in Figure 4. 
All girders in the cross section are assumed to be 
equally spaced. It is assumed that the section is 
subjected to a net torque from the internal radial 
forces, H, in each of the girder flanges. These 
forces (not shown) are in the same direction as the 
forces in Figure 3. It is also assumed that the 
cross frames are rigid enough that the torques in 
the individual girders at the section can be sumroed. 

To equilibrate this net torque, the internal 
cross-frame shears, V1 1 V2 1 and V3, are devel
oped. These shears are shown acting at inflection 
points in the cross frames, which are assumed to be 
at distances a, b, and c from the respective girders 
(arbitrarily shown at the cross-frame midspace in 
Figure 4) • Because these shears develop reactions 
at the adjacent girders , and the shears, v, on the 
outside and inside girders are assumed to be equal 
and opposite, V = V1 = V3. Invoking the assump
tion that the g.irder shears are proportional to the 
distance of the girders f.rom the longitudinal cen
terline of the bridge, the shears on the two in
terior girders are equal to (l/3)V acting in oppo
site directiono. This also mean~ that V2 = vi + 
(l/3)V " (4/JJV. The factor l/3 is a proportionality 
factor that is based on the geometry of the bridge 
cross section. Note that the girder shears add up to 
zero across the section as assumed. The V-loads, 
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which would be applied to the straight structure, 
are equivalent to the girder shears in the curved 
structure and are ~hown below the section. 

Next, moment equilibrium between the inflection 
points is enforced at the bottom of each girder and 
results in the following equations: 

V1 • a=H1 • h=(M 1d)/R (!) 

V3 · [(D/3)- c] = (M4 d)/R (4) 

where M11 M2 1 M3 , and M4 are the final mo
ments in the respective curved girders at the cross 
frames. Substituting V1 = V3 s V and V2 ~ 
(4/3)V, and solving the four equations simultaneous
ly for V givei; 

V=(M 1 +M2 +M 3 +M4 )/[(JO · R • D)/(9 • d)] (5) 

Because the V-load moments are generally small 
compared to the primary moments, the simplifying as
sumption is made that 

(6) 

Substituting these terms in Equation 5 gives 

V = (M1 p + M2 p + M3 p + M4 p)/[(IO • R · D)/(9 · d)] (7) 

or the more general relationship 

V = ~Mp/(C • K) (8) 

where tMp is the summation of the primary mo
ments in each girder at a particular cross frame, C 
is a coefficient that depends on the number of gir
ders in the system, and K is equal to (R•O) /d (R 
and d are for the outsioe girder). Coefficient c for 
various multigirder systems assuming equal girder 
spacing is 

No. of Girders 
in sistem Coefficient 

2 l 
3 1 
4 10/9 
5 5/4 
6 7/5 
7 14/9 
B 12/7 
9 15/B 

10 165/Bl 

'l t 
\J·~ON~~T 
'=>TRAl<iol·ff ~RE. 

c 

FIGURE 4 Cross section-multigirder curved system. 
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Equation 8 is, therefore, the general equation 
for the V-loads on the outside and inside girders of 
the equivalent straight structure at the cross 
frames. The proper proportionality factors are ap
plied t o t hese values to obtain t he V-loads on the 
other equivale nt stra i ght g i rde r s i n the sec t ion. 
Special at t e n tion must a l ways be give n to the direc
tion of the loads. 

FINITE-ELEMENT MODELS 

Mathematical finite-element models of the prelimi
nary designs of three curved I-girder bridges (non
composite and composite) with different combinations 
of radial and skewed supports were developed to 
check the accuracy of the V-load method. Three 
curved bridge schemes, representative of common 
highway structures, were chosen for the study, They 
will hereafter be referred to as 

- Scheme A--radial supports, 
- Scheme B--parallel skewed supports, and 
- Scheme c--two parallel skewed supports and one 

radial support. 
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Plan views of the schemes (noncomposite) are shown 
in Figure 5. 

All three bridges are two-span, continuous, four
g irder structures with unequal spans and compound 
radii. All schemes are initially open framed, that 
is, with no horizontal lateral b r acing. The span 
lengths are generally different among the three 
schemes and are shown in Figure 5. The radii, R1 
and R2, of each gi rder in eac h span are the same 
for all schemes and a r e also shown. The cross-frame 
spacings along the outside girder are shown on each 
bridge, The spacings were chosen to minimize the 
lateral bending stresses in the flanges caused by 
warping of the girder cross sections. The skew 
angle of the supports in Schemes B and C is approxi
mately 41 degrees. All three bridge schemes have 
the same basic cross section s hown at the top of 
Figure 6 . ~he spec ified c ompressive s t rength of the 
conc rete , fc , modul ar rat i o, n , a nd r e ba r area, 
As, are shown i n Fig·ure 6 . A typical c r o ss frame 
is s hown at t he bot t om of Figure 6 . The cross frames 
are K-braces made up of structural tees (WT5xl2.5). 

The preliminary designs of the girders were pre
pared with the bridge-design program SIMON <i>. 
SIMON is a straight-girder design program; there
fore, some adjustments had to be made to the program 
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FIGURE 5 Curved-bridge schemes. 
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FIGURE 6 Bridge-scheme cross sections. 

input to achieve an appropriate design. The girders 
were designed for noncomposite dead load and compo
site dead and · live loads using 50-ksi yield-point 
steel and the load factor design method in the 
AASHTO Standard Specifications for Highway Bridges 
(~). All girders are nonprismatic with thicker 
flanges over the interior pier. All webs are 60 in. 
deep and transversely stiffened. The girder designs 
for all t-hree schemes are similar--the only differ
ence is minor variations in the flange thicknesses. 
In regions of negative bending (over the pier), the 
composite moment of inertia of the girder and rebars 
only was used in the analysis and design; the con
crete was assumed to be ineffective. Computer 
models of each of the three curved bridge schemes 
were developed using the finite-element program 
MSC/NASTRAN <i>· Noncomposite models were generated 

-,OP f'°LANGl1 f:fP. 

(&AM £°L8ME'NT.S) 

15'-c.. ,, 
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for all three schemes. Composite models, including 
concrete slab elements, were generated for Schemes A 
and C only. The bridges were supported vertically 
and radially at all three supports, and longitudi
nally at the interior support only. 

To account for cross-sectional warping, a model
ing technique was used whereby the two flanges and 
web are modeled as separate BEAM elements (7). Two 
groups of three straight flange and web BEAM ele
ments along the arc length of the curve were used 
for each girder between each cross frame to approxi
mate the curved girders. Because the model is three 
dimensional, the full-depth cross frames can also be 
modeled using BEAM elements. This is shown for the 
noncomposite Scheme A model in Figure 7. 

In the composite models, QUAD4 plate elements 
with bending stiffness through the thickness were 

Wcl!J, oyp. 
(SE"AM £" ......... "'r.s) 

5c14E."'1\E. P,... (~NCC>M~ITE.) 
FIGURE 7 MSC/NASTRAN finite-element model. 
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used to model the concrete slab. The flange and web 
BEAM elements were offset the proper distances from 
the slab-element grid points, so each girder actual
ly behaved compositely . For composite dead load, 
the elastic modulus of the concrete elements was re
duced by two-thirds (equivalent to 3n concrete) to 
account for creep. A Poisson's ratio of 0 .15 was 
assumed for the concrete. 

DEAD-LOAD RESULTS 

Noncomposite 

The noncomposite uniform dead load for all the 
schemes is 1.210 k-ft on the outside and inside 
girders, and 1.227 k-ft on the two interior girders. 
These loads include an assumed weight for the gir
ders and cross frames. The maximum and minimum non
composite MSC/NASTRAN bending moments, for the four 
girders in all t hree noncomposi te models, were com
pared to the corresponding V-load-analysis moments. 
The results for the girders of Scheme C (the most 
complicated scheme ) are summarized in Table 1. The 
corres pond ing p rimary moment s are also presented. 
The difference between the primary and V-load mo
ments rep r e s ents the effect of curvature. Note that 
the c u r vatu r e generally increases the mome nt s in 
Girders 1 and 2 and decreases the moments in Girders 
3 and 4. All of the V-load noncomposite results for 
all three schemes were within 7. 5 percent of the 
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MSC/NASTRAN results. The skewed supports had little 
effect on the accuracy of the V-load results. 

Composite 

The uniform superimposed dead load on all the 
composite girders for all the schemes is 0.411 k-ft. 
The maximum and minimum composite MSC/NASTRAN bend
ing moments, for the four girders in the composite 
Scheme A and C models, were compared to the corre
sponding V-load-analysis moments. The results for 
the girders of Scheme C are summarized in Table 2. 
The corresponding primary moments are also pre
sented. All of the V-load composite dead-load re
sults for both schemes were within B percent of the 
MSC/ NASTRAN results. The composite slab had a neg
ligible effect on the accuracy of the V-load results. 

LIVE-LOAD RESULTS 

For this particular study, it was not practical to 
develop and compare the full live-load moment enve
lopes in the gir de r s c a lculated from influenc e sur
fac es in the curved bcidge (using MSC/NASTRAN) and 
influence lines in the developed straight girders 
(using the V-load method). Therefo re , the live-load 
bending moments at only three l ocations were i nves
tigated: the negative moments at the pier, and at 
points near the maximum moment in each span. Influ-

TABLE 1 Noncomposite Dead-Load Bending Moments (Scheme C) 

Location 

Maximum Moment 
in Span 1 

Minimum 
Moment - Pier 

Maximum Moment 
in Span 2 

Maximum Moment 
in Span 1 

Minimum 
:-'lament - Pier 

Maximum Moment 
in Span 2 

Maximum Moment 
in Span 1 

Minimum 
Moment - Pier 

Maximum Moment 
in Span 2 

Maximum Moment 
in Span 1 

Minimum 
Moment - Pier 

Maximum Moment 
in Span 2 

Primary 
Moment, 

~ 

+9 7 5 .1 

-1 9 47.7 

+672 .6 

+1060.8 

-1819.8 

+552.9 

+1120.0 

-1706 . 6 

+412.9 

+1159.3 

-1571.3 

+288.2 

MSC /NASTRAN 
Moment, 
k-ft 

+1393. 1 

-2132.9 

+607 - 7 

+1205.6 

-1945,5 

+533.6 

+1007 -2 

-1687.0 

+415.9 

Girder 4 

+770.5 

-1287.9 

+319,6 

V-Load-Analysis 
Mo ment, k-ft 

+1392.6 

-2144. 7 

+6 17 .0 

+1196.9 

-1894.2 

+536.8 

+990.1 

-1633.4 

+425.6 

+000.5 

-1378.6 

+302.8 



32 Transportation Research Record 982 

TABLE 2 Composite Dead-Load Bending Moments (Scheme C) 

Location 

Maximum Moment 
in Span 1 

Minimum 
Moment - Pier 

Maximum Moment 
in Span 

Maximum Moment 
i n Span 1 

Minimum 
Moment - Pier 

Maximum Moment 
in Span 2 

Primary 
M0V1ent, 

~ 

Girder 

+369.6 

-571 .1 

+271 .2 

Girder 

+397.0 

-520. 1 

+222 .5 

MSC/NASTRAN 
Moment, 
k-ft 

1 

+520.5 

-641 .n 

+24 7. 7 

2 

+459. 3 

-565. 1 

+220.9 

V-Load-Analysis 
Mo.,en t, k-f t 

+536.8 

-655.9 

+261.4 

+451 . 9 

-549.7 

+219. 7 

Girder 3 

Maximum Moment +416.0 +3 62.8 +362.1 
in Span 1 

Minimum -490.3 -478. 7 -460.9 
Mome nt - Pier 

Maximum Moment +172.1 +172.6 +173.1 
in Span 2 

Girder 4 

Maximum Koment 
in Span 1 

Minimum 
Moment - Pier 

Maximum Moment 
in Span 2 

+436.9 

-459.5 

+127.9 

ence lines, generated by program SIMON for each 
girder, were used to determine the approximate posi
tion and direction of the loads for the minimum 
(negat i ve ) moment at the pier a nd the maximum (pos i
tive) moment in each span. Because the influe nc e 
surfaces for the curved br i dge s were not readily 
available, it was initially ass umed that the three 
loading positions are the same for the curved-bridge 
and stra i ght-girder models. 

The composite MSC/NASTRAN models were loaded with 
two AASHTO HS 20 truc ks at each of the three loading 
positions determined from SIMON. The two trucks 
were placed side by side within their design lanes 
accord ing to the AASHTO rules. For the V- load analy
sis, AASHTO stra i ght-girder live-load lateral dis
tribution factors were used to distribute the wheel 
loads to the indiv i dual gi rde rs. Applying th~ 

AASHTO rules for the c a lculat i on of these distribu
tion factors, the values for the girders in Schemes 
A and C are 

- Exterior Girders 1 and 4: 1.423 wheels and 
Interior Girders 2 and 3: 1.606 wheels. 

These f actors are used to determine the original 
prima ry live-load moment s in the developed straight 
gi rde rs. 

A separate lateral distribution factor is needed 
to c ompute the V- l oad live - load moments, In using 
the AASHTO dist r i bution fac t or s , it is assumed t hat 
a t ruck (or trucks) will eventually be pos i tioned 

+267.0 +282.6 

-351.0 -380,0 

+129.8 +129.6 

over each individual girder to cause the maximum 
possible moment to occur in t hat girder. However, 
the V-loads on each girde r--for the truck (or 
trucks) in that l oad ing pos i t i o n--act conc urrently; 
therefore, using t he AASHTO d i st r ibu t ion factors to 
compute the V-loads would overestimate the V-loads. 
Because the V-loads act concurrently, the summation 
of V-load distribution factors across the section 
should equal the number of wheels on the structure. 
Because the lateral placement of the wheels has lit
tle effect on the summation of primary moments 
across a section, a wheel-load lateral distribution 
factor for v-loads can be simply computed as 

Distrib ution Factory -lo ad= (2 · N L)/NG (9) 

where NL is the number of lanes loaded, a nd NG 
is the number of girder s in the sect i on. Ther e is 
only one V-load dis tribution factor for all the 
girders in a par ticular b r idg e . 

A comparison of the approximate MSC/NASTRAN and 
V-load maximum and mi nimum live-load bending mo
ments, fo r t he girders of Sc heme A, is given in 
Table 3. All moments a re f acto red and i nclude im
pact. These results are typical because in all 
c ase s t he V-load-analysis l i ve- loa d moments i n the 
i nterior g i rde r s wer e a nywhere f rom 20 t o 55 pe rce n t 
conse.i:va tive c ompa red to t he MSC/NASTRAN moments . 
The V- load-a na l ysis moments in t he e x terior 9 irders 
were , in most oases , within 15 percent of the 
MSC/NASTRAN values . 
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TABLE 3 Live-Load Bending Moments (Scheme A) 

Primary 
Moment, 

Location ~ 

MSC/NASTRAN 
Moment, 
k-ft 

V-Load-Ana.lysis 
Moment, k-ft 

Girder 1 

Maximum Moment +2681 .1 +3648.0 +3562.6 
in Span 1 

Minimum -1032.9 -15 25 . 4 -1335.3 
Moment - Pier 

Maximum Moment +2035.5 +2541 .6 +2400.0 
in Span 

~ 

Maximum Moment +2973.7 +2342.2 +3267.8 
in Span 1 

Minimum -1330,6 -1155.6 -1438 . 3 
Moment - Pier 

Maximum Moment +2 22 2 .o +1787. 3 +2367.5 
in Span 2 

~ 

Maximum Moment +2906.9 +1895.2 +2627 .4 
in Span 1 

Minimum -1358.6 -875.3 -1246.J 
Moment - Pier 

Maximum Moment +2137 . 3 +1528.2 +2076.0 
in Span 2 

~ 

Maximum Moment +2525.4 
in Span 1 

!.\l.nimum -1213.B 
Moment - Pier 

Maximum Moment +1833.0 
in span 2 

Therefore, in a further study, the V-load live
load analyses for Schemes A and C were redone using 
different wheel-load lateral distribution factors to 
compute the primary moments in the exterior and in
terior girders. These revised factors were simply 
calculated from the equilibrium of a straight bridge 
cross section undergoing a rigid-body rotation. This 
rotation is due to the torsional moment on the 
bridge section caused by the eccentricity of the 
wheel loads (with respect to the longitudinal cen
terline of the bridge) as the trucks are shifted to
ward the outside girder. These recalculated distri
bution factors were 

- Exter i or Girders 1 and 4 : 1.611 wheels and 
Interior Girders 2 and 3: 1.204 wheels. 

The percentage errors between the MSC/NASTRAN- and 
V-load-analysis moments for the interior girders, 
using these factors, were all reduced from a range 
of 20 to 55 percent to well within 10 percent. The 
percentage errors for the majority of the moments in 
the exterior girders were slightly increased, but 
almost all errors were on the conservative side. 

The V-load live-load moments were approximately 
the same in all the girders using both sets of fac
tors because the distribution factors for the 
V-loads in either case must always add up to the 
number of wheels on the structure. The major dif
ference was in the primary moments. Therefore, the 
V-load-method results for live load are only as good 

+1914.5 +1711.2 

-944.9 -866.6 

+1680 . 7 +1572.6 

as the distribution factors that a r e used to calcu
late the primary moments. Using the present AASHTO 
distribution factors, in most cases, gave satisfac
tory results for the exterior girders and conserva
tive results fo r the interior girders. More realis
tic lateral distribution factors have been derived 
for fatigue design (8), but more research is needed 
on distribution factors for strength design--par
ticularly for bridges with full-depth cross frames. 

CLOSED-FRAMED SYSTEMS 

All of the analyses thus far were for open-framed 
s y stems, with no horizontal lateral bracing near, or 
in, the plane of the bottom flanges. Though not 
presently required (~), bottom lateral bracing 
(structural tees or angles) is sometimes included in 
some or all of the bays of curved I-girder bridges 
to share in the wind-load resistance with the slab. 
It has also been shown that the addition of this 
bracing may improve the load distribution to the in
dividual girders in the bridge (l:Q.l. 

To confirm this, lateral-bracing elements were 
added to the MSC/NASTRAN noncomposite and composite 
Scheme A models in the plane of the bottom flange 
elements. Structural tees, WT6x32.5 with a cross
sectional area of 9.54 in. 2 , were selected. In 
Table 4, the approximate maximum and minimum fac
tored live-load moments for the Scheme A bridge, 
with lateral bracing in every other bay and in all 
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TABLE 4 Closed-Framed System Live-Load Bending Moments (Scl1eme A) 

Location 

MSC/NASTRAN 
Moment, No 

6raclnq, k-ft 

MSC/NASTRAN Moment, 
Bracing in Every Other 

Bay !outside Bays), k-ft 

MSC/NASTRAN Moment, 
Srdcing in A.ll ~ays, 

k-ft 

Girder l 

Maximum Moment +3648.0 +2504.7 +2320.6 
in Span 1 

Minimum -1525.4 -110G.3 -913,2 
Moment - Pier 

Maximum Moment +2541.6 +1768.2 +1615.6 
in Span 2 

Girder 2 

Maximum Moment +2342.2 +2175.7 +1977.4 
in Span 1 

Minimum -1155.6 -1128 . 0 -959.3 
Moment - Pier 

Maximum Moment +1787 .3 +1591.5 +1403.4 
in Span 2 

Girder 3 

Maximum Moment +1895.2 +1834.1 +1622.0 
in Span 1 

Minimum -875.3 -817.2 -818.3 
Moment - Pier 

Maximum Moment +1528.2 +1401.5 +1262.4 
in Span 2 

Girder 4 

Maximum Moment +1914.5 
in Span 1 

Minimum -944.9 
Moment - Pier 

Maximum Moment +1680.7 
in Span 2 

bays, are compared to the orig in al moments for the 
bridge with no lateral bracing. In almost all 
cases, there was a significant decrease of the bend
ing moments. 

It is apparent from these results that the bridge 
behaves as a different structure when lateral brac
ing is added1 the V-load-method aosumptions are no 
longer valid. The composite bridge section, in par
ticular, probably behaves more like a multicellular 
box-girder. Equations are available to calculate an 
equivalent plate thickness for common configurations 
of truss-type lateral bracing (11). The section 
could then be analyzed as a multicellular box-girder 
under combined bending and torsion. However, this 
analysis may be more complicated than a V-load 
analysis. Also, because the lateral bracing members 
are now primary load-carrying members, it is impor
tant that they be caref ully des igned to safely carry 
the l oads . The many addi t ional connection details 
for the bracing must also be carefully designed and 
fabricated. All of these factors must be weighed 
against the advantages that might be gained from the 
improved load distribution (e.g., smaller girders). 

TORSIONAL STRESSES 

The V-load method assumes that the internal tor
sional load on the bridge is resisted primarily by 
the shears that develop in the diaphragms or cross 
frames. Any remaining torque, however, must be re-

+1553.1 +1579.5 

-809.0 -746. 7 

+1331.2 +1321 • 7 

sisted internally by the girders. An open section, 
such as an I-shaped girder, has two basic kinds of 
torsional stiffness--St. Venant and warping. To
gether, St. Venant and warping torsion cause addi
t ional bending and s hear s t resses on the gi rder sec
t i ons that must be accounted f o r . The theory behind 
the development of these torsional stresses in open 
sections is well documented ( 12,13). For I-shaped 
girders, however , the wa rpi ng Stif:fness is usually 
much greater than the st. Venant stiffness. Thus, 
in the V-load method, the St. Venant torque and cor
responding shear stresses are neglected. It is as
sumed that all of the applied torque, which is re
sisted internally by the girders, is resisted in 
warping torsion only. This was also justified in an 
earlier development of the V-load method !]). 

In a curved bridge, the cross frames reduce the 
lateral bending, and, consequently, the warping 
stresses in the girder flanges. Thus, the cross 
frames act as lateral supports for the flanges. The 
lateral bending is caused by the radial flange 
forces due to curvature. As before, a conservative 
assumption is that the lateral distributed force on 
each flange has a constant value of M/(h•R), where 
M is the total vertical bending moment in the girder 
at each cross frame. Because the cross frames are 
assumed to act as rigid supports for the flanges, 
the approximate lateral flange warping moment at 
each cross frame can be calculated from the expres
sion for the fixed-end moment in a straight beam 
under a uniformly distributed load: 
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Mrw = (M · d2 )/(12 · h · R) (10) 

Again, M is the total vertical bending moment (pri
mary plus V-load) in the girder at the cross frame. 
The flange warping moments are equal and opposite in 
the top and bottom flanges. 

Flange warping moments computed from Equation 10 
were compared to the flange warping moments at each 
cross frame computed from MSC/NASTRAN flange 
models. Each flange of Girder 1 in Schemes A and C 
was isolated and analyzed as a straight flange 
rigidly supported at every cross frame. The flange 
models were laterally loaded with the appropriate 
distributed radial flange force for that girder, 
M/ (h•R). The results were generally well within 
10 percent of each other. 

The maximum warping normal stress at the flange 
tip can then be computed as 

(11) 

where sf is the section modulus of the flange 
about its strong axis. This stress may be signifi
cant and should not be ignored; it is usually on the 
order of 5 to 10 ksi. The maximum warping normal 
stress is combined with the maximum longitudinal 
bending stress (in the flange) to determine the 
maximum total normal flange stress. Approximate 
warping shear stresses could also be similarly de
termined but these stresses are generally small and 
may be neglected. 

In composite girders, the top flange and concrete 
slab act together to resist the top lateral warping 
moment. This warping moment is approximately the 
same magnitude as the corresponding moment in the 
bottom flange; however, the lateral-bending section 
modulus of the top flange and slab together is so 
large that the top warping stresses are negligible. 
Detailed equations are available to calculate the 
warping stresses in composite sections, if desired 
(14). 

CONCLUSIONS 

The V-load method is a widely used approximate 
method for simply analyzing horizontally curved 
open-framed highway bridges. The V-load method as
sumes that most of the internal torsional load on 
the bridge, due to the curvature, is resisted by 
self-equilibrating sets of diaphragm or cross-frame 
shears. The results presented in this paper have 
shown that the method can be extended to composite 
open-framed bridges with any general support config
uration. 

The agreement between the V-load and MSC/NASTRAN 
results (maximum and minimum girder bending moments) 
was excellent for dead load on three noncomposite 
and composite bridge schemes with varying combina
tions of radial and skewed supports. The accuracy 
of the V-load live-load results, however, was 
strongly influenced by the lateral distribution fac
tors that were used to determine the primary moments 
in each of the developed straight girders due to the 
design truck wheel loads. The results were generally 
quite conservative; however, research on lateral 
distribution factors in the near future should 
greatly improve their accuracy. 

Two limitations on the validity of the V-load 
method are noted. First, the method is only valid 
for loads such as normal highway loadings. For ex
ceptional loadings, a more detailed analysis is re
quired. Second, the present V-load method is not 
applicable to a closed-framed system with horizontal 
lateral bracing near, or in, the plane of the bottom 
flanges. Closed-framed systems probably should be 
analyzed as equivalent boxes. 
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The warping stresses and flange warping moments, 
due to lateral bending of the girder flanges, can be 
calculated with approximate formulas in the V-load 
method. For composite sections, the warping stresses 
in the top flanges and concrete slab are compara
tively small and may be ignored. St. Venant tor
sional shear stresses in the girders also may be 
neglected. 
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Prestressed Steel Beam-Concrete Slab Composite 

Bridge Units for County Road Use 
THOMAS HENDRICK, CLIFFORD CLOTTEY, and THOMAS M. MURRAY 

ABSTRAC'.r 

The results of the first three phases of a 
research project to study the behavior of a 
prestressed steel beam-concrete slab bridge 
unit specifically designed for county road 
use are presented. The units are con
structed by steel fabricators in an upside
down position, trucked to the site, and 
turned over and set in one operation. During 
fabrication, heavy steel forms are hung from 
the beams and their weight plus the weight 
of the concrete provide the prestressing. 
The advantages of this type of construction 
are that it requires less structural steel, 
less reinforcing steel, and less concrete 
for the deck. In addition, because the units 
are prefabricated, the labor force and the 
construction time at the job site are re
duced. Data are presented on concrete, re
inforcing bar and steel beam strains, and 
vertical displacements for a 1-year period 
of observation with the unit under sustained 
loading. Behavior of the unit when subjected 
to 500,000 cycles of repeated loading is de
scribed. Data from a static 50 percent 
overload test are also presented. The test 
unit performed satisfactorily, and county 
road bridges are currently being constructed 
in Oklahoma using three or four of the 
units. An additional 2-year period of sus
tained load observation followed by static 
tests to failure is planned. 

A research program is being conducted at the Fears 
Structural Engineering Laboratory, University of 
Oklahoma, under the sponsorship of the Oklahoma De
partment of Transportation, to study the strength 
and stiffness characteristics of a full-scale pre
cast, prestressed steel beam composite bridge unit. 
Two, three, or four of the units can be used to con
struct county road bridges for small stream cross
ings. The test unit is 55 ft long and 6 ft 9.5 in. 
wide and consists of two W2lx50 steel beams and a 

7.5-in.-thick reinforced concrete slab and weighs 
39,000 lb. The test unit was designed for AASHTO HS 
20 loading with a 100,000 cycle fatigue rating. 

The objective of the study is to experimentally 
investigate the behavior of the unit under various 
types of loading: sustained load, repeated load, 
and static loading to failure. The research project 
will take 3.5 years1 it began in April 1982 with 
completion scheduled for December 1985. The project 
consists of six phases: 1 year of observation under 
sustained load1 3 months of repeated loading 
(500,000 cycles)1 operating rating loading1 2.5 
years of observation under sustained dead load1 
static flexural test to failure1 and transverse slab 
strength tests. As of this date (December 1983) , 
the first three phases of the research project have 
been completed. Results are summarized herein. 

BRIDGE UNIT SPECIMEN 

The unit was fabricated by Robberson Steel Company, 
Oklahoma City, Oklahoma, using design drawings pro
vided by Grossman and Keith Engineering Company, 
Norman, Oklahoma. The concrete was cast with the 
beams in an upside-down position using a heavy steel 
form hung from the beams as shown in Figure 1. When 
the concrete had been poured and finished, an addi
tional steel weight was placed on the beams. After 
the concrete had cured, the weight and the forms 
were removed. The concrete was poured on April 1, 
1982, and the forms were removed on April B, 1982. 
The unit was moved to the Fears Structural Engineer
ing Laboratory on April 8, 1982, in an upside-down 
position using a •pole" truck, The unit was turned 
over on delivery and was placed on small support 
beams on an existing concrete slab outside the labo
ratory. Elastomeric bearing pads were placed between 
the support beams and the unit beams. The bridge 
unit and the control cylinders were subjected to 
prevailing weather conditions. Three weeks after 
the unit was poured, 4 x B x 16-in. concrete blocks 
weighing 33 ± O .1 lb each were placed on the unit 
to simulate dead load of 36 psf from an asphalt 
overlay. 

Concrete 

An air-entrained concrete with a design strength of 




