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Pricing Options for Urban Transportation Modes 
ATHANASSIOS K. BLADIKAS and WILLIAM H. CROWELL 

ABSTRACT 

Urban transit is in many ways in serious financial trouble, and its primary 
source of revenue--fares--is politically difficult to establish and change. In 
addition to raising funds, fares must often redistribute income, spur local 
development, and help reduce automobile use. This multipurpose situation is 
similar to the one that Boiteux handled in his examination of the publicly 
owned French electric utility industry. Bailey and Willig did similar analyses 
of long-distance telephone rates. The goal was to have prices that efficiently 
related to services' marginal costs and elasticities of demand, generated an 
acceptable level of profits (or deficits), and maximized the public's welfare 
from these services. The pricing analyses presented follow a similar approach; 
the Metropolitan Transportation Authority in New York City is used as the case 
study. Net benefit changes (revenues plus consumer surplus) were shown to be 
greater from efficiently set peak and off-peak fare differentials than for flat 
fares. These results were found to be fairly insensitive to changes in the fare 
elasticities of demand. In fact, the differential-fare approach looked best 
when the gap between peak and off-peak elasticities and marginal cost values 
was greatest. This was not an attempt to find the optimal or welfare-maximizing 
set of fares, but rather to show which transportation pricing options maximized 
public welfare within given budgetary constraints. 

Considerable attention has been given in recent 
years to the manner in which transportation modes 
are priced in urban areas. Growing transit deficits, 
overcrowded highway networks, the high social cost 
of capacity expansion, and the growing realization 
that current pricing methods are often inefficient 
have all combined to make the revision of such meth
ods a regular part of public policy discussions. In 
addition, the notion of viewing transportation ser
vices in a systems context rather than merely as 
separate modes has received widespread acceptance. 
The field of transportation, and public utilities in 
general, is greatly complicated by the multiple and 
frequently changing policy goals that pr icing, fi
nancing, and subsidization decisions often face. 
Fares may be raised one year to decrease the def
icits for fiscal reasons and then lowered in an
other year in order to reduce environmental pollu
tion, relieve congestion, or stimulate economic 
activity; both fare change decisions affect the de
mand not only for transit but also for private auto
mobile use, Attempts to provide transportation ser
vices efficiently in such a policy setting are often 
difficult and frustrating. 

In the classical economic sense, a particular 
mode is being used inefficiently when the demand or 
supply or both of its services are greater or less 
than they would be if the true cost and demand func
tions were known and reflected in the pr ice struc
ture. In terms of pricing theory, a system of inter
acting modes would operate efficiently if the prices 
charged in each market were set equal to marginal 
costs ( the cost increment required to provide an 
additional unit of service). This concept is par
ticularly important for transport modes because of 
the typical peaking of demand during rush hourR th~t 
requires a physical plant and staffing level well 
above that required in off-peak periods. The concept 
of marginal cost pricing is therefore often referred 
to as "peak-load" and "congestion-cost" pricing and 
has received extensive treatment in the transporta
tion economics literature Cl-ll. However, marginal 

cost pricing for transportation services may lead to 
operating deficits that are beyond available subsidy 
levels, forcing planners to deal with what econo
mists call "second-best" pricing. On the basis of 
the original insights of Dupuit, Hotelling (4), and 
Steiner (5), methods were sought to solve the 
paradox of-industries in which costs are decreasing. 
These analyses were furthered by Baumol and Bradford 
(_§.) , who showed in probably the most widely quoted 
analysis of the problem what Ramsey had demonstrated 
in 1927 Cll, namely, that any government entity (or 
private firm) that wanted to use efficient (but not 
strictly marginal cost) pricing schemes could use 
both demand elasticities and marginal cost informa
tion to determine how the fare in each market should 
differ from the marginal cost. 

Most of the efforts using this type of Ramsey 
pricing approach have dealt with the pri.cing 
policies of public utilities, with a very important 
contribution coming from Marcel Boiteux of France, 
who demonstrated how the electric utility industries 
could determine prices in their various service 
areas (_!!) • Willig and Bailey (2) developed a multi
service pricing model for various interrelated tele
phone services that maximized the consumer benefits 
of an existing system within specified budget con
straints. It is this type of analytical approach 
that is pursued in this paper. 

CONSUMER SURPLUS AND THE PRICE ELASTICITY OF DEMANn 

The operating position of a transit agency could 
generally be shown as in Figure 1 by fare and output 
levels F2 and Q2 so.mewhere between the breakeven (Q1l 
and optimum (Q3 ) levels. As output is expanded by 
lowering the fare, the gap between average cost (AC) 
and average revenues increases; for example, BD in
creases and DF decreases as a greater deficit is in
curred for the sake of a more optimal pricing scheme. 
The demand curve (D'D") indicates what consumers are 
willing to pay for the provided services. According 
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FIGURE 1 Transit supply and demand functions. 

to Hicks' concept of "equivalent variation," the con
sumer welfare gained from a reduction in price would 
be equal to the maximum amount that a consumer would 
pay to bring about the reduction (10) • The surplus 
value at any fare level Fi would equal 1/2 (OD' -
OFi) Qi, which clearly increases as the fare 
is lowered. 

An operator or public official wanting to maxi
mize this type of consumer benefit (which is closely 
associated with ridership) faces a number of con
straints. In terms of allocational efficiency, by 
lowering the fare below F3 , riders would not be 
covering marginal costs (MC). This constraint places 
an upper limit on welfare at fare level F3 = MC. 
The second limitation is that caused by the exis
tence of increasing returns (decreasing average 
costs), which produce deficits equal to CE when 
prices are equal to marginal cost without any price 
differentiation (i.e., the same price at all times). 
Therefore, if one wishes to eliminate deficits, 
fares have to increase to F1. Thi s places a lower 
limit on welfare, at least for publicly owned sys
tems that may not be profit seekers. This does not 
mean that increasing returns and optimal pricing 
cannot be compatible with a profitable operation. 
one can envision a hypothetical shift in the demand 
function of transit, possibly caused by a major 
increase in retail gasoline pr ices, for example, to 
D*D** in Figure 1, where a fare set equal to margin
al cost would also be equal to average cost. At such 
an expanded output level, the operator in this 
hypothetical situation would be functioning with the 
lowest possible average costs. 

Measurement of the consumer surplus level in a 
market is a direct fallout of the estimation of the 
demand function for that good or service, and the 
demand function can be determined from estimates of 
the price elasticity of demand. The important factor 
here is that there are significant differences in 
transit demand elasticities for different modes and 
in various transl t "markets," especially as delin
eated by such factors as time of day, day of the 
week, and direction. Even with transit elasticities 
given, assumptions need to be made about the overall 
shape of the demand functions. As demonstrated in 
Figure 1, one could assume that the relation between 
price and demand is a linear one (D'D"), with a 
constant slope (dQ/dF) but with elasticity increas
ing with pr i ce [e.g., with E = - (dQ/dF) • (Fi/ Qi), as 
Fi + D' and Qi + O, Fi/Qi i ncreases , and with dQ/dF 
constant, this results i n a s t eadi ly increasing fare 
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elasticity as fares increase]. A second assumption 
could be that fare and demand adjustments will occur 
in the same proportion over the full range of fares, 
for example, that elasticity wil l Oe constant (curve 
D2D2 in Figure 1). This type of hyperbolic function 
would result in an elasticity greater than that of 
the linear function for fare decreases and less than 
that for fare increases. In Figure 1, after a fare 
increase from F2 to F1 , the new demand level Q1c 
under the constant elasticity assumption is greater 
than Q1 under linear assumptions, whereas the reverse 
holds for Q3c and Q3 for a f are dec rease to F3 • Con
cumer ourplus is also grea ter under the eonsLduL 

elasticity ass umptions, bec ause the area under D2n2 
is not only greater than that under D'D" at all fare 
levels but is actually infinite (the demand curve 
D2D2, as a hyperbolic function, will never intersect 
the fare axis). A linear demand function will be of 
the following form: 

Q =a+ bF (1) 

and the constant elasticity demand functions will be 
of the following form: 

Q = KF1l 

where 

Q demand level (ridership), 
F = fare, and 
E fare elasticity. 

OUTLINE OF RAMSEY PRICING METHODOLOGY 

(2) 

To set the stage generally for this analysis, assume 
an operation with a set of n markets with price and 
output sets (P1, P2, ••• , Pnl and (x1, x2, ••• , xn>• 
If the goal were to maximize some measure of consumer 
surplus as a function of market pr ices such 
as W = f(p1, P2, ••• , Pnl, sub ject to t he prof it con
straint B = g(p1 , p2 , ••• , Pnl = M, t hen, by using 
the LaGrangian mul tiplier method , it wou l d be desir
able to maximize the following function: 

h = f(Pi, P2, ••• , Pnl 
+ A [g(pl' P2, ,,,, Pn) - M] (3) 

Therefore, consumer surplus can only be maximized 
if 

or 

for all i (4) 

According to the Hicksian concept of consumer sur
plus, the welfare of an individual consuming quantity 
xl at price p1 would be increased at a rate equal to 
x1 for a one-dollar pr ice reduction and he would 
therefore be willing to pay up to that amount to 
bring about the pr ice change (1QJ , Accordingly, for 
a change in price of Pl• the rate of change in 
welfare is 

(5) 

From Equations 4 and 5, 

(6) 

If MCi, MRi, and Ei represent marginal cost, marginal 
revenue, and price elasticity of demand, respec
tively, then 

(7) 
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This assumes that api/axi = O; that is, that the 
cross-elasticity of demand 6etween markets is zero. 

Marginal profit can now be defined as follows: 

(8) 

Combining Equations 6, 7, and 8 and using the 
definition of the elasticity of demand [Bladikas and 
Crowell give a complete derivation (11) J, the fol
lowing expression may be obtained: 

(9) 

where K = (1 + >.J/L 
The relationship shown in Equation 9 states that 

for every good or service i, the amount by which 
price Pi varies from marginal cost will depend on 
the elasticity of demand for that good. If all Ei's 
are equal, pr ices in all markets will differ from 
marginal cost by the same proportions. However, when 
demand elasticities differ, these proportions will 
differ; Ei thereby determines, along with marginal 
cost, the proper level of prices (or fares in this 
context) i for example, as Ei increases, (Pi - MCil 
f Pi decreases, and 

(10) 

where K is the Ramsey pricing constant. 

THE BASIC PRICING MODEL 

On the basis of what has been presented so far, a 
set of computer-based models was developed to recal
culate the fares of a given set of urban transporta
tion "markets" so that Equation 10 is satisfied for 
all of them. The following data must be provided for 
each transit market to be analyzed: 

' Marginal cost, 
• Current fare levels, 
'Ridership levels, and 
• Price elasticity of demand. 

Alternative values for marginal costs and elastic
ities are provided where no exact measurements are 
available to allow the model to perform a sensitiv
ity analysis of different combinations of these 
values. After the foregoing information has been 
read, the model applies the Ramsey pricing methodol
ogy for each combination of the given marginal cost 
and elasticity alternatives. The procedure begins 
by the calculation of total profit (or loss) from 
all modes and time periods at the current fare and 
ridership levels, as follows: 

SUMP 

where 

I J 
l l Qij (Fij - Cijl 

i=l j=l 

SUMP = total profit (or loss), 
Q = ridership, 
F c fare, 
C marginal cost, 
I = number of modes, and 
J = number of time periods. 

(11) 

After the total profit (or loss) has been ob
tained, the demand functions for every mode and time 
period are determined from Equation 1 or 2 depending 
on the user's choice. The iterative process begins 
by setting the demand for the first mode and time 
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period equal to a very high value and obtaining the 
associated Ramsey constant (R) • By using the Ramsey 
constant, the elasticities, marginal costs, new 
prices (fares), and quantities (ridership) are com
puted for all modes and time periods in a way that 
will satisfy Equation 10. The new prices and demand 
levels determine new profit levels, which are added 
and compared with the initial total profit (SUMP). 
If they are not at least as large as SUMP, a new 
iteration begins by decreasing slightly the very 
high demand of the first mode and time period and 
repeating the process. The iterations continue until 
the current profit becomes at least equal to the 
original one. When this happens, control is passed 
to a subroutine that calculates and prints the fol
lowing output variables for every mode and time 
period: 

• Original 
• Original 
• Original 

ELNEW), 

and final fares (PRICE and PNEW), 
and final ridership (QUANT and QNEW), 

and final elasticities (EL and 

' Marginal cost (COST), and 
• Percent changes in ridership, revenue, fare, 

and welfare (%DQ, %DREV, %DP, %OW). 

In addition to the foregoing information the 
output contains the following cumulative results for 
all modes and time periods: 

' Total change in revenues (CHREV), 
• Total change in cost (CHCOST), 

Total change in profits (CHPROF), 
Total change in welfare (CHWELF), 

' Total net change (CHNET, the sum of CHPROF 
and CHWELF), and 

' Effectiveness index (EINDEX, the ratio CHNET/ 
CHPROF). 

The process is repeated until all combinations of 
alternative elasticity and marginal cost values have 
been analyzed. 

Minor modifications of the algorithm produce a 
variety of pricing models that can be grouped into 
four major categories according to the following: 

1. The programming language and implementation 
hardware (FORTRAN for mainframes and BASIC for mi
crocomputers), 

2. The shape of the demand function used (linear 
or hyperbolic) , 

3. The iteration procedure (constant increments 
or increments that are proportional to demand and 
inversely proportional to elasticities), and 

4. The presence or absence of special con
straints on fares or ridership for any mode or time 
period. 

Any model type can be picked from each of the 
four categories. It is possible to use, for example, 
a mainframe-based, constant-elasticity, constant
iteration-increment, unconstrained model. Therefore, 
there is a total number of 16 (2 4) possible model 
types. The variable-iteration-increment models are 
simply faster but less accurate than the constant
iteration-increment models provided that the con
stant increment is small (about 1/ 100 for the rider
ship for linear demand and 1/100 of 1 cent for 
hyperbolic demand functions). Full program listings 
may be found elsewhere (11). 

A MULTIMODAL CASE STUDY 

The New York City area was chosen for an application 
of the model in a large, mul timodal urban setting. 
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Every conceivable mode of public transportation 
exists in New York City, but not all existing modes 
were included because some are insignificant when 
compared with ntherr; i n ·t'=!rms of their annual rider
ship. The Metropolitan Transportation Authority 
(MTA) is the major provider of public transportation 
services in the New York City area . The multimodal 
nature of the MTA allows the results produced by the 
pricing models to validate one of their major aims-
to efficiently adjust prices while maintaining the 
total system's profit (or deficit). In an area where 
different organizations own and operate the commuter 
railroad, the tolled road facilities, thP haRPR, and 
the rapid transit system, it would be institution
ally more difficult to implement a Ramsey pricing 
approach, because some modes may benefit consider
ably more than others. In New York City, however, a 
resident of Forest Hills working in Manhattan's 
financial district may go to work by (a) driving a 
car and paying a toll collected by the Triboro 
Bridge and Tunnel Authority (TBTA), (b) taking the 
Long Island Rail Road (LIRR) commuter rail line, or 
(c) using the city's transi t system run by the New 

York Ci ty Tra ns i t Authority (NYCTA). But TBTA, LlRR, 
and NYCTA ar e all MTI\ subsid i a ries, a nd a change in 
the price struct ure will simp ly rea llocate revenues 
in the various MTA "pockets." Shifting of funds 
among MTA entities has been in effect since the 
1960s through the use of TBTA surpluses to finance 
deficits of the NYCTA and commuter rail operations. 

Inpu t Da t a 

The data used for this multimodal case study are 
presented in Tables 1-3. Prices do not reflect the 

TABLE 1 Multimodal Case Input Data: Price 
and Ridership 

Mode Price($) 

Subway 0.75 
Bus 0.75 
Commuter rail 2.00 
Tunnel and bridge 1.25 

Ridership 
(000,000s) 

Peak Off Peak 

623 415 
334 281 

43 40 
so 186 

Transportation Research Record 1012 

latest increases that became effective in J anuary 
1984. Only two time periods are used (peak weekday 
and off peak for all other times) and only the four 
major modeo within the MTA care considered. r,,-iCTA: s 
bus and rail operations are treated as two separate 
modes, whe r eas LIRR was the only commute r rail oper
ation. " Tunnel and bridge" r epresents vehicular 
traffic entering Manhattan from Queens, Brooklyn, 
and the Bronx via TBTA tolled facilities. 

Ridership estimates were obtained from UMTA Sec
t ion 15 reports and annual reports of TBTI\ and LIRR. 
Three elasticity alternative s are used. Basically, 
there ~rP two way& of determining c l~c t icities: use 
values from ridership changes due to fare changes in 
either the system under consideration or similar 
systems in other areas. For New York's transit sys
tem, the Regional Plan Associa tion (RPA) (12) esti
mated demand func tio1,s a nd rela t ed price elastic
ities of demand that were -0.16 for the subway and 
-0.31 for the bus services. However, these are over
all elasticities across all time peJiods, and other 
studies (13-16) show that no demand formula is ap
plicable "'Tn---;11 situations. Such factors as the 
transit mode in question, trip purpose, time of day 
or day of the week, and similar s p ecifics effec
tively create an array of demand situations or 
"rnarkets. 11 

The elasticity values for the subway and bus 
modes presented in Table 2 vary about the average 
figures suggested by the studies just mentioned. The 
base elasticity figure for the TBTA tunnels and 
bridges was based on these studies and on a brief 
analysis of the changes in demand levels after toll 
increases. Unfortunately, no data were available on 
elasticities by time of day, so it was assumed that 
the ratio of peak to off-peak elasticity was the 
same as that for subway services. The same ratio was 
used for the commuter rail elasticities, a basic 
figure that was extrapolated from e s timates made by 
the New York State Department of Trans pn~t~t i on (17) . 

The marginal cost values calculated for each of 
the transport services are rough estimates. No 
rigorous empirical attempt was made to determine 
these cost functions, because data were not suffi
cient for the systems in question. For this reason, 
a range of cost values was tested and it is assumed 
that marginal costs for all modes and time periods 
remain constant over the range of demand levels 
being considered. 

TABLE 2 Multimodal Case Input Data: Cost and Elasticity Alternatives 

Cost($) 

Period Mode 2 

Peak Subway 0.69 0.92 
Bus 0.71 0.9 4 
Commuter rail 3.00 4.00 
Tunnel and bridge 0.70 0.80 

Off peak Subway 0.35 0.46 
Bus 0.35 0.47 
Commuter rail I.SO 2.00 
Tunnel and bridge 0.35 0.40 

3 

I. I 5 
1.18 
5.00 
I.I 0 
0.58 
0.59 
2.50 
0.55 

Elasticity (absolute 
value) 

2 3 

0.08 0.10 0.13 
0. 15 0.20 0.25 
0.15 0 .20 0.25 
0.08 0.10 0.13 
0.15 0.20 0.25 
0 .30 0.40 0.50 
0.30 0.40 0.50 
0.15 0.20 0.25 

TABLE 3 Multimodal Case Input Data: Likely Demand Functions 

Mode 

Subway 
Bus 
Commuter rail 
Tunnel and bridge 

Linear 

Q = 1.261 *109 - 2.24*t08(F) 
Q = 8.05*108 - 2.54*J08 (F) 
Q = l.09*108 - I.27*107 (F) 
Q = 2.74*107 - 3.02*I07 (F) 

Constant Elasticity 

lnQ = 20.734- O.I 6(1nF) 
lnQ = 20.191 - 0.3I(lnF) 
lnQ= 18.019- 0.3l(lnF) 
lnQ = 19.244- 0. 16(1nF) 
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Given the current prices and quantities and the 
basic overall elasticities, linear (Equation 2) and 
constant elasticity (Equation 3) demand functions 
can be produced for all modes, as shown in Table 3. 
The linear demand functions imply that the fare at 
which ridership will be eliminated (Fe) is $5.43 for 
subways, $3.17 for buses, $8.45 for commuter rail, 
and $9.06 for tunnels and bridges. These values 
imply further that current consumer surplus (1/2 x 
(Fe - F) x Q] is $2.45 billion for subways, $0. 74 
billion for buses, $0.27 billion for commuter rail, 
and $0.92 billion for tunnels and bridges. The total 
consumer surplus is therefore $4.4 billion. These 
figures are given to provide a base for comparing 
the relative magnitudes of the output variables 
produced by the models. 

Results from the Constant-Iteration-Increment Models 

Only results from the constant-iteration-increment 
models are presented, because the variable-itera
tion-increment models are simply faster and cruder 
tools. Because the prices suggested by the models 
are not very different for the various cost and 
elasticity alternative combinations, the results of 
the first cost and elasticity alternative only are 
shown in Table 4. 

It is obvious from the results that all low-elas
ticity peak periods are charged more than the high
e lasticity off-peak periods. Some of the price 
changes are rather significant. For example, peak
period commuter rail passengers are charged 72 per
cent more and off-peak bus passengers have their 
fares reduced by 39 percent. However, in spite of 
the large individual price variations, the model 
produces minor overall changes for the average 
transportation services user in the area. If rider
ship and revenues for all modes and time periods are 
added together, under the original pricing scheme 
1.972 billion trips are made, which generates $1.701 
billion of revenues. Thus the price of the average 
trip is 86.24 cents. If the prices suggested by the 
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model are implemented, total ridership increases by 
1. 6 percent to 2. 004 billion, the average trip be
comes 2.2 percent less expensive (84.35 cents), 
total revenues are reduced by O. 5 percent or $8. 9 
million, and consumer surplus is increased by $18 
million, or 0.4 percent. Therefore, if a systems 
approach is taken, the overall changes are for all 
practical purposes negligible. This is a perfect 
illustration of the impacts of Ramsey pr ices. They 
simply redistribute revenues among the various 
"markets" by charging differential prices, but with
out producing any significant overall changes. 

MODELS WITH CONSTRAINTS 

An area's transportation system not only satisfied 
the basic mobility needs of its population, but also 
can be us-ed to serve or promote other purposes and 
causes. Therefore, although the prices suggested by 
a Ramsey pricing methodology may make economic 
sense, there might be other overriding concerns that 
dictate a different price structure. Peak-period 
vehicular traffic may have to be limited because of 
environmental reasons, whereas it might be desirable 
to increase off-peak travel for economic development 
reasons. Because of polit i cal realities, transit 
fares may not be able to increase above a certain 
level and may not fall below another because of 
system capacity constraints. The constrained ver
sions of the models provide the user with a tool 
that can model such special local situations. Only a 
ridership constraint example is presented here. A 
variety of constrained model results may be found 
elsewhere (11) • Tables 5 and 6 give the results of 
setting a lower limit on the ridership of the subway 
peak period, which was limited to 580 million pas
sengers (round-off errors produce a QNEW of 579.9 in 
Table 5). The linear demand model was used and the 
detailed results from only the first cost and elas
ticity alternative combinations are shown. Cumula
tive changes produced by all nine cost and elastic
ity alternatives from the constrained and 

TABLE 4 Sample of Results from Linear Demand Function Unconstrained Model 

Changes in Final 
Ridership Final Fare 

Ridership Revenue Fare Welfare (QNEW) (PNEW) 
Mode Period (%DQ) (%DREY) (%DP) (%OW) (000,000s) ($) 

Subway Peak - 2.96 32.99 37.06 -5.84 604.5 1.03 
Bus Peak -2.8 1 15.40 18.73 -5.54 324.6 0.89 
Commuter rail Peak -10.8 1 53.48 72.09 -20.46 38.4 3.44 
Tunnel and bridge Peak -0.1 9 2.15 2.35 -0.38 49 .9 1.28 
Subway Off peak 4 .1 3 -24.55 -27.55 8.43 432.J 0.54 
Bus Off peak 11.85 -32.32 -39.48 25.09 314.3 0.45 
Commuter rail Off peak 3.6 5 -8.96 -12.17 7.43 41.5 1.76 
Tunnel and bridge Off peak 6.83 -41.82 -45.54 14.13 198.7 0.68 

Note: Cumulative results (in millions of dollars, except EINDEX): CHREV = -8.9, CHCOST = -9.1, CHPROF = 0.26, CHWELF = 18.1, 
CHNET = 18.4, ElNDEX = 0.0069. 

TABLE 5 Results from Constrained Model 

Changes in Final 
Ridership Final Fare 

Ridership Revenue Fare Welfa re (QNEW) (PNEW) 
Mode Period (%DQ) (%DREY) (%DP) (%OW) (000,000s) ($) 

Subway Peak -6.92 73.58 86.48 -1 3.36 579.9 1.40 
Bus Peak -6.77 :J!dl 4!> .13 -J:J .08 :; 11.4 1.09 
Commuter rail Peak - J 4.45 67.95 96.31 -26.8 1 36.8 3.9 3 
Tunnel and bridge Peak -4.25 46.66 53.18 -8.33 47.9 1.9 1 
Subway Off peak -0.11 0.63 0 .74 -0.22 414. 5 0.76 
Bus Off peak 7.29 -18.78 -24.29 15.11 301.5 0 .57 
Commuter rail Off peak -0.57 1.33 1.91 -1.14 39.8 2.04 
Tunnel and bridge Off peak 2.48 -14.46 -]6.53 5.02 190.6 1.04 
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TABLE6 Comparison of Results from Constrained and Unconstrained Models 

Alternative Variable ($000,000s) 

Cusi. EiasLichy CHREV CHCOST 

Constrained 

I I 449.7 -57.6 
I 2 263.2 -49.0 
1 3 130,9 -40.8 
2 I 459.0 -94.8 
2 2 271.1 -91.5 
2 3 123.9 -85.7 
3 I 492.4 -14.5 
'.I 2 300.2 -15.2 
3 3 134.9 -15.2 

Unconstrained 

I 1 -8.9 -9.1 
I 2 -9.9 -J0.5 
I 3 - J 3.7 -J 3.8 
2 I -27.3 -27.8 
2 2 -34.3 -35.7 
2 3 -44.8 -45.3 
3 I -50.6 -51.1 
3 2 -67.1 -68.1 
3 3 -85.7 -86.7 

unconstrained versions of the model are also pre
sented for comparison purposes . 

The unconstrained linear demand model produces a 
peak subway ridership that ranges from 593,4 to 
609.4 million for the various cost and elasticity 
alternatives. Therefore, by restricting peak subway 
ridership to 580 million, that ridership can effec
tively be reduced between 2,3 and 4.8 percent. With 
the exception of the first cost and elasticity al
ternative, which produces a negative net change and 
therefore a negative effectiveness index, all other 
cost and elasticity combinations continue to produce 
pogitive o,,erall net chan')e!l after the constraint 
has been placed. However, the effectiveness indices 
of the constrained model are one to three orders of 
magnitude smaller than they were in the uncon
strained model. This deterioration of the con
strained model's effectiveness is not so much a 
result of reductions in net change (for the last two 
cost and elasticity combinations the constrained 
model actually produces slightly higher net changes) 
as it is mainly from the rather dramatic profit in
creases of the constrained model (two to three orders 
of magnitude higher than those of the unconstrained 
model). The high profit changes are produced from 
the higher price that the constrained model has to 
charge the peak-period subway users in order to turn 
away some of them and reach the specified limit. The 
higher peak-period subway fare produces in turn 
higher prices for all other modes and time periods 
through the Ramsey constant (Equation 10). The higher 
prices produced another interesting difference. The 
positive net changes produced by the unconstrained 
version were a result of increased benefits to both 
the transportation system (more profits) and its 
users (higher welfare). In addition, the user bene
fits were from one to three orders of magnitude 
higher than the system benefits. This situation was 
reversed dramatically when the constraint was placed. 
Although the net changes remained roughly the same 
(except for the first cost and elasticity alternative 
combination), only the transportation system received 
benefits, whereas the users had to suffer a consider
able reduction in their welfare. 

Naturally, there are limits to what one can do 
with prices alone. Unrealistically high or low con
straints either will produce no results at all, 
because the model will not be able to meet the non
reduction of the current profit criterion, or will 

CJ1i'KOJ-< CHWELF CHNET EINDEX 

507.3 -520.5 -13.2 -0.0261 
312.2 -309.0 3.1 0.0101 
171. 7 -154.3 17.4 0.1011 
553.8 -547.5 6.3 0.0114 
362.6 - 341.6 20.9 0.0577 
209.7 -175.3 34.3 0.1637 
637.4 -607.5 29.9 0.0469 
452.2 -407.5 44.7 0 .0988 
287 .3 -229.4 57.9 0 .2016 

0.265 18.1 18 .4 0.0069 
0.597 24.3 24.8 0.0042 
0.077 30.8 30.9 0.0004 
0.562 23.8 24.3 0.0043 
1.373 31.0 32.3 0.0023 
0.414 40.1 40.5 0.0098 
0.523 31.3 31.8 0.0061 
1.046 41.l 42.1 0.0040 
0.967 52.0 52.9 0.0055 

produce unreasonable results. For example, if an 
off- peak subway ridership goal of 480 million is 
forced on the system, the model indicates that the 
new fare for this mode and time period should be 
-$0, 03. This indicates that if it is desired to 
attract 480 million passengers to the subways during 
the off-peak period, they have to be paid 3 cents a 
trip. The correct interpretation is that the con
straint was too high, and it is impossible to at
tract 480 million passengers through pr icing incen
tives alone. Generally, it is impossible to know in 
advance whether a constraint is reasonable. Its 
feasibility has to be in ..... •e:;tig.:lted in most cases b~," 
trial and error. 

MODEL LIMITATIONS 

The model results appear to depend on the assump
tions that those deterred from peak-period use of 
all modes will shift to off-peak trip making. Be
cause the model treats the various modes as indepen
dent rather than substitute services, with no measure 
of cross-elasticity of demand among the modes, it is 
difficult to determine what portion of the 30,000 
former daily users of rush-hour commuter rail ser
vice would (a) travel at another time period but 
still use the railroad, (b) make the same trip but 
hy a diffpr,.nt mr:,ilP, nr (,:,) nr:,t make the trip at 
all. The answer to this question is crucial to the 
understanding of the impact of such fare and toll 
adjustments on the economy of the city. It must be 
remembered, however, that (a) one can still drive 
into Manhattan without using a tolled facility and 
(b) there are other transit and paratransit options 
available (e.g., express bus, taxi, and various 
semilegal van services), most of which are not under 
MTA control, The very presence of untolled bridges 
directly adjacent to tolled river crossings shows 
that there are other economic or political consider
ations that prevent the efficient control of the 
city's transportation network and that tend to move 
feasible pricing policies away from Ramsey-type 
solutions. 

Environmental policies might conflict with any 
program for higher transit fares in any time period, 
The models call for considerably higher subway and 
commuter rail fares, whereas an increase in vehi
cular trips across the MTA's toll facilities is 
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projected, According to the results in Table 4, for 
example, annual transit use is expected to increase 
by 1.3 percent, and bridge and tunnel crossings 
would increase by 5.3 percent. Therefore, these 
types of changes in transportation pr1c1ng could 
possibly conflict with the environmental goals of 
reduced vehicular travel. 

The major limitation of the Ramsey pricing models 
was seen during the discussion of ridership con
straints. As is the case with all goods and ser
vices, travelers do not choose transportation ser
vices only on the basis of their fares. Comfort and 
other amenities are quite often more important fac
tors than the fare, but they are not included in the 
model. In addition, the models do not assume any 
interaction between the transportation system and 
the economy in which it operates and serves. Demand 
levels are determined without a check to see whether 
the local economic activity is capable of producing 
these levels or, conversely, what impacts the new 
demand levels will produce on the local economy. 

DISTRIBUTIONAL ASPECTS OF RAMSEY PRICING 

The changes that the models produce for the overall 
average fares are very minor. However, the charges 
paid by individual travelers in different time 
periods vary considerably, which implies a redistri
bution of the system's cost burdens. The results in 
Table 4, for example, imply a 33 percent, or $155 
million, increase in peak-period subway user 
charges, whereas revenue expectations for other 
periods are lowered by $78 million, or 25 percent. 
At this point, the differences between equity and 
efficiency must be stressed, The Ramsey pricing 
model and the welfare-revenue trade-off considera
tions discussed previously both dealt with the de
fining of efficient pricing policies, that is, those 
that increase total welfare without any consideration 
of its distribution before or after the price change. 
Concerns over the equity of pricing or taxation pol
icies, however, can also be made a part of fiscal 
decisions. These two very distinct economic charac
ter is tics are inexorably linked in the realities of 
the political process and in economic thinking as 
well. Although either one may be treated separately 
for analytical ease, the links between them must 
always be kept in mind. 

A consumer surplus methodology can be envisioned 
that would bring the public's concern over the wel
fare of certain groups into the fare policy decision 
process by including not only marginal costs and 
revenues but also some form of distributional 
weights as an additional constraint on fare selec
tion. With three rough income classifications (low, 
medium, high) and the eight time-period and modal 
combinations of the case study, the following dis
tribution could be defined: 

lij• mij• hij = portion of service Xi· that is 
purchased by the low {medium, high) 
income group 

where Xij is, for example, off-peak bus trips. 
Let us assume that some set of weights has some

how been specified that expresses quantitatively the 
desire of the policymakers to influence transit 
pricing through the addition of certain income 
characteristics of the riders in the various transit 
submarkets. When combined with the 1, m, h (for all 
ij) measures of ridership income distribution, a 
composite equity index of the following form could 
be constructed: 
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where w1, wm, and wh are the weights that the 
agency places on a unit of benefit that each of the 
three income groups receives. If the additional 
equity-based distributional variable (Iijl is to 
be included, the basic Ramsey optimizing formula for 
the most efficient pr1c1ng policy (Equation 10) 
should be changed to the following: 

(12) 

With the higher values of Iij given to favored 
groups, this would mean that the higher the values 
of Iij• the lower the price for that service. 

The net impact of any public program or policy on 
the general welfare or that of specific groups de
pends on the benefits received and the costs borne 
by the groups in question. Just as the incidence of 
the fare must be traced, so also must the distribu
tional characteristics of the other taxes used to 
support transit operations be estimated. Typically, 
the assumed impact of the fare receives the bulk of 
the public consideration, whereas the other fiscal 
tools that actually raise the majority of the tran
sit funds are left relatively undiscussed. Crowell 
has shown that the mechanisms employed by local tax 
systems are relatively regressive (.!_!!). Policy argu
ments, therefore, in favor of providing, say, low
fare benefits to riders principally on the basis of 
their income redistributive effect have two basic 
weaknesses: 

l. The profile of the city's transit ridership 
shows that the median income of riders is actually 
above that of the general population, especially in 
congested peak periods when the system's costs are 
highest and an even higher-income population of 
work-trip travelers predominates; and 

2. The tax revenues used to support these ser
vices are mainly from fairly regressive local tax 
sources that would effectively cancel any distribu
tion of the services' benefits supposedly for the 
poor. In addition, the benefits from improved ser
vice or a low-fare policy may be shifted by market 
forces to the landowners whose property value is 
increased through improved transit access; and with 
a property tax system that drastically underassesses 
the land portion of real estate, it is very dif
ficult to "capture" the benefits accrued by these 
high-income individuals (..!2_). 

MODEL SENSITIVITY TO INPUTS 

The models are for all practical purposes insensi
tive to the elasticity assumptions. This insensitiv
ity to elasticity values is not very obvious from 
the summary results that have been presented because 
of the huge total annual riderships of the systems, 
which produce relatively large overall changes for a 
difference of even 1 cent in price. But, given a 
marginal cost alternative, changing the elasticities 
produces differences in the suggested fares that are 
at most 4 cents (or 1 percent), whereas in most 
cases they remain identical. On the other hand, 
given an elasticity alternative, changing the margi
nal costs produces differences in the suggested 
prices that typically range between 5 and 10 percent 
and go as high as 40 percent for the commuter rail 
mode. Typically, therefore, the models are about 10 
times more sensitive to changes in marginal cost 
than to changes in demand elasticity. Unfortunately, 
marginal cost is the only variable for which "hard" 
estimates are not generally available, Higher off
peak and lower peak-period marginal cost values 
would mean a lower potential payoff from a Ramsey
type pricing approach. 
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SUGGESTIONS FOR PUBLIC POLICY AND FURTHER RESEARCH 

The results of the pricing model applications and 
the transit taxation options point out two principal 
areas for public attention: 

1. The current fl.at-fare approach that is in 
vogue among transportation agencies generates a 
lower level of benefits to its users than would be 
possible under a pricing method that took into con
sideration the demand and cost characteristics of 
the systems under their control, This same kind of 
pricing methodology coulu 11l~u be useO to account 
for such social costs as pollution, inefficient use 
of scarce resources, or traffic congestion, Differ
ential fares have been used in other areas around 
the world and in parts of the United States, and of 
course are very common in such private industries as 
the telephone companies, airlines, and other market 
situations with large fixed investments and con
siderable peaking of demand. 

2, Municipalities should begin to look less at 
nontransportation taxes as sources. of earmarked 
support for transportation operations and more at 
the use of rational pricing of transportation ser
vices as a way of raising revenues, avoiding un
necessary expansion of highway or transit systems, 
and increasing the benefits received by the travel
ers in their region, The pricing model showed in 
part how a more sensible pricing approach could be 
shaped. In addition, the ability of a local govern
ment to carry out income distribution through the 
transit system is severel y limited because of the 
use of the system by many travelers who are not poor 
and the considerable economic disruption that levy
ing a fairly beavy progressive taxation on a local 
level might cause in terms of the flight of firms 
and upper-income citizens trying to avoid the tax. 

The results of the pricing modeling effort ehcwed 
that Ramsey pricing could be applied to a multi
market transportation agency, but the model's pre
dictive ability is rather sensitive to changes in 
the cost assumptions. Unfortunately, no accurate 
cost information exists. Section 15 of the Urban 
Mass Transportation Act is a step in the right di
rection, but transit is still very much behind other 
industries as far as data on unit costs are con
cerned, In addition, more up-to-date information on 
the users' income distribution could help to resolve 
some of the conflicts surrounding the claims of the 
regressivity (or progressivity) of various transpor
tation prices. Accurate cost and user characteris
tics data, together with the inclusion of modal and 
time-period cross-elasticities, would make future 
Vt!r~luns or the models very precise planning and 
policy tools that can answer questions on the equity 
as well as efficiency of differential pric i ng. 
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