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Analysis of Geographical and Temporal Variation in 

Vehicle Classification Count Statistics 
DAVID L. GREENE, PATRICIA S. HU, and GLENN F. ROBERTS 

ABSTRACT 

The problem of estimating highway travel by 
vehicle type using available traffic vehicle 
classification count data is discusse•L The 
data are analyzed by using techniques of 
discrete multivariate analysis. It is deter
mined that vehicle type relative frequency 
distributions vary importantly across re
gions, highway systems, seasons, day of 
week, and time of day, but that interactions 
among these factors, which would complicate 
estimation of travel, are not of great 
importance. ·rhe only important two-way in
teractions involve highway system type; 
the.refore it is possible to derive unbiased 
estimates of vehicle travel by vehicle type 
and highway system even from a nonrandom 
sample of classification count observations, 
provided that total travel by system is 
known. Some exploratory disaggregate vehicle 
·tra,vel estimates are presenter!. 

The quantities of travel by type of vehicle anti type 
of highway sv-stem are funriamental transportation 
data. Such information is important for analysis and 
forecasting of travel and energy use and for deter
mining exposure rates in studies of highway safety. 
Vehicle survey data are useful for estimating travel 
by vehicle type, but not by highway system (l,ll. In 
order to obtain travel estimates rlisaggregateri in 
both dimensions, vehicle classiHcation count sta
tistics are needed, Classification count data con
sist of hourly counts of vehicles by type that are 
recorderi at a particular location on the highway 
system network. Determining disaggregate travel by 
vehicle and highway type is thus a problem of infer
ring vehicle miles from vehicle t:ounts. 

If there were a sufficiently large, well-iiesigned 
random sample of traffic counts, deriving unbiased 
estimates of vehicle travel would be, in principle, 
a rather simple exercise. Unfortunately, while 
there is a great volume of classification count 
data, none has been collected according to a sta
tistically designed sampling plan . The problem is 
then one of removing, to the greatest extent pos
sible, the bias inherent in the existing sample. To 
do this effectively, the variation in vehicle type 
distributions across time and space must be under
stood. If temporal and spatial r.limensions affect 
the distribution of vehicle types independently , 
t ·hen sample bias can be corrected by a simple re
weighting of the data. 

This paper is divided into three parts. In the 
f i-rst part a probabilistic model of vehicle type 
relutive frequencies, which helps to clarify the re
lationship between vehicle miles and vehicle counts 
by vehicle type, is presented. Second, the three ma
jor sources of vehicle classification data are de
scribed, and t ·he results of an analysis of the 
structure of classification count data using loq-

linear models are presented. The implications for 
using available d.ata to estimate disaggr,egate 
vehicle travel are discussed. Finally, several pre
liminary estimates of travel by 13 vehicle types and 
10 highway system classes are presented and dis
cussed. In the concluding section the interpretation 
of these estimates is discussed and important areas 
for further research are recommended. 

STATISTICAL MODEL OF VEHICLE TYPE COUNTS AND TRAVEL 

Traffic counts do not represent vehicle travel but 
rather represent density at a point on a road. Thus 
a set of assumptions must be specified by which 
vehicle travel estimates can be derived from vehicle 
count data. It is shown that if a functional class 
can be divided into homogeneous systems, then an 
unbiased estimate of vehicle type relative frequen
cies can be obtained as a weighted average of the 
estimated system relative frequencies. This result 
will be used in the section Exploratory Disaggregate 
Estimates of Vehicle Travel to estimate relative 
frequencies and travel by vehicle type for func
tional highway classes. The systems used will be 
regional functional classes classified by season, 
day of week, and time of day . The analysis of the 
variability of vehicle type relative frequencies 
across these systems in the next section will show 
that a particularly simple weighting scheme can be 
used that permit.a weights for temporal dimensions to 
be constant across systems. That the systems defined 
may in fact not be homogeneous is a persistent prob
lem that can only be solved by improved random 
sampling strategies. 

Assume that a functional highway class (see Table 
l) is divided into segments that are sufficiently 
small and homogeneous that vehicle miles on the seg
ment are equal to its length times a traf'fic count 
taken anywhere on the segment. The segment then 
forms the basic unit of analysis because there is 
nothing to be gained by subdividing it. 

A collection of segments with identical (in prac
tice, similar) traffic densities and vehicle type 
distributions are called a system in this paper. 
Clearly, a given functional highway class (e . g . , ur
ban Interstate) may be made up of several different 
systems. In fact, the same strip of road can be 
considered to belong to different systems , depending 
on the time of day or season of the year. In this 
sense a functional class has no under.Lying param
eters of its own to be estimated, but rather is 
merely a sum of individual systems. Because the goal 
is to make inferences about vehicle miles of travel 
on functional highway classes, these will be derived 
from weighted averages of inferences about the sys
tems that compose it . In particular, for the pur
poses of this study, the interest is in inferring 
the distribution of vehicle miles by vehicle type 
for each functional class. 

Assume that an observer, standing at a roadside 
recording vehicle counts for a fixed time period 
such as an hour, is observing a random process. In 
particular, if N total counts are recorded during 
the period , assume that the probability of observing 
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TABLE I Variables and Categories 

Variable 

Quarter 

Region 

Road type 

Day 

Time of day 

Vehicle type 

Number 

4 

4 

10 

2 

5 

13 

Category 

1st 
2nd 
3rd 
4th 
Northwest 
South 
North Central 
West 
Interstate, rural 
Other principal arterials, rural 
Minor arterials, rural 
Major collectors, rural 
Minor collectors, rural 
Interstate, urban 
Other freeways, urban 
Other principal arterials, urban 
Minor arterials, urban 
Collectors, urban 
Weekday 
Weekend 
5:00-9:00 a.m. 
9 :00 a.m.-3 :00 p.m. 
3:00-7:00 p.m. 
7:00-11 :OO p.m. 
11 :00 p.m.-5 :00 a.m. 
Standard and compact cars 
Subcompact cars 
Motorcycles 
Buses 
Pickups, panels, and other two-axle, four-

tire trucks 
Two-axle, six-tire single-uni! tmc~s 
Two-or-more-axle single-u nit lrucks 
Three-axle combination trucks 
Four-a xle tractor-semicombinations 
Other four-axle combinations 
Three-axle tractor, two-axle semi combina

tions 
Other five-axle combinations 
Six-or-more-axle combinations 

C1 vehicles of type 1, c2 ot type 2, up to Cm 
of type mis given by the multinomial distribution, 

(I) 

The Pk' s are the probabilities of observing a ve
hicle of type k in a sample of one, or alterna
tively, the rel.ative frequencies of type k vehi cles 
in the total population of vehicles traveling the 
given s ystem. Also, 'tis required that 

m 

In general, the total number of counts recorded 
in an hour will itself be a random v.ariable. Assume 
that the number of counts observed will follow a 
Poisson distribution. The Poisson is widely used 
both in traffic engineering and elsewhere to repre
sent random arrivals (ll: 

PX(N) = e-" · (XN/N !) (2) 

The Poisson distribution has expected value (mean) 
and variance both equal to A, Compounding the 
Poisson and multinomial disti:ibutions in this WflY 
results in a distribution in which aach of the 
vehicle type counts is distributed Poisson with 
parameter Ak ~ PkA (!l, 

(3) 
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From this model some useful i:esults concerning esti
mators of system traffic densities and vehicle fi:e
quencies can readily be de rived . 

Maximum likelihood ,;,1c1t;imators of >. and Pk can 
be obtained by taking derivatives of the log likeli
hood function, 

m 
Max log(P) = 2: [-:>..pk + Ck log(Apk) -log(Ck !)] 

~ ,Pk,k k=i 
(4) 

setting them equal to zero and solving for A and pk: 

m m 
olog(P)/iJ;!.. = - 2: Pk + (1/X) 2: Ck 

k=i k=l 

Setting these equal to zero, and because 

m 
2: Pk = 1, 

k=l 

then 

(5) 

(6) 

The unbiasedness of these estimators can be shown by 
taking expected values: 

m m m 
E(i) = 2: E(Ck) = ~ Xpk = X 2: Pk = X (7) 

k = l k=l k = l 

In general, however, the actual A will not b e known 

in order to be a ble to estimate Pk• and instead~ 
will have to be used. By using an approximation from 
M~~-1 o> ,.1_ l<\l it can easilv be shown that their 
quotient is u~biased at least up to a second-oi:der 
Taylor series approximation, 

(8) 

This result follows from showing that 

(The full pi:oof is available on request from the 
authors.) 

These estima.tors are appropriate for estimating 
the .paumeters ot a system m,,nposed of es::icntiall'/ 
homogeneous road segments. If a random sample of 
segments is t.;iken from the same system, then these 
estimatoi:s can be used to obtain maximum likel.ihood, 
unbiased estimates of the system parameters . A func
tional road class i n a given region and time period 
will most likely be composed of several systems . In 
a sense, it has no underlying parameteca of its own 
but , rather, is mei:ely a summation of indiviilual 
systems . In particular , it is cleat that the rela
tive vehicle mile fi:eguencies (fkl foe vehicle 
types k = 1, •• , , m are just the weighted averages 
of those of all systems in the class: 

(9) 

Systems are indexed by i = l, , •• , S, Ti to repre
sent total vehicle miles of travel on system i, ano 
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ri is the proportion of total functional class 
travel occurring on system i. 

Unfortunately, the actual travel on a system is 
not generally known. However, it is known that on a 
segment j travel is 

where R, is the segment length and X is the sys
tem average traffic count rate. For the system, 

Ti "' Ai ~ Qii 
j 

(11) 

If Etij is known, the maKimum likelihood, un
biased estimator of >. can be used to estimate Ti 
(this estimator will also be unbiased), Then fk can 
be straightforwardly estimated by substituting Equa
tion 11 into Equation 9. 

Suppose that N samples (a sample being, for ex
ample, a 1-hr vehicle count on a segment) are taken 
from different systems, where ni is the number of 
samples from system i. To obtain an unbiased esti
mate of the true weighted average for the functional 
class, it follows from Equation 9 that parameter 
estimates from each sample must be weighted in pro
portion to total vehicle miles from each system. 
This is readily done by using counts and system 
mileage as demonstrated in Equation 11. The impor
tant result here is that to obtain an unbiased esti
mate of the vehicle type distribution, it is only 
necessary to have traffic c:ounts and system lengths. 

STRUCTURE OF VEHICLE CLASSIFICATION COUNT DATA 

Four data bases were supplied by FHWA. One data 
base contains estimates of total vehicle miles of 
travel (VMT) by state and highway class (correspond
ing to FHWA, table VM-2). The remaining three data 
bases contain vehicle type count records from ( a) 
the Highway Performance Monitoring System (HPMS) 
case study (_&) , (bl various truck weight study (Tl~S) 
counts, and (C) various traffic counts conducted by 
states for their own purposes. 

The TWS and HPMS data are both large data bases 
of equivalent size. The HPMS contains 27,070 usable 
hourly records and the TWS contains 32,650 such rec
ords. The distribution of these records by func
tional class, however, is extremely different. The 
HPMS cases are divided about equally: 13,246 rural 
and 13,824 urban, The TWS, on the other hand, is 
heavily biased toward rural roads, with 27,158 rural 
cases and only 5,492 urban ones. Geographically, 
the TWS used for this study is more comprehensive, 
with data from 22 states, with at least 1 in each of 
the 9 census regions. Because it is a case study, 
the HPMS includes data from only four states and one 
planning region: Arkansas, Iowa, Minnesota, Wash
ington, and the Delaware Valley. In terms of traffic 
counts, the two data bases are roughly equal in 
size, with each having just more than 10 million 
counts. 

The chief problem with vehicle count data is that 
it has not generally been gathered in accordance 
with statistical sampling procedures designed to 
produce comprehensive coverage for the entire United 
States. Instead, counts have been taken for dif.fer
ent purposes and at different times under varying 
conditions. In short, what has been produced is a 
nonrandom sample. Most techniques of statistical in
rerence are designed to be applied to a random 
sample. The challenge in working with a nonrandom 
sample lies in discovering ways to eliminate the 
bias inherent in the sample (e.g., weekdays may be 
oversampled relative to weekends, or daytime hours 
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oversampled relative to nighttime hours). One aspect 
of the sample bias that cannot be corrected within 
the scope of this project is the choice of traffic 
count observation locations on the road network. I n 
terms of theory offerer! in this paper, this is to 
say that the authors may not be able to work with 
homoqeneous s ystems . From the vlewt>oint of this 
analysis, the c!loic:e o ·f t .raffic count locations must 
be assumed to be representative of or a random 
sample within a particular functional c lass ana 
region. 

Each data base was reorqanizeil int:o a table o f 
tota.l count freque ncies classHiea by quarter, <lay, 
time , region, .functional cla.ss, antl vehicle type. 
The categories of each variable useil are aiven in 
Table l. Thus the cell labeletl spring, weekday, 9:00 
a.m.-3:00 p .m., region 4, rural I nterstate, motor
cycles, would contain the sum of all motorcy<:le 
counts from all observations havinq those at.tributes 
i n the data base in question, Certain vehicle cate
gories were combined so that no variable had more 
than 10 categories, a requirement of the statistical 
software that was used. The result is a six-dimen
sional table with a total of 16,000 cells, many o .f 
which are empty for any given "lata base. I n terms 
of the theory, each cell is considered to be a homo
geneous system. 

The technique of discrete multivariate analysis 
using loq-linear models is used to analyze tables of 
frequency data cross-classified by categorical vari
ables . Consider a three-way table of traffic counts 
by vehicle type (V) , functional highway class (Cl , 
and region (R). The lower case letters i, · , k are 
used to index the levels {or categories) of the 
variables V, c, R; a nd I, J , K are the numher of 
levels in each category . Let fijk be the observed 
frequency (count) in cell i, j , k of the table (ma
trix ) • Loq-linear mo<lel i ng assumes that the loga
rithm of the expected cell count (E{Eijkl = Fijkl is 
a linear function of certain parameters associated 
with indivi<lual e1:fects of each variable ann inter
actions of variables. If the variable symbols are 
used as superscripts and the var iable indices are 
usea as subscripts to indicate the level of each 
variable, the model can be written as 

(12) 

The A's are usually called effects and the super
script identifies to which variable or interaction 
of variables the effect pertains . 'In Equation 12, 
Av, >.c, ).Rare the main effects of variables v, C, R, 
i n which ).vc, ).vn, ).CR are their two-way interaction 
and >. VCR is their three-way interaction. Clear
ly, tbe table of frequency counts contains only IJK 
cells, whereas Equation 12 specifies {l + I + J + K 
+ IJ + IK + JK + IJK) parameters. To eliminate this 
parameter redundancy, the following constraints are 
imposed: 

~ ;1.t =O, E;>..f =O, ~ ;>..f =O 
i l k 

~;,..De=}; ;,..;,{c= ~ ;.-t,,R = .. . = ~Aff<R =O 
j j i k 

~ Ai]kCR = E ADkCR = ~Ai]kCR = 0 
j j k 

(13) 

With the constraints of Equation 13, the model 
(Equation 12) has eKactly as many parameters as 
there are cells in the table. If all parameters 
were estimated, the model would fit the table ex
actly. The model (Equation 12) is termed the satu
rated model because it includes all possible ef
fects. In general, all effects are not statistically 
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significant, and thus the identification of a log
linear model consists of determining which effects 
are needed, and which A terms are superfluous. 

Generally, only hierarchical models are con
sidered. In a hierarchical model, a higher-order 
interaction effect is included only if all lower
order effects involving the var i ables in the higher
order effects are also included. Thus if AVR is in
cluded, AV and AR must also be included. When only 
hierarchical models are considererl, each model can 
be described as a minimal set of higher-order ef
fects. For example, specifying the hierarchical 
model (VC, CRJ is equivalent to the model (8, v, 
C, R, VC, CR). In this fitted model, the marginal 
sums associated with v , C, R, VC, CR, and the table 
total will exactly equal those of the original 
table. Thus in the hierarchical model including the 
parameter VR is equivalent to exaotly fitting the 
IxK marginal table formed by summing over j (the 
levels of the variable C). 

Log-linear models are useful for understanding 
the relationships between variables in a table and 
for estlmating a table of expected frequency counts 
using a fitted model. What needs to be known are 
the important relationships among functional hig hway 
class (C), season (Ql, day of week (D) , region (RI, 
and time of day (Tl, and a.lso the distribution o f 
traffic count-S by vehicle type (V). The procenure 
consists of estimating a new table that fits a sub
set of the siK-way table margins and measuring the 
degree to which it fits the original table. The 
degree of fit is measured by means of the likelihood 
ratio x• statistic, 

which is asymptotically distributed as 
degrees of freedom equal to the number 

(14) 

x• with 
of cells 

~i~~= the ~umb~r of~ rAmPterR to be estimated. 
In order to test the significance of a particular 

parameter (e.g., ;i.A8 ) in the model (Equation 
12) , the difference in x 2 is compu_ted between the 
hierarchical model that includes this term, 

and the model that includes all the same terms ex
cept ;i.AB, 

(16) 

The difference in the two models' x2 is also dis
tributed x1 with degrees of freedom equal to the 
difference in degrees of tceecfom or Lhe two modelc 
[here ( I-1) (J-1) l. By testing Equation 15 versus 
Equation 16, it is actually a test of whether A anrl 
B influence cell counts independently or whether 
they interact in determining cell counts. 

Log-linear analysis allows simultaneous interac
tion of all variables. In some cases it is reason 
able to consir3er .one variable a dependent variable 
that is affected by the other variables but does not 
influence them. In the present case vehicle type 
should be considered the dependent variable (e.g., 
vehicle type does not influence the number of counts 
on weekends versus weekdays, cat·her the rever·se) • 
When one variable is considered the dependent vari
able and all others are independent variables, the 
joint marginal of the independent variables mQst 
always be fitted. In the six-way traffic count table 
the CDTQR margin must always be fitted . Given this, 
the interest is in testing hypotheses about only 
those terms involving v. 
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I n general, t he technique of log-linear model 
analysis is applied to a random samt)le of data. When 
the data have not been collected by means of a 
simple random sample, it is necessary to fit addi
tional marginals to control for th« (act that the 
sample size (marginal sums) in some combinations o f 
categories has been determined exogenously. In the 
case of the traffic count data, the only factor that 
is in fact random is the number of counts by vehicle 
type for a g lven observation. Everything else has 
been d,etecmined by the peculiarities of the tcaf£ic 
count sample frame. This requires th.at the COTQR 
ma.rgin be fitted exactly. Fortunately, this is the 
same requirement imposed wheu V is considered tho 
dependent variable. 

The analysis of the traffic count data proceeds 
by adding terms to the null model (CDTQR) to form 
success vely more complex models involving V. I\ 
stepwise procedure of the 8MDP4F statistical soft
ware package was used. Each of the three traffic 
count data bases (BPMS, TWS, and state data) wer.e 
analyzed separately. Because of the extremely large 
sample sl2es of these data bases (on the order of 5 
to io million counts) , every conceivable effect is 
significant at commonly used significance levels 
(e.g., 0.05, 0 . 01) . The reason for this is that, in 
a very large sample, even he most trivial differ
ences can be detected with great accuracy. To 
determine which parameters are important and which 
are trivia.l , some other measure is needed. Goodman 
(l) has suggested a guasi-R 2 (coeff cient of mul
tiple determination) based on the perce.ntage reduc
tion in x • brought about by introducing an addi
tiohal parameter. In the present case he interest 
is in percentage reductions in x2 over the null 
model (CDTQR, V) brought about by adding inter-action 
teems involving V. 

Because only hierarchical models are considered, 
a shorthand notation is used in which only the high
est-order terms are mentioned. For example, the fol
lowing two ar~ aqui~alent: 

CDTQR, VCT, VCR 

and 

C, D, T, Q, R, CD, CT, CQ, CR, OT, DQ, DR, TQ, TR, 
QR, CDT, CDQ, CDR, CTQ, CTR, CQR, DTQ, DTR, 
DQR, TQR, CDTQ, CTQR, CDQR, DTQR, CDTR, 
CDTQR, VCT, VC, VT, VCR, VR, V. 

A limitation of the BMDP software (!) is that no 
more than 10 categories can be defined for a single 
variable. It was therefore necessary to combine 
three vehicle type categories. Single-unit truck 
counts, except pickups and so forth, were combined 
into one class, as were all four-axle combinatio1 s 
and five-axle combinations. 

The stepwise procedure begins with the basic 
(null) model CDTQR, V and adds terms. Results for 
the BPMS data ace given in Table 2. The individual 
effect of each variable on the vehicle type distri
bution is captured by the two-way interactions with 
V. Region and road class appear to be the most im
portant influences. Day and time effects ace only 
about one-third as potent and the quarter effect is 
almost negligible. When all the two-way effects are 
included in the model, the percentage of x• ac
counted for increases to 83. Interestingly, this is 
almost exactly equal to the sum of x• reductions 
the individual e-f·fects (84), an indication that 
interactions of higher order may not be important. 

Examination of x 2 reduction due to three factor 
interactions indicates that only the class-region 
interaction reduces x• by more than 1 percent. 
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TABLE 2 Stepwise Analysis of HPMS Traffic Count Data 

Degrees 
of Likelihood-

Mod el Freedom ratio x2 Quasi-R2 

CDTQR,V 9, 171 1,41 7,160 0.0 

Individual Two-Way In teractions 

CDTQR,VC 9,054 1,01 8,124 0.28 
CDT QR, VD 9,162 1,288,042 0.09 
CDT QR,VT 9, 135 J ,281, 126 0.10 
CDTQR, Y.Q_ 9 ,1 44 1,370,291 0.03 
CDTQR,~ 9,153 93 1,127 0.34 
CDTQR, VC, VD, VT, VQ, VR 8,964 245,229 0.83 

Individual Three-Way Interactions 

CDTQR, VT, VQ, VR, VCD 8,865 239,917 0.83 
CDTQR,VD,VQ,VR,VCT 8,598 227,79 1 0.8 4 
CDTQR,VD, VT,VR,VCQ 8,676 231 ,348 0.8 4 
CDTQR, VD, VT, VQ, VCR 8,838 182,694 0.87 
CDTQR,VC,VQ,VR,VDT 8,928 229,811 0.84 
CDTQR, VC, VT, VR, VDQ 8,937 242,053 0.83 
CDTQR, VC, VT,VQ,VDR 8,946 229,074 0.8 4 
CDTQR, VC, VD, VR, VTQ 8,856 239,964 0.83 
CDTQR, VC, VD, VQ, VTR 8,892 237 ,322 0.83 
CDTQ R, VC, VD, VT, VQR 8,910 237,410 0.83 

These results suggest that spatial variation in 
traffic distributions dominates temporal variation. 
Simple two- way region a nd road class i nteractions 
with ve hicle type reduce x 2 by 34 and 28 percen t , 
respectively. The effect of seaso n o nly r educes x 2 

by 3 percent . This sugge sts that f o r the HPMS data 
base, at least , little would be lost by ignoring the 
seasonal variation in vehicle type relative frequen
cies (not total counts, because these have been ac
counted for by the CDTQR terms) • The results also 
suggest that each factor, class, day, time, region, 
and road clas s can be considered approximately in
dependent of t he othe rs in its effect on vehicle 
type relative frequency. 

Because HPMS includes only five states covering 
four regions, the importance of region might be ex
pected to be greater than in the other data sets 
where each regional effect is the average of several 
possibly di'fferent states Second, the HPMS has by 
far the most complete coverage across all other 
variables. Th i s is simply a result of the fact that 
the HPMS i s a systematic data-gathe ring program. The 
sampling system ensured good coverage by day of 
week, s eason, t i me of day, and road c lass . The other 
data sets are not systematic a nd generally have 
large gaps (e.g., weekends at night are sparsely 
sampled) • In brief, it should be expected that the 
variable region in the HPMS data base is in fact 
representing particular states. On the other hand, 
variables such as time or day in the other data sets 
could possibly be assumed for particular states that 
reported data for odd times while others did not. 

Log-linear model analyses of the TWS counts are 
summarized i n Table 3. The general pattern is simi
lar to that pf the HPMS. Functional highway syste m 
class is the most important s i ngle factor . Region 
and time of day are cons iderably less important, and 
nay of week and quarter are almost negligible. The 
VC term alone accounts for a 31 percent reduction i n 
x 2 • All two-way interactions account for 74 per
cent as compared with 83 percent in the HPMS. Inter
actions are somewhat more important. The road class
region interaction and qua rter-region interaction 
appear to be most important. Includ i ng both reduces 
the lack of fit by 92 percent. 

The state data base analysis results show strong 
s i milarity to that of the HPMS (Table 4) • Road 
class and reg i on appear to be the most influential 

2 5 

TABLE 3 Stepwise Analysis of TWS Traffic Count Data 

Degrees 
o f Likelihood-

Model Freedom rat io x2 Quasi-R2 

CDTQR, V 3,330 870,986 0.0 

In dividual Two-Way Interactions 

CDTQR,VC 3,224 60 1,158 0.3 1 
CDTQR, VD 3,321 868,682 0.003 
CDTQR,VT 3,29 4 690,654 0.21 
CDTQR, Y..Q 3,303 825,040 0.05 
CDTQR, YR 3,303 710, 485 0.18 
CDTQR,VC,VD,VT,VQ,VR 3,125 227,259 0.7 4 

Indivi dual Thr ee-Way Interactions 

CDTQ R, VT, VQ, YR, L_Q_ 3,070 224,809 0.7 4 
DTQR, VD , VQ, VR , Y.._ 2,802 208,984 0.76 

CDTQR , VD,V'f, VR, VCQ 2,968 203,739 0.77 
CDT Q.R , VD, VT, VQ, VCR 2,915 151,177 0.83 
COTQR. VC. VQ , Vil , VDT 3.089 226,411 0.7 4 

DTQR, V , VT, VR , VDQ 3,106 225, l 76 0,74 
' DTQR, V , VT , VQ , VDR 3,107 223,694 0.7 4 
OTQR, VC, VD, VR, Y!Q._ 3,017 224,779 0.74 
DTQR, V , VD , VQ , VT R 3,017 219 ,974 0.75 

· OTQR, VC, VD, VT, VQ.& 3,035 140,305 0.84 
CDT QR, VD , VT, VQR, VCR 2,825 74,329 0.92 

TABLE 4 Stepwise Analysis of State Traffic Count Data 

Degrees 
of Likelihood-

Model Fr eedo m ratio x2 Quasi-R2 

CDTQR, V 3,942 1,25 1,697 0.0 

Indivi dual Two-Way Interactions 

CDTQR, VC 3,799 751,830 0.40 
CDTQR,VD 3,933 J ,226,458 0.02 
CDTQR,VT 3,906 1, 138,397 0.09 
CDTQR,Y..Q 3,915 I, 186,096 0.05 
CDTQR, YR 3,856 844,404 0.33 
CDTQR,VC,VD,VT,VQ,VR 3,64 1 258,141 0.79 

Individual Three-Way Interactions 

CDTQR, VT, VQ, VR, V 0 3,595 252,306 0_80 
CDTQR, VD, VQ, VR , Vt'T 3,278 163,581 0.87 
CDTQR, VO, VT, YR, y.m_ 3,395 220,831 0.82 
CDTQR, VO, VT, VQ, y__g_ 3,406 222,79 1 0.82 
CDTQR, VC, VQ, VR , YQI. 3,605 255,681 0.80 
CDTQR, VC, VT, VR, VDQ 3,615 256,210 0.80 
CDTQR, V , VT, VQ, VD R 3,624 253,473 0.80 
CDTQR, ·V , VD, YR, VTQ_ 3,533 247 ,105 0.80 
CDTQR, VC, VO , VQ VT R 3,531 233,086 0.8 1 
CDTQR, VCR, VTR,VD, VQ 3,3 10 205,838 0.84 

f actors . Time o f nay is conside rably less impor tant , 
and day o f wee k anri quarter are again almost neql i
g i ble . Two-way road class a nd regio n interactions 
with veh i c l e t ype r educe x• by 40 and 33 percent , 
respectively. Incl uding all two-way i nteractions 
accounts for 79 percen t of renuction in x• . The 
road class-time interaction with vehicle type re
duce s 1( 1 by 87 -pe r cent . Th is suggests t hat road 
class and time o f day depe nn on each other in thei r 
e f fect on vehicle type relative frequencies . 

EXPLORATORY DISAGGREGATE ESTI"\ATES OF 
VEHICLE TRAVEL 

The results of the log-linear a nalysis imply a 
simple basic structure to t r aefic count nata . The 
d i stribution of ve h icle t r affic among ve hicle types 
doe s varv across time a nd space. Bu t the only i mpor
tant i n te r ac tio n eff;ects are two-way effec ts that 
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include highway class . In terms ot the theory, this 
means that the effect of time of day does not vary 
across s ystems within a hiqhway cla ss. Theret o r e , 
to de11e lop estim.:tcs o f tra""'' by .tvoe of veh l.cle 
disaggregated by hiqhway class, the remaining dimen
s i ons can be weighted independently. Thls res ult 
was used to produce some . xperimental e s timates of 
disaqqregate regional travel. These estimates are 
experimental because biases not control led in th l s 
analysis (e.g., network location) can, and probably 
do, still influence the results. It shoul!i also be 
noted that the authors did not have complete covAr
age oc etat"s in this ou1nplo. 

The estimation process consists of t~o compo
nents : (a ) we iqht:Lnq and r:olla-psinq categories anrl 
combinlng data bases, and (bl using the tinal pro
cesserl data to estimate travel. To appreciate the 
role 01: preprocessing and weiqhting in the estima
tion process, it is llseful to begin with a oesc r i.p
tion of the second and final step. l\ssumino ~.hat 
there is either a random sample or that the vehicle 
classification count data are weighte<l to co.rrect 
f or s ample bias, the estimation of disagqC"egate ve
hicle travel is relatively straightforwaril. T.et c 
represent tratfic counts that are indexed by i " 1 , 
2, ..• , I for ve hicle tY?es; j = , 2 , .•. , J for 
r egions; and k = l, 2, ••. , K for highway F.unctional 
class. J\11 other dimensions (e.g., time o.f: day, day 
of w~e k, season) have been eliminated in the weight
ing and dimP.nsion collapsing ,:,rocP.ss . The absence 
of a subscript will be used to signify t ha t counts 
have been summed over ·that •Hmensi.on. For exa.mole , 

which is the total count for all vehicles in region 
j on functional class k. From the Cljk and Cjk• 
the relative frequencies a.re computed for each ve
hicle ty~~ , regi~~. -=!!'Yl fnn~tional class, whi.ch is 
represented by fijk• 

Recall that if there is a random sample or if the 
bias in the sample has been eliminated through 
weighting, then the vehicle miles by each vehicle 
typP. i should be proportional to fijk for all 
i " 1, 2, ..• , I , Th ' s of course applies only to the 
appropriate region and road system. Given this fact, 
and the fact that 

1 fiik = Icc1jklcjk> 
i i 

the fi'k can be used Lo distribute total VMT, 0n ~ 
given iunctional class in a particular reqion, among 
the various types of vehicles. Le.t Tik denote 
travel in region j on functional class k; ~hen 

is the estimate of disaggregate vehicle travel. If 
summed across vehicle types, the analyst wiJ.l qet 
back the total vehicle travel in region j, func
tional class k, with which he began: 

L Tijk = Tjk L fijk = Tjk' l. 
i i 

The key assumption made is that once the three
dimensional array of traffic counts Ciik is ar
rived l;lt, any bi.as in the data has ali:eady been 
removed. In general, this will not be true unless 
there is a reasonably wel.1-desiqned sample to begin 
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with. Bias in the sample may arise from three prin
cipal sources, only one of which can be corrected: 

l. Location bias, which results from collecting 
counts on an atypical location un the road net•,:crk ~ 

2, Time-space bias, which results from a nonran
dom allocation of observations over time, across 
functional classes, across regions, and even across 
states within a regioni and 

3. Missing data for any category, especially 
states or highway classes. 

Only the second kind of bias can be mitigated. This 
can be done by the weighting of categories lu ad
vance. 

·rhe weighting process is best illustrated by ex
ample. Suppose that the dimensions and categories 
given in Ta ble 1 are used. Statistica.l ana yses of 
the t hree major vehicle classification count data 
bases indicated that vehicle type frequency distri
butions vary across all these dimensions and cate
gories. For example, for any given day of week, sea
son, region, and functional class the distribution 
of traffic by vehicle type will be different at 
d if ferent times of the aay. There·fore if there are 
twice as many daytime as nighttime observations, the 
final estima P. of total travel. by vehic l e type will 
be biased toward the daytime pattern. It was also 
noted ·that the vehicle type frequency distribution 
varies jointly by functional class and time of day 
and by functional class and region. Because the 
final estimates will be by functional class and re
gion, this does not complicate matters. To get un
b.iased estimates, the weights of observa tions by 
time, day, and season need only to be corrected 
independently . 

suppose that half of the obse.rvations (records, 
not counts) were taken on weekends and hal·f on week
days. This represents sa!l\ple bias because a uniform 
distribution over time would give 2/7 on weekends 
and 5/7 on weekdays. To correct this bias a welght 
of 2 for weekends and 5 for weekdays can be speci
fied. Because it is known in advance what the dis
tribution of samples over time in an unbiased sample 
should look like , it is simple to weight categories 
of temporal dimensions. 

Unfortunately, by weighting the sample observa
tions , there is a trade-off of a reduction in bias 
for a loss in efficiency. To see this , imagine that 
there were 10 5 weekday observations i n the data 
but only 10 weekend observations. By using a 5: 2 
weighting, the bias is reduced in theory but the 
variance (decrease in reliability) of the estimate 
is greatly increased. The reason is that while 
there is a great deal of information about weekday 
travel, nQxt n nothing is known about weekend 
travel, and yet the data are used as if the analyst 
had 0.4 x 10 5 weekend observations . In practice, 
caution should be exercised when weighting 
observations when the input data are extremely 
maldistributed. In such cases it may be better not 
to try to correct for sample bias at all. 

In the same way that categories of a dimension 
can be weighted and summed , data from different data 
sets can also be assigned weights and combined. The 
weights may reflect the analyst ' s conf ioence in a 
pa.rticular data set or simply the actual number o'f 
observations in each . This allows several data sets 
to be processed ( categor ie,s weighted and d i111ensions 
collapsed) individually, combined at any desired 
point, and then further processed as a combined set. 

Three sets of disaggregate vehicle travel esti
mates by region and functional class were produced 
based on 1980 VMT by state and functional class. 
[Note that these data are from he Fffi'l"A, U.S . De-
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par\;ment o .f Trans portation (1982) • Used were tables 
of "Vehicle miles of travel classified by state and 
functional class hi9hway category" for 1980 and 
1981, ta.ble VM-1, "Annual Vehicle Miles of Travel 
and Related Data--1981," and three traffic count 
data tapes supplied by Paul Svercl of Highway Plan
ning, Highway Statistics Branch.] The first two 
sets are based on the traffic count data from the 
TWS and HPMS data bases. The state data base was 
not used because inconsistencies in its method of 
vehicle classification could not be resolved. For 
each state, tr a ffic counts are given a weight pro
portional to total state WIT. I n general, thi s 
changed the results l i ttle in comparison with counts 
net weighted by state. Finally, a combined set of 
estimates was produced based on the state VMT
weighted data from both data sets. Observations for 
a given region from the HPMS and TWS data were given 
equal weight, even though the TWS always represented 
more s tates . 

The estimates based on weighted traffic counts 
are given in Tables 5-7. Vehicle categories have 
been combined to reduce the size of the tables and 
also because four vehicle types--large cars; small 
cars; two-axle, four-tire trucks; and 3S-2 semi
trailers (18 wheelers)--account for virtually all 
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the vehicle travel. Some vehicle categories never 
achieve as much as l percent of total travel in any 
region. 

Some general patterns of. vehicle travel hold up 
across regions and data bases. For example, combina
tions or semitrailers are always most prevalent on 
rural Interstates and are less common the lower the 
order of the road system. Also, the distribution of 
total regional travel among vehicle types varies im
portantly, but not drastically, across regions and 
d a ta bases. For e xample, the West and South always 
show the most sing le-unit trucks, mostly two-axle, 
four-tire (pickup) trucks. Finally, it appears from 
these data that combination trucks may account for a 
greater percentage of total vehicle miles than pre
viously thought, poss ibly by as much as a factor of 
2 (it should be noted that the tables do not include 
local roads, which account for 14 percent of the 
1980 VMT). This holds for both the HPMS and TWS data 
bases. In 1980, the FHWA estimated that 3. 7 percent 
of total U.S. highway miles were by combination 
trucks. The explora tory estimates from this research 
are considerably higher. 

The travel estimates represented in these tables 
represent direct empirical estimates based on the 
available data. Because of problems with these data, 

TABLE 5 Estimates of VMT by Highway Category and Vehicle Type (1981), HPMS Data Only 

Vehicle Type 

Trucks 

Cars and Motorcycles Buses Single Unit Combination 

Road Type VMT (109 ) Percent VMT (109 ) Percent VMT (109 ) Percent VMT (109 ) Percent 

Rural Interstate 70. 1 59 ,3 0.4 0.3 24.5 20.7 23.2 19.6 
Rural arterial I 33.! 59.7 0.9 0.4 70.0 31.4 18.9 8.5 
Rural other 79.4 56.I I.I 0.7 51.8 36.6 9.4 6.6 
Urban Interstate 109.4 68.2 0.4 0.2 33.9 21.1 16.7 10.4 
Urban other 385.6 74.4 2.0 0.4 l.!11.. 22.7 12 .9 2.5 

Total 777.6 67.0 4.8 0.4 297 .9 25.7 81.l 6.9 

TABLE 6 Estimates of VMT by Highway Category and Vehicle Type (1981), TWS Data Only 

Vehicle Type 

Trucks 

Cars and Motorcycles Buses Singe Unit Combination 

Road Type VMT (109 ) Percent VMT (109 ) Percen t VMT (109 ) Percent VMT (109 ) Percent 

Rural Interstate 77.7 57.6 0.4 0.3 26.7 19.8 30. 1 22.3 
Rural arterial 177.9 67.8 0.5 0.2 60.6 23.1 23.3 8.9 
Rural other I 10.7 70.1 0.6 0.4 34.8 22.0 I 1.9 7.5 
Urban Interstate 117.8 73.4 0.3 0.2 26.4 16.5 15.9 9.9 
Urban other 355.7 76.l Q,2_ 0.2 96.6 20.7 14.0 3.0 

Total 839.8 71.0 2.7 0.2 245.1 20.7 95.2 8. 1 

TABLE7 Estimates of VMT by Region and Vehicle Type (1981 ), HPMS and TWS Data Combined 

Vehicle Type 

Trucks 

Cars and Motorcycles Buses Single Unit Combination 

Region VMT (I 09 ) Percent VMT (109 ) Percent VMT (109 ) Percent VMT (I 09 ) Percent 

Northeast 132.9 79.2 0.9 0.5 23.7 14.1 10.3 6.1 
South 286.6 63.7 1.4 0.3 118.0 26.2 43 .8 9.7 
North 242.3 72.5 LO 0.3 66.7 20.0 24.1 7.2 
West 147.0 66.6 0 .6 0.3 63.2 28.6 10.0 4.5 

Total 808.8 67 .0 3.9 0.3 271.6 23.2 88.2 7.5 
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it is not possible to quantify the accuracy of these 
estimates with any precision. Three of the four re
gions are missing data for one road type. The 
Northeast and South ar.az !!'!sAing mi,nor rural collec
tor data, and the West is missing data for other 
urban expressways. In addition, not all states are 
represented, and there are good reasons to believe 
that routes high in truck traffic were oversampled. 

CONCLUSIONS 

Vehicle classification count data are th~ AOle 
source of information on vehicle travel by type of 
vehicle, highway system class, and geographical 
area. Although a great deal of classification count 
data has been collected, it has not been collected 
according to statistically unbiased sampling proce
dures, and this presents serious problems for esti
mation of vehicle travel. Discrete multivariate 
analysis of the classification count data has re
vealed a simple structure to the variation in ve
hicle type distributions across time and space. 
Vehicle type relative frequencies vary by region, 
highway system, day of week, time of day, and sea
son. There are also important interactions between 
highway class and region, and highway class and 
time. Vehicle type relative frequencies vary most 
across the geographical dimensions (regions and 
highway systems) , although temporal variations are 
also important. The combination of all main effects 
and two two-way interaction effects accounts for 
about 90 percent of the variation ( as measured by 
reduction in x 2 ) in vehicle type relative frequen
cies in three different vehicle classification count 
data bases. 

This result implies that sample bias in classifi
cation count data along these five dimensions can be 
corrected relatively easily if vehicle travel by 
highway i;;l ass and region, as well as by vehicle 
type , is being estimated. This can be done by ap
propciately weighting observations according to the 
time-space distribution of the road network. Region 
and functional highway system were the only geo
graphic dimensions used in this analysis. Because 
it is not necessary to aggregate over these dimen
sions, there is no need to develop weights for them. 
Weights could easily have been computed, however, 
based on highway system mileage by region. 

An important geographfo factor not controlled in 
this analysis is the particular location of the 
traffic count on the given highway class. In prin
ciple, to obtain unbiased estimates of vehicle type 
reJ.ative frequencies, locations for observing clas
sification counts should be randomly distributed on 
the hiyhway system. This i~ the most important un
known factor in estimating vehicle travel £rom 
available classification count data. Another impor
tant issue d;serving further attention is the fact 
that although weighting factors can remove sample 
bias, they also tend to increase the variance of es
timators, especially when the sample is extremely 
maldistributed. 

Experimental estimates of disaggregate vehicle 
travel by 4 census regions and 10 FHWA highway sys-
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tern classes were derived by using data from the HPMS 
and TWS data bases. The estimates suggest a much 
higher evel of combination truck travel than offi
cial FHW!>. estimates. Because of the way the data 
were collected , there ls tt':asor. to b~lie~e ~ at t he 
classification count estimates may be biased by a 
selection of locations on the highway network with 
above-average levels of truck traffic. ~his question 
deserves further attention . 

The ability to estimate highway travel by veh icle 
type is limited by (a) a lack of comparable data for 
all states, (b) the gross spatial a nd temporal 
biases of existing traffic classification count 
samples , and (c) the unknown uias due to oho ice of 
observation location on the network. Some of the 
problems caused by a and b can be ameliorated and to 
some extent quantified by further analysis. The 
problem of locational biaG and the final resolution 
of other data problems can ultimately be solved only 
by the use of statistically valid sampling tech
niques. 
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