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Horizontally Curved I-Girder Bridge Analysis:

V-Load Method

MICHAEL A. GRUBB

ABSTRACT

The V-load method is a widely used approxi-
mate method for the analysis of horizontally
curved I-girder highway bridges. Previcusly,
this method had been proven valid only for
noncomposite I-girder bridges with radial
supports. Thus, a study was made to extend
the method to composite I-girder bridges
with any general support configuration. V-
load-analysis results for noncomposite and
composite I-girder bridges under dead 1load
and live load were compared with the corre-
sponding results from three finite-element
curved bridge models with different combina-
tions of radial and skewed supports. The
dead-load V-load results were extremely ac-
curate. The live-load V-load results were
strongly influenced by the lateral distribu-
tion factors that were used; specification
distribution factors gave acceptable V-load
results for exterior girders and conserva-
tive results for interior girders. More ac-
curate results were obtained with more re-
alistic factors. It is also shown that the
V-load method is not a valid approximation
for closed-framed I-girder systems with
horizontal lateral wind bracing. Approximate
expressions are presented to compute the
warping stresses in the girder flanges, an
important consideration in curved I-girder
bridges.

Horizontally curved composite I-girder bridges are
being increasingly used for highway interchanges and
river crossings. Curved bridge girders offer sev-
eral inherent advantages. They are more aesthetical-
1y pleasing than a series of straight girders along
the chords of a roadway curve, and curved girders
allow designers to use longer spans, thus eliminat-
ing much of the substructure. Curved bridges may
also result in simpler and more uniform construction
details because girder spacing and concrete slab
overhang are generally constant along the length of
the structure. One problem with curved bridge de-
sign, however, has been the difficulty in mathemati-
cally analyzing curved girders; curvature causes
torsional loadings that complicate the stress analy-
sis. Rigorous methods have been available for the
structural analysis of curved bridges, but highway
engineers generally prefer simplified techniques.

In 1963 a report was published (1) that presented
a simplified approximate analysis technique for
open-framed curved I-girder bridges [open framing
was defined originally in that report as noncompos-
ite I-girders connected by diaphragms (floorbeams)
or cross frames (K- or X-bracing) with no horizontal
lateral bracing near, or in, the plane of the bottom
flanges]. The method was modified and greatly sim—
plified for multigirder systems a few years later
(2). Agreement with more complicated analyses was

excellent. This approximate method eventually became
known as the V-load method because a large percent-
age of the torsional load on the girders is approx-
imated by sets of vertical shears known as V-loads.
The V-load method has been widely used in consulting
engineering offices. According to a 1969 survey the
method was used for the design of approximately 75
percent of the curved steel I-girder bridges in the
United States (3).

One limitation of the V-load method, however, was
that if had only been proven valid for noncomposite
curved open-framed systems with the bridge piers on
a radial alignment. In reality, curved I-girder
bridges have a reinforced concrete slab and often
depend on composite action to resist the loads.
Also, horizontal lateral bracing is sometimes in-
cluded necar, or in, the plane or the bottom flanges
to help resist wind loads (a so-called closed-frame
system) . Furthermore, many curved bridges have foun-
dations on skewed alignments because of geometric
restrictions. Thus, for the V-load method to be gen-
eral, it must be established that the V-load-analy-
sis results are valid approximations for these cases.

Recent efforts to extend the V-load method to
composite curved open-framed bridges (no horizontal
lateral bracing) with any general support configura-
tion by comparing the V-load-method results to the
results from several finite-element bridge models
are discussed. Noncomposite and composite bridges,
with combinations of radial and skewed supports,
were analyzed with both methods under the correct
dead and live loadings. The effect of horizontal
lateral bracing was also studied for selected cases.

Another important consideration in the design of
curved I-girder bridges is the warping stresses
(lateral bending stresses) that develop in the gird-
er flanges. These stresses arise from resistance to
the out-of-plane warping of an I-girder c¢ross sec-
tion that is caused by the applied torsional loads.
The approximate calculation of these warping
stresses is also presented.

V-LOAD THEORY

Conceputally, the V-load method can be considered as
a two-step process. First, the curved structure is
straightened out so that the applied vertical loads
are assumed to induce only longitudinal girder
stresses. WNext, external forces are applied to the
straight structure such that the resulting internal
forces are the same as those that exist in the
curved structure subjected to only vertical load. To
satisfy static constraints, the applied external
forces must be determined such that they result in
no net vertical, longitudinal, or transverse forces
on the total structure. Thus, in the V-load devel-
opment, the curvature forces on the equivalent
straight structure are treated as externally applied
loads.

To dillustrate this, the curved bridge system
shown in Figure 1 consists of two prismatic girders
continuous over one interior support with full-depth
cross frames spaced a distance d along Girder 1. The
oross frames provide the primary resistance to the
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FIGURE 1 Curved bridge—plan view,

torsional loads caused by the bridge curvature. They
must, therefore, be designed as primary load-carry-
ing members. Girder 1 has a radius of R, and the
distance between the girders is D. In the V-load
method, the curved girders are analyzed as isolated
straight girders with developed span lengths equal
to their respective arc lengths, Lj and Lj.

Torsional Load

A plan view of the top flange of one of the girders
in the example curved bridge is shown in Figure 2.

OF FlLANGE Fonca=ﬁ

FIGURE 2 Curved top flange—plan view,

When the flanges are assumed to resist the full mo-
ment, the axial force in the flange at any point is
equal to the bending moment on a transverse section,
M, in the girder at that point divided by the depth,
h, between the midthickness of the top and bottom
flanges. Because of the bridge curvature, these
axial forces are not collinear along any given seg-
ment of the flange. Thus, to maintain equilibrium,
radial components of the internal flange forces are
developed. These distributed radial forces have a
magnitude of M/(he<R) for small angles. HNote that
the radial forces are directed outward where the
flange is in compression (positive bending), and in-
ward where the flange is in tension (negative bend-
ing) . The corresponding radial forces in the bottom
flange are in the opposite direction. It is these
equal opposing forces times the depth, h, that cause
twisting of the girders about their 1longitudinal
axes.

Development of V-Loads

Consider a segment of the curved top flange of the
outside girder, a distance d4/2 on either side of a
cross frame. To determine the torsional load re-
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sisted internally by the girder at the cross frame,
the assumption is made (2) that the distributed ra-
dial flange force has a constant value of M/(heR)
over the segment, where M is the bending moment in
the curved girder at the cross frame. The force ex-
erted on the flange by the cross frame is, there-
fore, equal to (Med) /(he*R) for small angles.
Equal and opposite reaction forces are developed in
each flange of each curved girder in the system
() and Hy) at every cross frame (it is assumed
that no internal reactions are developed in the
web). Hj; and Hy are shown in Figure 3 acting on
the flanges of each girder on a free-body diagram of
the cross frame at Section A-A of the example curved
bridge. These forces create counterclockwise tor-
sional couples at each end of the cross frame and

corresponding clockwise resisting couples in each
girder.
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FIGURE 3 Section A-A of curved bridge.

To equilibrate the torsional couples on the cross
frame, vertical shear forces, V, develop at each end
of the cross frame as a result of cross-frame rigid-
ity and end fixity. These shear forces then react
on the girders resulting in a set of self-equili-
brating girder shears. The net effect of the shears
is to shift the total load on the curved bridge to-
ward the outside girder. These girder shears, which
are applied as the external loads to the equivalent
straight structure to account for the curvature, are
known as the V-loads. Application of the external
V-loads ensures that the internal forces in the
straight structure will be nearly the same as those
that exist in the curved structure under applied
vertical loads.

Thus, in a V-load analysis of a system, the bend-
ing moments at the cross frames, M;, and M3,, in
each of the isolated developed straight girders,
caused by applied vertical loads, are first deter-
mined by applying those loads to the straight gir-
ders. These vertical bending moments will hereafter
be referred to as primary moments. The corresponding
V-load moments caused by the V-loads, My and
M,,r are then determined by applying the V-loads,
in the proper directions, to the straight girders at
the cross frames., The final moments in the curved
girders, M; and My, are then obtained by simply
summing the respective straight-girder primary and
V-load moments. The shears, reactions, and deflec-
tions in the curved girders are also determined in
the same manner. First, however, a method is needed
to calculate the V-loads.

Calculation of V-Loads

In the calculation of V-loads, the distribution of
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cross-frame shears across the section becomes impor-
tant, and the relative stiffnesses of the adjacent
girders must be considered. The problem is simpli-
fied if it is assumed that (a) all the girders in
the section have nearly the same vertical stiffness,
{b) the girder shears across the section are self-
equilibrating, and (c¢) the loadiny wun yirders
outside the longitudinal centerline of the system is
increased, and the loading on girders inside the
longitudinal centerline is decreased. An important
assumption can then be made about the apportionment
of the cross-frame shears to the individual girders.
The assumption is that the shear on a girder is pro-
portional to the distance of that girder from the
longitudinal centerline of the bridge, which, based
on the preceding assumptions, implies a linear dis-
tribution of girder shears across the section. This
is a reasonable approximation because the assumption
that all girders have nearly the same vertical
stiffness is good for curved bridges under normal
highway loadings, However, for curved bridges under
exceptional conditions, which result in girders with
large stiffness variations, the girder-shear distri-
bution may be nonlinear and the method would not
give a valid approximation of actual behavior. For
such cases, a more detailed analysis should be made.

The calculation of the V-loads, based on the pre-
vious assumptions, will be illustrated with refer-
ence to the ftour-girder system shown in Figure 4.
All girders in the cross section are assumed to be
equally spaced. It is assumed that the section is
subjected to a net torque from the internal radial
forces, H, in each of the girder flanges. These
forces (not shown) are in the same direction as the
forces in Figure 3., It is also assumed that the
cross frames are rigid enough that the torques in
the individual girders at the section can be summed.

To equilibrate this net torque, the internal
cross-frame shears, V3, V3, and V3, are devel-
oped. These shears are shown acting at inflection
points in the cross frames, which are assumed to be
at distances a, b, and ¢ from the respective girders
(arbitrarily shown at the cross-frame midspace in
Figure 4). Because these shears develop reactions
at the adjacent girders, and the shears, V, on the
outside and inside girders are assumed to be equal
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which would be applied to the straight structure,
are equivalent to the girder shears in the curved
structure and are shown below the sgection.

Next, moment equilibrium between the inflection
points is enforced at the bottom of each girder and
results in the following equations:

Vy ra=H - h=(M,d)/R )
V, ¢« [(D/3)-a] +V,  b=(Md)/R 0)
Vi + [(D/3) ~b] + V5 » ¢ = (M3d)/R 3
V3« [(D/3) - ¢] =(Mad)/R (C]

where M;, My, M3, and M; are the final mo-
ments in the respective curved girders at the cross
frames. Substituting Vp] =V3 =V and vy =
(4/3)V, and solving the four equations simultaneous-
ly for V gives

V=(M; +M, +M; +Mg)/[(10 - R D)/©9 - d)] ()

Because the V-load moments are generally small
compared to the primary moments, the simplifying as-
sumption is made that

My + My + M3+ My =M, + My, + My, + My, (6)
Substituting these terms in Equation 5 gives

V=(Myy + Myp + Myp + Mg p)/[(10+ R+ D)/(9 - d))] M
or the more general relationship

V=3M,/C - K) ©)

where 3 is the summation of the primary mo~
ments in each girder at a particular cross frame, C
is a coefficient that depends on the number of gir-
ders in the system, and K is equal to (R+D)/d (R
and d are for the outside girder). Coefficient C for
various multigirder systems assuming equal girder
spacing is

No. of Girders

and opposite, V = Vj = V3. Invoking the assump- in System Coefficient C
tion that the girder shears are proportional to the 2 1
distance of the girders from the longitudinal cen- 3 1
terline of the bridge, the shears on the two in- 4 10/9
terior girders are equal to (1/3)V acting in oppo- 5 5/4
site directions. This also means that Vj = vy + 6 1/5
(1/3)V = (4/3)V. The factor 1/3 is a proportionality 7 14/9
factor that is based on the geometry of the bridge 8 12/7
cross section. Note that the girder shears add up to 9 15/8
zero across the section as assumed. The V-loads, 10 165/81
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FIGURE 4 Cross section—multigirder curved system.
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Equation 8 is, therefore, the general equation
for the V-loads on the outside and inside girders of
the equivalent straight structure at the cross
frames. The proper proportionality factors are ap-
plied to these values to obtain the V-loads on the
other equivalent straight girders in the section.
Special attention must always be given to the direc-
tion of the loads.

FINITE-ELEMENT MODELS

Mathematical finite-element models of the prelimi-
nary designs of three curved I-girder bridges (non-
composite and composite) with different combinations
of radial and skewed supports were developed to

check the accuracy of the V-load method. Three
curved bridge schemes, representative of common
highway structures, were chosen for the study. They

will hereafter be referred to as

Scheme A--radial supports,

Scheme B--parallel skewed supports, and

Scheme C--two parallel skewed supports and one
radial support.

Gnn%& leg, £1
1 L
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Plan views of the schemes (noncomposite) are shown
in Figure 5.

All three bridges are two-span, continuous, four-
girder structures with unequal spans and compound
radii. All schemes are initially open framed, that
is, with no horizontal lateral bracing. The span
lengths are generally different among the three
schemes and are shown in Figure 5. The radii, R;
and Ry, of each girder in each span are the same
for all schemes and are also shown. The cross-frame
spacings along the outside girder are shown on each
bridge. The spacings were chosen to minimize the
lateral bending stresses in the flanges caused by
warping of the girder cross sections. The skew
angle of the supports in Schemes B and C is approxi-
mately 41 degrees. All three bridge schemes have
the same basic cross section shown at the top of

Figure 6. '1“he specified compressive strength of the
concrete, f,, modular ratio, n, and rebar area,
A , are shown in Figure 6. A typical cross frame

is shown at the bottom of Figure 6. The cross frames
are K-braces made up of structural tees (WT5x12.5).
The preliminary designs of the girders were pre-
pared with the bridge-design program SIMON (4).
SIMON is a straight-girder design program; there-
fore, some adjustments had to be made to the program

% 200.00 | @000 AR
290117 | 5147 w8 p138 _rﬂ’—u
® | 28223 58233 W L2 0}
® | 213.50| 57350 QL2 ®
e, T o s {3
ek - -®
I-B“L t Sopes B | @
R
4‘.;
Croad - FRAME. & o2 P
Nuvssss, == 3 SPan LENGTHS, Ft
SPeN Ly | See L
®o | 18.2 8.7
OCHEME. @ | 1s.10 81.13
® | 11.83 88.10
® | 10857 BA0G
GIROER RaDI, £x.
R y
[0) 5::» (aoo'."oo o IR
@ | 9107 | (147
@ | w13 | 58233 fi3as
® | 11250 X —®
o)
Crong - FRAME s
Numeess —S ' SPAN LENGTHS , ft
S Ly | 9PN Lg
®© | 1o.00 93,12
SCHEME. B @ |110.48 | 9304
® [11.08 92.97
GRODER RaDH, £, @ | 111.60 92.9%
Ry Ra ‘9/1 ot 4@ 12,739
B | e o
’2.6’1..‘35 1.5 " ol = r g
11350 | 5730 _ .t Ap =
2 - GoAri 2
NS 1 R
L) 5{”‘
Qe
r
cmu-FeAmzj Sean LenaTHS , £+
NUM“RS Seaad | Senng Lo
110.00 | 100.00
ScHeME. C 110.48 92.58
_" 111.0% 85.10
1.0 17.%5

FIGURE 5 Curved-bridge schemes.
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FIGURE 6 Bridge-scheme cross sections.

input to achieve an appropriate design. The girders
were designed for noncomposite dead load and compo-
site dead and live loads using 50-ksi yield-point
steel and the 1load factor design method in the
AASHTO Standard Specifications for Highway Bridges
(5). All girders are nonprismatic with thicker
flanges over the interior pier. All webs are 60 in,
deep and transversely stiffened. The girder designs
for all three schemes are similar--the only differ-
ence is minor variations in the flange thicknesses.
In regions of negative bending (over the pier), the
composite moment of inertia of the girder and rebars
only was used in the analysis and design; the con-
crete was assumed to be ineffective. Computer
models of each of the three curved bridge schemes
were developed using the finite-element program
MSC/NASTRAN (6). Noncomposite models were generated

ToP FLANGE, tya
(aeam ELamenTs)

We, 8, oyp.

(BEAM Evrgmen Ts)

Borrom Fran
(BEAM Erements)

ScHeME A (NONCOMPOSITE)

for all three schemes. Composite models, including
concrete slab elements, were generated for Schemes A
and C only. The bridges were supported vertically
and radially at all three supports, and longitudi-
nally at the interior support only.

To account for cross-sectional warping, a model-
ing technigue was used whereby the two flanges and
web are modeled as separate BEAM elements (7). Two
groups of three straight flange and web BEAM ele-
ments along the arc length of the curve were used
for each girder between each cross frame to approxi-
mate the curved girders. Because the model is three
dimensional, the full-depth cross frames can also be
modeled using BEAM elements. This is shown for the
noncomposite Scheme A model in Figure 7.

In the composite models, QUAD4 plate elements
with bending stiffness through the thickness were

~CROSS FRAMES, tya
(BEAM Erements)

GE, Tra

FIGURE 7 MSC/NASTRAN finite-element model.
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used to model the concrete slab. The flange and web
BEAM elements were offset the proper distances from
the slab-element grid points, so each girder actual-
ly behaved compositely. For composite dead load,
the elastic modulus of the concrete elements was re-
duced by two-thirds (equivalent to 3n concrete) to
account for creep. A Poisson's ratio of 0.15 was
assumed for the concrete.

DEAD-LOAD RESULTS

Noncomposite

The noncomposite uniform dead load for all the
schemes is 1,210 k-ft on the outside and inside
girders, and 1.227 k-ft on the two interior girders.
These loads include an assumed weight for the gir-
ders and cross frames. The maximum and minimum non-
composite MSC/NASTRAN bending moments, for the four
girders in all three noncomposite models, were com-
pared to the corresponding V-load-analysis moments.
The results for the girders of Scheme C (the most
complicated scheme) are summarized in Table 1. The
corresponding primary moments are also presented.
The difference between the primary and V-load mo-
ments represents the effect of curvature. Note that
the curvature generally increases the moments in
Girders 1 and 2 and decreases the moments in Girders
3 and 4. All of the V-load noncomposite results for
all three schemes were within 7.5 percent of the
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MSC/NASTRAN results. The skewed supports had little
effect on the accuracy of the V-load results.

Composite

The uniform superimposed dead load on all the
composite girders for all the schemes is 0,411 k-ft.
The maximum and minimum composite MSC/NASTRAN bend-
ing moments, for the four girders in the composite
Scheme A and C models, were compared to the corre-
sponding V-load-analysis moments. The results for
the girders of Scheme C are summarized in Table 2.
The corresponding primary moments are also pre-
sented. All of the V-load composite dead-load re-
sults for both schemes were within B percent of the
MSC/NASTRAN results, The composite slab had a neg-
ligible effect on the accuracy of the V-load results.

LIVE-LOAD RESULTS

For this particular study, it was not practical to
develop and compare the full live-load moment enve-
lopes in the girders calculated from influence sur-
faces in the curved bridge (using MSC/NASTRAN) and
influence lines in the developed straight girders
(using the V-load method). Therefore, the live-load
bending moments at only three locations were inves-
tigated: the negative moments at the pier, and at
points near the maximum moment in each span. Influ-

TABLE 1 Noncomposite Dead-Load Bending Moments (Scheme C)

Primary MSC /NASTRAN
Moment, Moment, V-Load-Analysis
Location k-ft k=t Moment, k-ft

Girder 1
Maximum Moment +975.1 +1393.1 +1392.6
in Span 1
Minimum -1947.7 -2132.9 -2144.7
Moment - Pier
Maximum Moment +672.6 +607.7 +617.8
in Span 2

Girder 2
Maximum Moment +1060.8 +1205.6 +1196.9
in Span 1
Minimum -1819.8 -1945.5 -1894.2
Moment - Pier
Maximum Moment +552,9 +533.6 +536.8
in Span 2

Girder 3
Maximum Moment +1120.0 +1007.2 +990.1
in Span 1
Minimum -1706.6 -1687.0 ~1633.4
Moment - Pier
Maximum Moment +412.9 +415.9 +425.6
in Span 2

Girder 4
Maximum Moment +1159.3 +770.5 +808.5
in Span 1
Minimum -1571.3 -1287.9 -1378.6
Moment - Pier
Maximum Moment +288,2 +319.6 +302.8

in Span 2
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TABLE 2 Composite Dead-Load Bending Moments (Scheme C)

Primary MSC/NASTRAN
Moment, Moment, V-Load-Analysis
Location k-ft k-ft Moment, k-ft

Girder 1
Maximum Moment +369.6 +520.5 +536.8
in Span 1
Minimum =571 -641.0 -655.9
Moment - Pier
Maximum Moment +271.2 +247.7 +261.4
in Span 2

Girder 2
Maximum Moment +397.0 +459.3 +451.9
in Span 1
Minimum -520.1 -565,1 -549.7
Moment - Pier
Maximum Moment +222.5 +220.9 +219.7
in Span 2

Girder 3
Maximum Moment +416.0 +362.8 +362.1
in Span 1
Minimum -490.3 -478.7 -460.9
Moment - Pier
Maximum Moment +172.1 +172.6 +173.1
in Span 2

Girder 4
Maximum Moment +436.9 +267.0 +282.6
in Span 1
Minimum -459.5 -351.0 -380.0
Moment - Pier
Maximum Moment +127.9 +129.8 +129.6
in Span 2

ence lines, generated by program SIMON for each over each individual girder to cause the maximum

girder, were used to determine the approximate posi-
tion and direction of the 1loads for the minimum
(negative) moment at the pier and the maximum (posi-
tive) moment in each span. Because the influence
surfaces for the curved bridges were not readily
available, it was initially assumed that the three
loading positions are the same for the curved-bridge
and straight-girder models.

The composite MSC/NASTRAN models were loaded with
two AASHTO HS 20 trucks at each of the three loading
positions determined from SIMON. The two trucks
were placed side by side within their design lanes
according to the AASHTO rules. For the V-load analy-
sis, AASHTO straight-girder live-load lateral dis-
tribution factors were used to distribute the wheel
loads to the individual girders. Applying the
AASHTO rules for the calculation of these distribu-
tion factors, the values for the girders in Schemes
A and C are

1.423 wheels and
1.606 wheels.

- Exterior Girders 1 and 4:
- Interior Girders 2 and 3:

These factors are used to determine the original
primary live-load moments in the developed straight
girders.

A separate lateral distribution factor is needed
to compute the V-load live-load moments. In using
the AASHTO distribution factors, it is assumed that
a truck (or trucks) will eventually be positioned

possible moment to occur in that girder. However,
the V-loads on each girder--for the truck (or
trucks) in that loading position--act concurrently;
therefore, using the AASHTO distribution factors to
compute the V-loads would overestimate the V-loads.
Because the V-loads act concurrently, the summation
of V-load distribution factors across the section
should equal the number of wheels on the structure.
Because the lateral placement of the wheels has lit-
tle effect on the summation of primary moments
across a section, a wheel-load lateral distribution
factor for V~loads can be simply computed as

Distribution Factory 5,4= (2 * Np)/Ng ©)]
where N; is the number of lanes loaded, and Ng
is the number of girders in the section. There is
only one V-load distribution factor for all the

girders in a particular bridge.
A comparison of the approximate MSC/NASTRAN and
V-load maximum and minimum 1live-load bending mo-

ments, for the girders of Scheme A, is given in
Table 3. All moments are factored and include im-
pact. These results are typical because in all

cases the V-load-analysis live-load moments in the
interior girders were anywhere from 20 to 55 percent
conservative compared to the MSC/NASTRAN moments.
The V-load-analysis moments in the exterior girders
were, in most cases, within 15 percent of the
MSC/NASTRAN values.
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TABLE 3 Live-Load Bending Moments (Scheme A)

Primary MSC/NASTRAN
Moment, Moment, V-Load-Analysis
Location k-ft k-ft Moment, k-ft

Girder 1
Maximum Moment +2681.1 +3648,0 +3562.6
in Span 1
Minimum -1032.9 -1525.4 -1335.3
Moment - Pier
Maximum Moment +2035,5 +2541.6 +2400.0
in Span 2

Girder 2
Maximum Moment +2973.7 +2342.2 +3267.8
in Span 1
Minimum -1330.6 =-1155.6 -1438.3
Moment - Pier
Maximum Moment +2222,0 +1787.3 +2367.5
in Span 2

Girder 3
Maximum Moment +2906.9 +1895.2 +2627.4
in Span 1
Minimum ~-1358.6 -875.3 -1246.3
Moment - Piler
Maximum Moment +2137.3 +1528.2 +2076,.0
in Span 2

Girder 4
Maximum Moment +2525,.4 +1914.5 +1711.2
in Span 1
Minimum ~1213.8 -944.9 -866.6
Moment - Pier
Maximum Moment +1833.0 +1680.7 +1572.6

in Span 2

Therefore, in a further study, the V-load live-
load analyses for Schemes A and C were redone using
different wheel-load lateral distribution factors to
compute the primary moments in the exterior and in-
terior girders. These revised factors were simply
calculated from the equilibrium of a straight bridge
cross section undergoing a rigid-body rotation. This
rotation is due to the torsional moment on the
bridge section caused by the eccentricity of the
wheel loads (with respect to the longitudinal cen-
terline of the bridge) as the trucks are shifted to-
ward the outside girder. These recalculated distri-
bution factors were

1.611 wheels and
1.204 wheels.

- Exterior Girders 1 and 4:
- Interior Girders 2 and 3:

The percentage errors between the MSC/NASTRAN- and
V-load-analysis moments for the interior girders,
using these factors, were all reduced from a range
of 20 to 55 percent to well within 10 percent. The
percentage errors for the majority of the moments in
the exterior girders were slightly increased, but
almost all errors were on the conservative side.

The V-load live-load moments were approximately
the same in all the girders using both sets of fac-
tors because the distribution factors for the
V-loads in either case must always add up to the
number of wheels on the structure. The major dif-
ference was in the primary moments. Therefore, the
V-load-method results for live load are only as good

as the distribution factors that are used to calcu-
late the primary moments. Using the present AASHTO
distribution factors, in most cases, gave satisfac-
tory results for the exterior girders and conserva-
tive results for the interior girders. More realis-
tic lateral distribution factors have been derived
for fatigue design (8), but more research is needed
on distribution factors for strength design--par-
ticularly for bridges with full-depth cross frames.

CLOSED-FRAMED SYSTEMS

All of the analyses thus far were for open-framed
systems, with no horizontal lateral bracing near, or
in, the plane of the bottom flanges. Though not
presently required (9), bottom lateral bracing
(structural tees or angles) is sometimes included in
some or all of the bays of curved I-girder bridges
to share in the wind-load resistance with the slab.
It has also been shown that the addition of this
bracing may improve the load distribution to the in-
dividual girders in the bridge (10).

To confirm this, lateral-bracing elements were
added to the MSC/NASTRAN noncomposite and composite
Scheme A models in the plane of the bottom flange
elements. Structural tees, Wr6x32.5 with a cross-
sectional area of 9.54 in.?, were selected. 1In
Table 4, the approximate maximum and minimum fac-
tored 1live-load moments for the Scheme A bridge,
with lateral bracing in every other bay and in all
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TABLE 4 Closed-Framed System Live-Load Bending Moments (Scheme A)

MSC/NASTRAN MSC/NASTRAN Moment, MSC/NASTRAN Moment,
Moment, No Bracing in Every Other Bracing in All Bays,
Location fracing, k-ft Bay (Outside Bays), k-ft k-ft
Girderl,
Maximum Moment +3648.0 +2504.7 +2320.6
in Span 1
Minimum -1525.4 -1106,.3 -913.2
Moment - Pier
Maximum Moment +2541.6 +1768.2 +1615.6
in Span 2
Girder 2
Maximum Moment +2342,2 +2175.7 +1977.4
in Span 1
Minimum -1155.,6 -1128.0 -959.3
Moment - Pier
Maximum Moment +1787.3 +1591,5 +1403.4
in Span 2
Girder 3
Maximum Moment +1895.2 +1834.1 +1622.0
in Span 1
Minimum -875.3 -817.2 ~818.3
Moment - Pier
Maximum Moment +1528,2 +1401.,5 +1262.4
in Span 2
Girder 4
Maximum Moment +1914.5 +1553.1 +1579.5
in Span 1
Minimum -944.9 =-809.0 -746.7
Moment - Pler
Maximum Moment +1680.7 +1331.2 +1321.7

in Span 2

bays, are compared to the original moments for the
bridge with no 1lateral bracing. In almost all
cases, there was a significant decrease of the bend-
ing moments.

It is apparent from these results that the bridge
behaves as a different structure when lateral brac-
ing is added; the V=-load-method assumptions are no
longer valid. The composite bridge section, in par-
ticular, probably behaves more like a multicellular
box-girder. Equations are available to calculate an
equivalent plate thickness for common configurations
of truss-type lateral bracing (1ll). The section
could then be analyzed as a multicellular box-girder
under combined bending and torsion. However, this
analysis may be more complicated than a V-load
analysis. Also, because the lateral bracing members
are now primary load-carrying members, it is impor-
tant that they be carefully designed to safely carry
the loads. The many additional connection details
for the bracing must also be carefully designed and
fabricated. All of these factors must be weighed
against the advantages that might be gained from the
improved load distribution (e.g., smaller girders).

TORSIONAL STRESSES

The V-load method assumes that the internal tor-
sional load on the bridge is resisted primarily by
the shears that develop in the diaphragms or cross
frames. Any remaining torque, however, must be re-

sisted internally by the girders. An open section,
such as an I-shaped girder, has two basic kinds of
torsional stiffness--St. Venant and warping. To-
gether, St. Venant and warping torsion cause addi-
tional bending and shear stresses on the girder sec-
tions that must be accounted for. The theory behind
the development of these torsional stresses in open
sections is well documented (12,13). For I-shaped
girders, however, the warping stiffness is usually
much greater than the St. Venant stiffness. Thus,
in the V-load method, the St. Venant torque and cor-
responding shear stresses are neglected. It Is as-
sumed that all of the applied torque, which is re-
sisted internally by the girders, is resisted in
warping torsion only. This was also justified in an
earlier development of the V-load method (1).

In a curved bridge, the cross frames reduce the
lateral bending, and, consequently, the warping
stresses in the girder flanges. Thus, the cross
frames act as lateral supports for the flanges. The
lateral bending is caused by the radial flange
forces due to curvature. As before, a conservative
assumption is that the lateral distributed force on
each flange has a constant value of M/(heR), where
M is the total vertical bending moment in the girder
at each cross frame. Because the cross frames are
assumed to act as rigid supports for the flanges,
the approximate 1lateral flange warping moment at
each cross frame can be calculated from the expres-
sion for the fixed-end moment in a straight beam
under a uniformly distributed load:
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Mgy =M+ d?)/(12 1+ R) (10)

Again, M is the total vertical bending moment (pri-
mary plus V-l1load) in the girder at the cross frame.
The flange warping moments are equal and opposite in
the top and bottom flanges.

Flange warping moments computed from Equation 10
were compared to the flange warping moments at each
cross frame computed from MSC/NASTRAN flange
models. Each flange of Girder 1 in Schemes A and C
was isolated and analyzed as a straight flange
rigidly supported at every cross frame. The flange
models were laterally loaded with the appropriate
distributed radial flange force for that girder,
M/ (h*R). The results were generally well within
10 percent of each other.

The maximum warping normal stress at the flange
tip can then be computed as

gw i (Ml'w)/(sf) (11)

where Sg is the section modulus of the flange
about its strong axis. This stress may be signifi-
cant and should not be ignored; it is usually on the
order of 5 to 10 ksi. The maximum warping normal
stress is combined with the maximum longitudinal
bending stress (in the flange) to determine the
maximum total normal flange stress. Approximate
warping shear stresses could also be similarly de-
termined but these stresses are generally small and
may be neglected.

In composite girders, the top flange and concrete
slab act together to resist the top lateral warping
moment. This warping moment is approximately the
same magnitude as the corresponding moment in the
bottom flange; however, the lateral-bending section
modulus of the top flange and slab together is so
large that the top warping stresses are negligible.
Detailed equations are available to calculate the
warping stresses in composite sections, if desired
(;i’ .

CONCLUSIONS
The V-load method is a widely used approximate
method for simply analyzing horizontally curved

open-framed highway bridges. The V-load method as-
sumes that most of the internal torsional load on
the bridge, due to the curvature, is resisted by
self-equilibrating sets of diaphragm or cross-frame
shears. The results presented in this paper have
shown that the method can be extended to composite
open-framed bridges with any general support config-
uration.

The agreement between the V-load and MSC/NASTRAN
results (maximum and minimum girder bending moments)
was excellent for dead load on three noncomposite
and composite bridge schemes with varying combina-
tions of radial and skewed supports. The accuracy
of the V-load 1live-load results, however, was
strongly influenced by the lateral distribution fac-
tors that were used to determine the primary moments
in each of the developed straight girders due to the
design truck wheel loads. The results were generally
quite conservative; however, research on lateral
distribution factors in the near future should
greatly improve their accuracy.

Two limitations on the validity of the V-load
method are noted. First, the method is only valid
for loads such as normal highway loadings. For ex-
ceptional loadings, a more detailed analysis is re-
quired. Second, the present V-load method is not
applicable to a closed-framed system with horizontal
lateral bracing near, or in, the plane of the bottom
flanges. Closed-framed systems probably should be
analyzed as equivalent boxes.
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The warping stresses and flange warping moments,
due to lateral bending of the girder flanges, can be
calculated with approximate formulas in the V-load
method. For composite sections, the warping stresses
in the top flanges and concrete slab are compara-
tively small and may be ignored. St. Venant tor-
sional shear stresses in the girders also may be
neglected.
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Prestressed Steel Beam-Concrete Slab Composite
Bridge Units for County Road Use

THOMAS HENDRICK, CLIFFORD CLOTTEY, and THOMAS M. MURRAY

ABSTRACT

The results of the first three phases of a
research project to study the behavior of a
prestressed steel beam-concrete slab bridge
unit specifically designed for county road
use are presented. The units are con-
structed by steel fabricators in an upside-
down position, trucked to the site, and
turned over and set in one operation., During
fabrication, heavy steel forms are hung from
the beams and their weight plus the weight
of the concrete provide the prestressing.
The advantages of this type of construction
are that it requires less structural steel,
less reinforcing steel, and less concrete
for the deck. In addition, because the units
are prefabricated, the labor force and the
construction time at the job site are re-
duced. Data are presented on concrete, re-
inforcing bar and steel beam strains, and
vertical displacements for a 1l-year period
of observation with the unit under sustained
loading. Behavior of the unit when subjected
to 500,000 cycles of repeated loading is de-
scribed. Data from a static 50 percent
overload test are also presented. The test
unit performed satisfactorily, and county
road bridges are currently being constructed
in Oklahoma using three or four of the
units. An additional 2-year period of sus-
tained load observation followed by static
tests to failure is planned.

A research program is being conducted at the Fears
Structural Engineering Laboratory, University of
Oklahoma, under the sponsorship of the Oklahoma De-
partment of Transportation, to study the strength
and stiffness characteristics of a full-scale pre-
cast, prestressed steel beam composite bridge unit.
Two, three, or four of the units can be used to con-
struct county road bridges for small stream cross-
ings. The test unit is 55 ft long and 6 £t 9.5 in.
wide and consists of two W21x50 steel beams and a

7.5-in.~thick reinforced concrete slab and weighs
39,000 1b. The test unit was designed for AASHTO HS
20 loading with a 100,000 cycle fatigue rating.

The objective of the study is to experimentally
investigate the behavior of the unit under various
types of loading: sustained load, repeated 1load,
and static loading to failure. The research project
will take 3.5 years; it began in April 1982 with
completion scheduled for December 1985. The project
consists of six phases: 1 year of observation under
sustained 1load; 3 months of repeated loading
(500,000 cycles); operating rating 1loading; 2.5
years of observation under sustained dead load;
static flexural test to failure; and transverse slab
strength tests., As of this date (December 1983),
the first three phases of the research project have
been completed. Results are summarized herein.

BRIDGE UNIT SPECIMEN

The unit was fabricated by Robberson Steel Company,
Oklahoma City, Oklahoma, using design drawings pro-
vided by Grossman and Keith Engineering Company,
Norman, Oklahoma. The concrete was cast with the
beams in an upside-down position using a heavy steel
form hung from the beams as shown in Figure 1. When
the concrete had been poured and finished, an addi-
tional steel weight was placed on the beams. After
the concrete had cured, the weight and the forms
were removed. The concrete was poured on April 1,
1982, and the forms were removed on April 8, 1982,
The unit was moved to the Fears Structural Engineer-
ing Laboratory on April 8, 1982, in an upside-down
position using a "pole™ truck. The unit was turned
over on delivery and was placed on small support
beams on an existing concrete slab outside the labo-
ratory. Elastomeric bearing pads were placed between
the support beams and the unit beams. The bridge
unit and the control cylinders were subjected to
prevailing weather conditions. Three weeks after
the unit was poured, 4 x 8 x 16-in. concrete blocks
weighing 33 + 0.1 1b each were placed on the unit
to simulate dead load of 36 psf from an asphalt
overlay.

Concrete

An air-entrained concrete with a design strength of





