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• Monitor project implementation 
achievement of scheduled efficiencies and 

• Develop better cost and schedule 
for future project proposals, 

and the 

estimations 

The procedure improves the likelihood of authori­
zation for proposals that change standard operating 
procedures, staffing levels, and job responsibili­
ties. The procedure was conceived with direct input 
from the line managers, finance, and top management 
and recognizes that they are the users and beneficia­
ries of the procedure and its results. A user's man­
ual and microcomputer program were developed for 
applying value analysis as a result of the study, 

The value analysis procedure has been adopted by 
the LT-Rail engineering departments and is currently 
in use, The procedure has been successfully imple­
mented, and productivity tasks evaluated using the 
technique are now in the implementation phase. The 
standardized value analysis procedure is contribut­
ing to more effective conununications between staff 
engineers, finance, and top management. It is still 
too early to compare actual-to-anticipated savings 
estimated using the technique, but this should be 
known in the coming year as projects are implemented 
and monitored at LT. 

CONCLUSIONS 

Although the value analysis methodology for develop­
ing, analyzing, and reviewing productivity alterna­
tives was devised to meet the specific needs of 
London Transport-Rail, it offers broad applications 
to transit operators in the United States. The impe­
tus for developing a program of continued productiv­
ity improvements is apparent in both nations. Use of 
a standard productivity development, analysis, and 
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review procedure offers transit agencies several key 
advantages: 

• Ideas for improving productivity can be gen­
erated by line staff, clerical personnel, super­
visors, or managers in any discipline and still be 
compared and analyzed on a consistent basis. 

• Interaction and early conununications with 
others encourage wider development of productivity 
alternatives and identification of different imple­
mentation strategies. Further, soliciting involve­
ment of other interested parties may broaden support 
for productivity projects . 

• Use of an uncomplicated analysis technique, 
like the one presented in this paper, takes the 
mystery out of financial analysis and the time value 
of money, 

• Net present value can be used to compare pro­
ductivity options that require varying degrees of 
investment of funds and energy and provide different 
returns over incongruous time periods on an equi­
table basis. 

• The results of the value analysis provide a 
sound basis for decision making and define a plan 
for monitoring implementation and achievement of 
cost savings. 

The value analysis technique, as presented 
herein, would require some minor revisions for ap­
plication at other agencies. The primary areas of 
modification are the reviewing groups, the minimum 
threshold for a detailed value analysis, and deci­
sion-making authority. The sequential development 
and review process and the two-level net present 
value technique remain valid for practical applica­
tion anywhere. Development of a productivity pro­
gram, such as LT' s value analysis, is a major step 
toward making efficiency improvements a keystone in 
the transit operating environment. 

Improving Section 15 Passenger Data 

Collection Techniques 

ROBERT L. SMITH, Jr. 

ABSTRACT 

The Urban Mass Transportation Administration requires all transit systems that 
receive federal funds to collect basic data on transit ridership. The transit 
systems are required annually to furnish estimates of systemwide passengers, 
passenger-miles, and, until recently, passenger-minutes under the Urban Mass 
Transportation Act Section 15 reporting requirements. Many transl t operators 
have complained that the collection of Section 15 passenger data is an unwar­
ranted burden. Modern stiiti!Stical sampling techniques, however:, provide the 
opportunity for somewhat reducing the effort required by Section 15, The spe­
cific objectives of this study were (a) to identify the range of techniques 
used by large transit properties to collect Section 15 passenger data and (b) 
to identify and evaluate improved techniques for collecting Section 15 data. A 
review of the literature showed little application of statistical sampling 
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techniques to bus passenger data collection until 1977. Two recent statistical 
approaches that are relevant to Section 15 data collection are reviewed. An 
inventory of 58 transit systems in the United States with 100 or more peak-hour 
buses showed four main Section 15 data collection techniques: (a) standard 
Wells r~ndom sample, {b) sample from e~tensive ride checks, (c) .. n .... _ .... +-_..g .... ........ ._.;_ 
mation, and (d) extensive ride checks. One or more case study transit systems 
were selected for each technique. Statistical sampling theory was applied to 
develop alternative sampling plans and estimation procedures. The analysis 
showed substantial potential for improvements in accuracy or reductions in data 
collection costs, or both. 

The Urban Mass Transportation Administration (UMTA) 
requires all transit systems that receive federal 
funds to collect basic data on transit ridership. 
The transit systems are required annually to furnish 
estimates of systemwide passengers, passenger-miles, 
and, until recently, passenger-minutes under the 
Section 15 reporting requirements. The procedure 
recommended by UMTA for collecting the ridership 
data is to conduct ride checks (on/off counts) on 
three randomly selected one-way trips every other 
day. The recommended procedure is designed to 
achieve a precision of 10 percent for a 95 percent 
confidence interval. Other statistical sampling 
plans are acceptable as long as the required level 
of accuracy is achieved. 

Since the introduction of the Section 15 report­
ing requirements in 1978, many transit operators 
have complained that the collection of the Section 
15 passenger data is an unwarranted burden. Some 
operators assert that ride-check data are not at all 
useful to them, and others argue that the random 
sample obtained under Section 15 is too small and 
scattered to be useful for operational planning. The 
latter group may conduct extensive ride checks but 
not use a random sampling procedure so that follow­
ing the UMTA sampling procedure requires an addi­
tional commitment of checker time. 

The concerns of transit operators about UMTA' s 
Section 15 "passenger service consumed" reporting 
requirements have been addressed as part of a 
broader study of transit passenger data collection 
techniques (1). In terms of Section 15, the specific 
objectives of the study were (a) to identify the 
range of techniques used by large transit properties 
to collect Section 15 passenger data and (b) to 
identify and evaluate improved techniques for col­
lecting Section 15 data. 

RESEARCH APPROACH 

Tu ptuvl~e tesulls that transit manager~ can easily 
relate to their own needs, a case study approach was 
selected for the research. The first step was to 
document the data collection procedures that are 
currently used by transit properties in the united 
States. To keep the data collection effort manage­
able, only systems with 100 or more peak-hour buses 
were included. Both published reports and direct 
telephone contacts were used to dc-cument the full 
range of bus passenger data collection procedures 
used by each system. Only the procedures for col­
lecting Section 15 passenger data are documented in 
this paper. 

The second step was to develop classification 
schemes for the Section 15 data collection proce­
dures and to classify the systems accordingly. The 
classification scheme was then used as the basis for 
selecting at least one case study system for each 
classification. Statistical sampling and analytical 
techniques were applied i:.o identify the potential 

for improvements and the limitations of each class 
of procedures. 

LITERATURE REVIEW 

Overview 

Until recently transit managers have had little 
technical documentation of appropriate passenger 
data collection procedures available to them. The 
recently reprinted 1947 American Transit Association 
Bus Scheduling Manual: Traffic Checking and Schedule 
Preparation (2) did provide guidelines for the fre­
quency of maximum load point checks, but no statis­
tical analysis was presented to justify the guide-
1 ines nor was any indication given of the accuracy 
of the resulting point-check data. The more recent 
(1976) fourth edition of the Manual of Traffic Engi­
neering Studies (3) also gives no real guidance on 
how frequently ride checks should be made. Reference 
is made to an appendix on statistical procedures for 
determining the accuracy of a sample, but only the 
case of a simple random sample is considered. 

Modern statistical sampling theory was first 
applied to the collection of bus passenger data by 
the Wells Research Company in 1977 (_i). John Wells 
developed alternative sampling procedures for col­
lecting Section 15 data. One problem faced by Wells 
was the lack of historical and even current data on 
the day-to-day and within-day variations in bus 
ridership. Two subsequent studies provided informa­
tion on the data collection procedures used in the 
transit industry, but no indication was given that 
modern statistical sampling methods were being ap­
plied, nor were any accuracy measures presented 
(5,6). In 1977 Stone and others at the University of 
Utah applied statistical quality control techniques 
to monitor route-level performance on the Denver and 
Salt Lake City transit systems (1). Stone also mea­
sured the accuracy of the monthly passenger counts 
taken by Salt Lake City bus tlrlve1s. 

A comprehensive, statistically based methodology 
for bus passenger data collection is presented in 
the recently published two-volume Bus Transit Moni­
toring Manual (8). Although the focus of the manual 
is on point- a-;d ride-check data collection, the 
sampling procedure could be applied to driver-based 
data collection programs as well. Case study appli­
cations of the manual are in progress. 

Contacting transit properties for this research 
revealed that several systems have contracted with 
consultants to produce statistically based data col­
lection plans. The reports documenting the data col­
lection plans are either "in-house" reports or re­
ports that have received only limited distribution. 
To date none of this work has been reported in the 
standard technical literature. Similarly, statisti­
cally based work by local staff has generally gone 
unreported. One exception is a paper by Susan Phifer 
(.~). Two key technical reports that are relevant fer 
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Section 15 data collection procedures are reviewed 
next. 

Wells Memorandum 

In the Wells memorandum (4), John Wells of the Wells 
Research Company documen t s the sampling procedures 
recommended for Section 15 passenger data collection 
in UMTA Circular 2710.1. The basic design criterion 
was that annual total passenger-miles are to be 
estimated at a 95 percent confidence level with a 
precision of at least 10 percent. To minimize the 
potential impact of periodic variations by day of 
week and seasonal variations, a frequent and system­
atic sample of days throughout the year should be 
selected. 

Wells developed alternative sampling plans based 
on the formula for the relative variance of a two­
stage cluster sample and cited Hansen, Hurwitz, and 
Madow (10) as the reference. The formula is based on 
taking a random sample of days in the year in the 
first stage of the sample and then a random sample 
of one-way trips to be ride checked in each of the 
sample days. Wells assumes that a systematic sample, 
such as every other day or every third day, is 
equivalent to a simple random sample. The basic 
formula is 

2 cvpm [ (M - m) /M] (CVg/m) 

+ [ (N - n) /NJ (cvi/mn) (1) 

where cvim is the r elative var ianc e of annual total 
passenger-miles , cvl and cva ar e the between and 
within-day r elative variances of tota l passenger­
miles, respectively; M and N are the population 
sizes for number of days in the sample period and 
number of one-way trips per day, respectively; and m 
and n are the sample sizes for days and one-way 
trips, respectively. 

In computing the maximum relative variance al­
lowed by the 95 percent confidence level and a pre­
cision of 10 percent, Wells rounded the t value of 
1.96 to 2.00, thus providing a slightly more conser­
vative estimate of the accuracy of the sampling 
plans. The resulting c oefficien t of variation is 
cvpm = 0 ,1/ 2.0 = 0 .0 5 giving c v i m ~ O.D025. To e va lu­
ate al terna t ive combinations of number s of days and 
trips sampled, assumptions about the between- and 
within-day relative variances were required. On the 
basis of limited data, Wells chose conservative 
values of cvb = 0.1 and CVw = 1.0. Analysis of 
passenger-mile data for this research indicates that 
Wells' assumptions are nearly always quite conserva­
tive. 

The limiting case for number of days sampled per 
year is 365. Using Equation 1, only the within-day 
relative variance term remains. Thus, with m = 365 
and sampling one trip each day Cn ~ 1) s o t hat 
(N - n)/N is appr oximately one, cvim = cv3/36 5 = 
(1.0) 2/365 = 0.002 74 , which is eq uivalent to a 
precision of 10,5 percent for t = 2,0 or 10.3 per­
cent if t = 1.96, Wells rejects this sampling plan 
because the specified precision of 10 percent is ex­
ceeded. A sampling plan with three trips every other 
day (n = 3 and m = 183) gives cv2 = 0.002093, which 
gives a precision of 9.1 percent. The sampling plan 
requires 3 x 183 or 549 sample trips, which is fewer 
than the other sample plans that have a greater in­
terval between sample days. 

On the basis of an analysis of Section 15 data 
for Albany, New Yorki Madison, Wisconsin; and Omaha, 
Nebraska, it appears that for most transit proper­
ties the within-day coefficient of variation (CVwl 
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and hence cvi are likely to be somewhat less 
than 1.0. Consequently most properties can justify a 
sample of one trip every day, which is a saving of 
about one-third over the minimum recommended sam­
pling plan. 

Bus Transit Monitoring Manual 

The Bus Transit Monitoring Manual (BTMM) (~) pro­
vides a methodology for developing a statistically 
based route-level transit monitoring program. The 
focus of the sampling plan is on point and ride 
checks conducted by traffic checkers. The same two­
stage cluster sampling plan used by Wells for Sec­
t ion 15 passenger data collection is applied in the 
BTMM methodology (see Equation 1 in the previous 
section). The time period over which the sample is 
to be taken will vary depending on whether monthly, 
quarterly, or annual performance estimates are 
wanted. 

The development of a sampling plan involves spec­
ification of the desired confidence level and pre­
cision and then selection of the number of sample 
days and the number of sample trips per day that 
meet the accuracy specifications, The maximum number 
of trips sampled per day is constrained by the num­
ber of checkers available. The trade-off between 
number of days and trips sampled per day is a func­
tion of the between-day and within-day coefficients 
of variation for the data item of interest, usually 
total passengers, passenger-miles, or running time. 

To develop a sampling plan, estimates of the be­
tween-day and within-day coefficients of variation 
(CVb and CVwl are required. An intensive data collec­
t ion effort is proposed in the BTMM so that route­
level cvb and CVw can be computed. Other data 
sources such as counts by drivers can also be used, 

The primary limitation of the BTMM is that it 
does not address a full range of sampling options. 
In particular, potential applications of stratified 
and systematic sampling are not considered. The man­
ual, however, does provide a starting point for 
transit systems that do not have any expertise in 
developing statistically based sampling procedures. 

STATISTICAL SAMPLING PROCEDURES 

Reasons for Sampling 

Sampling involves selecting a number of observations 
or elements of a population and using the character­
i sties of the sample to make inferences about the 
characteristics of the population. For example, if 
an estimate of the number of passengers using a par­
ticular bus route is wanted, the passengers on a 
random sample of one-way bus trips during a given 
day could be counted. Multiplication of the total 
passengers counted in the sample by the inverse of 
the sampling rate (expansion factor) will give an 
estimate of the total passengers that rode on all 
the one-way trips during that day. Statistical sam­
pling theory provides measures of the accuracy of 
the sample estimate. 

Sampling provides many potential advantages: (a) 
reduced cost, (b) greater accuracy, (c) more infor­
mation, ann (n) spP.P.n in prnr.essing, Tf the costs of 
collecting data on the entire population are high, 
then collecting data on only a fraction of the popu­
lation can reduce costs substantially. The addi­
tional costs of preparing, monitoring, and analyzing 
the sample results must also be included. 



70 

Basic sampling Techniques 

The two basic methods for collecting the data on 
passenger-miles required by Section 15 are ride 
checks and automatic passenger counters. Because 
both methods are relatively costly, sampling tech­
niques are essential to provide the required data. 
The four basic sampling techniques are (a) simple 
random sample, (b) stratified random sample, (c) 
cluster sample, and (d) systematic sample. Only a 
brief overview of each is presented here. More de­
tailed treatments of survey sampling theory and 
practice are found in standard texts. Cochran (11) 
provides lucid explanations of the theory as well as 
of the advantages and disadvantages of the various 
techniques. 

Simple Random Sampling 

A simple random sample is a method of selecting n 
units out of a population of N units such that every 
unit in the population has an equal chance of being 
selected. If the sample is truly random, then the 
sample estimate of some characteristic of the popu­
lation will be unbiased; that is, the mean value of 
the estimate taken over all possible random samples 
of size n is equal to the population value. A simple 
random sample also has the desirable property that 
the sample variance is an unbiased estimate o f the 
population variance, 

The key formula for a simple random sample is the 

variance of t he sample mean (y) given by 

v (y) = (s2/n) (1 - n/N) (2) 

where s2 is the sample variance, n is the sample 
size, and N is the population size. The term in 
parenthesis (1 - n/N) is the finite population cor­
rection factor (fpc) for sampling without replace­
ment in a finite population of size N. Clearly, as 
the sample size approaches the population size, the 
fpc approaches zero and the variance of the sample 
mean also approaches zero. If n = N, there is no 
longer any sampling error. The population mean and 
variance are known. 

Equation 2 shows that the sampling error in esti-

mating the population value Y or Y can be made as 
small as desired simply by increasing the sample 

size. Confidence limits for the estimate of Y are 

given by y ± tsy where sy = v(y)l/2 is the standard 

error of the sample mean. For a 95 percent confidence 
level the t-value for large n is 1.96 or about 2.0. 
The meaning of the confidence interval is that in 
repeated sampling 95 times out of 100 the population 
mean will fall within the confidence interval. 

Tlie ]Jre<.:hilun (r) uf the i;ample for a given conti-

dence level is given by the error in y divided by the 

J..uuo, uo .. LL1y ~yuai...i.uu ~, 

the precision is 

r = [t(s/y)/n112J (1 - n/N)l/2 (3) 

Decause s/y h the coefficient of variation (CV) 
Equation 3 provides a convenient means of estimating 
the sample size given a desired precision (level of 
accuracy) and an estimate of CV. An initial estimate 
of CV may be available from a previous sample or 
from data for a similar transit property. 

Stratified Random Sampling 

Stratification is a method of dividing a population 
of N units into L distinct subunits or strata, N1, 
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N2 , ••• ,NL" The sum of the units in the L strata 
must equal N. For stratified random sampling a 
simple random sample is drawn in each stratum with 
sizes n1, n2,•••,nL. Stratification may be used for 
administrative convenience or to increase the preci­
sion of the population estimate by dividing a heter­
ogeneous population into homogeneous subgroups. 

For stratified random sampling, an unbiased esti­

mate of the variance of the sample mean (y) is given 
by 

v(y) (4) 

where Wh equals Nh/N. Thus, v(y) is simply the sum 
of variances for a simple random sample in each 
stratum weighted by the square of the relative size 
of the stratum. 

Cluster Sampling 

Surveys in which the sampling unit is a group or 
"cluster" of smaller units are called cluster sur­
veys. The primary reason for sampling clusters is to 
reduce the cost of sampling. For a given size sample 
a smaller sampling unit usually gives a more precise 
estimate than a larger sampling unit. If the costs 
of collecting data for the large sampling unit are 
much less, then the sample size can be increased 
enough to offset the reduction in precision from 
using the cluster. 

For a simple random sample of n clusters, each 
containing M elements (subunits), drawn from N clus­
ters in the population, the variance of the sample 
mean per element is 

V(y) • ((1 - f)/nM]S 2 [1 + (M - l)P] (5) 

where s2 is the variance among the elements, f is 
the sampling fraction (n/N) , and p is the intra­
cluster correlation coefficient. The intracluster 
correlation coefficient is a measure of the homoge­
neity of the clusters. If within each cluster the 
values for y are similar, then p • 1 and the vari­
ance of the mean is obtained by dividing the popula­
tion variance by n. When the values for y within a 
cluster are as diverse as the entire population, 
then P • 0 and the variance of the mean is essen­
tially the same as if a random sample of n x Mele­
ments had been selected from the population. 

Systematic Sampling 

Selection of a systematic sample of size n from a 
population with N units ordered from 1 to N involves 
~~!.'=~i:i0!'! ')f ~,.r'=!."~' lt:f:h ~!?if: '':.'ii:h ~ !':!!?'30~ !=f::!!."f: f!."0!'! 

among the_ first k uni ts. This is called an "every 
kth systematic sample" with nk = N. The primary 
advantage of systematic sampling is that the sample 
is usually easy to draw and can be done accurately. 
Also, because th& systematic sample is spread evenly 
over the population, systematic sampling may be more 
precise than simple random sampling. 

One problem with systematic sampling is that 
estimation of the sample variance requires knowledge 
of the population variance. With unknown populations 
systematic sampling should be used with caution. If 
there is high correlation among the units within a 
sample, then the sample estimate may be an extremely 
poor estimate of the population mean. This is true 
if unsuspected periodicity is present in the popula­
tion. In contrast, if the population is essentially 
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in random order, then the systematic sample will 
contain the same information as a simple random 
sample of size n and have the same variance, 

Extension of Basic Sampling Techniques 

The most common extension of the basic sampling 
techniques is the use of multiple levels or stages 
of sampling, The basic sampling technique at one 
stage may be different from the sampling technique 
at the next stage, The two-stage cluster sample used 
by Wells and the Bus Transit Monitoring Manual is 
the most useful extension for Section 15 purposes, 
Another useful extension of the basic sampling tech­
niques is the use of ratio or regression estimation, 
Ratio and regression estimation can improve the pre­
cision of an estimate when there is a high correla­
tion between the variable of interest and a second 
variable and there is independent information avail­
able for estimating the second variable. 

With ratio estimates an auxiliary variable (xil, 
which is correlated with Yi• is obtained for each 
unit in the sample. The population total (X) of the 
Xi is known so that the population total (Y) can be 
estimated as 

The increase in precision obtained from 
estimate depends on the relative variance 
ficient of variation squared) of the ratio 
by 

CVft [ (1 - f) /n] (CV§ + CV~ - 2pCVyCVxl 

which is equivalent to 

CV:= CV~+ CV~ - 2pCV-CV-
R y X y X 

the 
(or 
(R) 

(6) 

ratio 
coef-
given 

(7) 

(8) 

If CV- and CV- are approximately equal, then it is 
y X 

easy to show that the precision of R results in an 
increase in the precision of YR when P ~ 0.5. 

The ratio estimate is useful when the xi are much 
cheaper to sample than the y i so that X can be de­
termined directly or when X is available from some 
other source. For Section 15 the ratio estimate of 
average passenger trip length can be used to esti­
mate total passenger-miles on the basis of total 
passengers at the system level. 

CURRENT OATA COLLECTION PROCEDURES 

The concerns that transit managers have raised about 
the need for Section 15 passenger data reporting 
could possibly indicate a lack of interest in ride­
check data collection and even a more general low 
level of interest in all checker-based data collec­
tion. The inventory of the passenger data collection 
techniques used by 58 transit systems with 100 or 
more peak-hour buses, however, revealed that there 
is a substantial commitment to ride checks. As the 
data given in the following table, which gives the 
distribution of transit systems by checker effort 
devoted to ride checks, indicate, all but 10 percent 
of the transit systems devote a.t least some of their 
checking staff time to ride checks. 

Percentage of 
Checker Effort 
0 
1 to 33 
34 to 66 
67 to 99 
100 

Percentage 
Distribution 
10 
33 
28 
24 

5 
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More than one-quarter of the systems devote at least 
two-thirds of their checking staff time to ride 
checks. 

The large transit systems also devote substantial 
resources to passenger data collection in the form 
of a regular checking staff. As the data in the fol­
lowing table, which gives distribution of transit 
systems by size of transit system, indicate, only 17 
percent of the systems had less than one checker per 
100 peak-hour buses. 

Size of 
Checking Staff 
(staff per 100 peak buses) 
Fewer than 1.0 
1 to 1.9 
2 to 2.9 
3.0 or more 

Percentage 
Distribution 
17 
42 
22 
19 

Clearly, most transit systems have the checking 
staff required to conduct the ride checks under the 
Section 15 data collection plan recommended by UMTA, 

The inventory of the 58 large transit systems 
revealed a surprising diversity in the procedures 
used to obtain Section 15 passenger data. As the 
data in Table 1 indicate, only about 60 percent of 
the systems use the standard random sample ride­
check procedures developed by Wells and recommended 
by UMTA in Circular 2710.1. Most of these systems 
also have an extensive ride-check program that may 
be partly or wholly integrated with the random sam­
pling procedure. 

TABLE I Distribution of Section 15 Passenger Data 
Collection Procedures 

Procedure 

Standard Wells (random sample) 
Minimum level only 
Extensive ride-check program 

Sample from extensive ride checks 
Year-long program 
Short intensive program 

Two-stage program 
Extensive program 

Total 

Distribution of Properties 
[number (percentage)] 

35 (60.3) 
12 (20.7) 
23 (39_6) 
11 (19.0) 
8 (13.8) 
3 (5.2) 
9 (15.5) 
3 (5.2) 

58 (I 00) 

Eleven properties meet the Section 15 requirement 
by selecting a random sample of ride checks from 
their regular, extensive ride-check program. In gen­
eral, these properties ride check all of the daily 
one-way trips in the system at least once a year, 
Thus, the sample will be unbiased in terms of cover­
age, but it may be biased as the result of seasonal 
and secular trends, 

The two-stage procedure involves multiplying es­
timates of passenger-miles per passenger by total 
passengers to obtain the required estimate of pas­
senger-miles required by Section 15. The estimate of 
passenger-miles per passenger (average trip length) 
may be obtained from ride checks or from passenger 
surveys. With proper statistical sampling the proce­
dure can be even more accurate than either of the 
first two procedures. In practice, however, the es­
timates of average trip length are based on whatever 
data are available. 

A few properties such as Metro Area Transit in 
Omllhl!, NP.hraska, havP. extP.nsivP. ride-check programs 
that are based on a large random sample. The result 
is an accurate estimate of passengers and passenger­
miles at the route level. Omaha uses traffic check­
ers, Automatic passenger counters (APCs) are also 
being used for extensive ride-check programs. A num-
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ber of APC-based counting programs are currently 
being developed and more can be expected in the fu­
ture as more experience is gained with the tech­
nology ( 12) • 

The four basic categories of Section 15 data col­
lection procedures given in Table 1 provided the 
framework within which case study transit systems 
were selected to illustrate the potential for im­
provements and possible limitations of a particular 
procedure. Three of the six transit systems selected 
for the case studies were selected because the local 
transit staff had either developed an improved Sec­
tion 15 data collection procedure or had analyzed 
Section 15 data in order to identify possible im­
provements. The other three case studies were se­
lected as the result of data availability or the 
need to cover each of the four categories. Three 
case study transit systems were selected in the 
"standard Wells" category and one system was se­
lected from each of the other categories given in 
Table 1. 

CASE STUDY DATA COLLECTION PROCEDURES 

Standard Wells : Madison, Wisconsin , Case Study 

To develop the basic data needed to analyze alterna­
tive sampling strategies for Madison, the tabulation 
of the Section 15 ride-check data was computerized. 
The resulting data for 183 ride checks conducted 
during the first half of 1982 are summarized in 
Table 2. The computer file also included data on 
route, day of week, and time of day. 

TABLE 2 Section 15 Sample Data for Madison Metro 

Standard Coefficient 
Variable Meana Deviation of Variation Precisionb 

Iloardings 43.8 26.9 0.61 0.039 
Maximum load 25.4 16.4 0.65 
Passenger-miles 157.0 110.0 0.70 0.102 
Passenger-minutes 740.8 560.0 0.76 0.110 
Average passenger-miles 3.47 1.25 0.36 
Average passenger-minutes 15.7 4.57 0.29 
Average speed 3.1 2.81 0.21 

~B1n.ct.l on 183 observations. 
For tJ 95 percent confidence level. 

At the system level the primary interest is in 
reducing the sampling rate within the UMTA-imposed 
constraint of estimating total passenger-miles 
within 10 percent at the 95 percent confidence 
level. If the data in Table 2 are assumed to be 
based on a simple random sample of size 183, then 
the precision of the estimate of passenger-miles is 
almost eaual to the reauired 10 percent level, and 
the estimate of average boardings per trip is even 
more precise (precision of O. 089) • If the coeffi­
cient of variation does not increase significantly 
for the sample covering the entire year, then a 
sample of about 200 omi-way t.rips instP.;icl of 546 
trips would be adequate. Although not recommended, a 
minimal sample of 182 trips could be obtained by 
taking a simple random sample of one trip from every 
two-day period during the year. 

With Madison Metro's current sample of one trip 
per day the annual sample of 365 trips will result 
in a precision for average passenger-miles per trip 
of 7. 2 percent assuming a coefficient of variation 
of 0.70. The coefficient of variation could increase 
to nearly 1. O and still meet UMTA' s accuracy re­
quirement. Thus, it is clear that Madison Metro's 
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current sampling rate is more than adequate to cover 
substantially greater variations in average pas­
senger-miles than currently occur. 

Some minor improvement in the accuracy of the 
system-level estimate of total passenger-miles is 
made possible by stratifying the sample by day of 
the week. The average passenger-miles per trip for 
weekdays is 171 compared with 130 for Saturday and 
Sunday. This difference in stratum means appears to 
be large enough to make the additional effort of 
stratifyi ng t he sample worthwh ile. 

Other possible stratifications include time of 
day and route. One-way analysis of variance of aver­
age boardings stratified by time of day and consid­
ering only the five main routes on weekdays showed a 
highly significant difference between the evening 
period from 6 p.m. to 12 midnight and the three 
other periods (a.m. peak, midday, and p.m. peak). In 
stratifying by route there is a significant differ­
ence in passenger-miles per trip between the short 
university routes and the main-line routes. Although 
some improvement in the accuracy of the estimates of 
passenger-miles and total boardings could be 
achieved through stratification by time of day and 
route, the additional complexity of the resulting 
sampling plan would no doubt outweigh the benefits 
of the accuracy improvements. 

Because Madison Metro now is obtaining 100 per­
cent counts of passengers on a daily basis, the ac­
curacy of the annual estimate of total passengers is 
only limited by the accuracy of the drivers' counts 
and clerical errors in recording the data. If the 
total passenger counts are assumed to be highly ac­
curate, then substantial improvement in the accuracy 
of the annual estimate of passenger-miles can be ob­
tained by using a ratio estimate of passenger-miles 
per passenger. Using Equation 7, the relative vari­
ance of the ratio estimate is given by 

cvim/p = [(1 - f)/nl (cvim + cvt 
- 2Ppm,p • CVpmCVb) (9) 

where CVpm and CVb a re the coefficients of vari­
ation of passenger-miles and total passengers, re-
spectively, and Ppm p is the correlation be tween 
passenger-miles and fotal passengers. For the Madi­
son data Ppm, p is qu ite lligh (0.916). Thus , using 
Equation 9, cvpm/p is found to be O. 02-1 on the 
basis of the available sample size of 183 . The re­
sulting precision of the ratio estimate of pas­
senger-miles is 4.1 percent. If a precision of 10 
percent is all that is required and CVpm/p is 
assumed to remain the same except for the sample 
size, then a sample of only 32 ride checks would be 
needed. Thus, use of the ratio estimate results in a 
reduction of the sample size required to give a pre­
cision of 10 percent from 183 to 32, or more than an 
80 percent reduction. 

senger can only be used to improve the precision of 
the estimate of total annual passenger-miles if the 
precision of an independent estimate of total annual 
passengers is about as good as or better than the 
ratio cotimatc, If an independent estimate of total 
annual passengers is not available, then the ratio 
estimate is likely to be less useful as a means of 
improving the precision of the passenger-miles esti­
mate. At this point the dramatic increase in the 
precision of the ratio estimate compared with the 
direct estimate of passenger-miles should not be 
used to reduce the sampling rate because then the 
accuracy of the Section 15 estimate of total passen­
gers would be reduced as well, The Section 15 esti­
mate is needed to provide a check on the accuracy of 
the driver counts. 
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Standard Wells: St. Louis Case Study 

As is the case with many systems, St. Louis collects 
Section 15 ride-check data independently of its reg­
ular ride-checking program. Because the Section 15 
data have not been integrated into the regular data 
collection effort, there is an incentive to reduce 
the effort devoted to Section 15. St. Louis used 
Section 15 data on passenger-miles for each one-way 
trip stratified by time period and day of the week 
to develop a new sampling plan. 

The first step in developing the new sampling 
plan was to assume a simple random sample over the 
entire year. On the basis of the observed coeffi­
cient of variation of passenger-miles for the 1981-
1982 fiscal year of 0.971, a sample size of 362 is 
required to meet UMTA' s accuracy requirements. This 
is the same basic calculation that was made using 
the Madison Metro data. There is clearly much 
greater variation in the St. Louis data, which prob­
ably reflects the much greater emphasis on express 
service and lower usage during midday in St. Louis. 
Nevertheless, St. Louis could have adopted Madison's 
one trip per day sample plan. Instead, St. Louis 
used an optimal allocation of trips to the four time 
periods of the day followed by a proportional allo­
cation of trips to each day of the week. The objec­
tive of using a more complicated sampling plan ap­
parently was not to reduce the sample size further 
but to provide a safety factor in case the new sam­
pling plan is not as accurate as predicted by the 
available data. 

The main question in evaluating St. Louis' two­
stage sampling plan is whether the additional effort 
of stratifying the sample by time of day and day of 
the week is justified by the expected increase in 
accuracy. In analyzing the raw data obtained from 
St. Louis, a slightly lower coefficient of variation 
of 0.948 was obtained, which gives a lower sample 
size of 346. The required sample size is highly sen­
sitive to the coefficient of variation. 

In evaluating the accuracy of St. Louis' two­
stage sampling plan, the order of the stratification 
was reversed and optimal allocation was used in both 
stages. A detailed calculation of the precision of 
the new sampling plan (new calculations based on two 
optimal allocations) resulted in a precision of 
0. 094. The gain in precision over a simple random 
sample is only 0.006, which is clearly not worth the 
additional effort required for stratification. The 
gain in precision can be translated into a reduction 
in sample size of about 30 trips. 
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Standard Wells: Denver Case Study 

The Denver Section 15 ride-check procedure is of 
interest because application of the standard Wells 
sampling plan will not meet the desired precision of 
10 percent for passenger-miles. As the data in Table 
3 indicate, the precision of the passenger-miles 
estimate is only 11.6 percent. The lack of accuracy 
in the passenger-miles estimate is explained in part 
by the approximations used in computing the distance 
between stops. Because an up-to-date stops file with 
complete distances between stops was not available, 
the Denver Regional Transit District (RTD) allocated 
the known distance between time points equally to 
all stop-level segments. To the extent that pas­
senger loads are concentrated on route segments that 
have closer spacing of stops, the assumption of 
equal distances between stops will tend to overesti­
mate passenger-miles. 

Because Denver does have an independent estimate 
of total passengers, the ratio estimate of pas­
senger-miles per passenger can be used to increase 
the precision of the passenger-miles estimate. Al­
though the correlation between passenger-miles and 
total passengers is relatively low (P = 0.587), 
the coefficient of variation of the ratio estimate 
from Equation 9 is low enough (CVpm/p = 0.0478) to 
give a precision for the r at i o estimate (9.4 per­
cent) that is within the UMTA guidelines. Thus, if 
the independent estimate of passengers is accurate, 
the product of the ratio of passenger-miles per pas­
senger and total passengers will give an estimate of 
passenger-miles that is within the UMTA guidelines. 

Substantial improvements in the accuracy of the 
estimate of passenger-miles should be possible 
through stratification by route type. As the data in 
Table 3 indicate, there are large differences among 
the average passenger-miles per trip by route type. 
For example, Denver local service generates only 156 
passenger-miles per trip whereas express and inter­
city routes generate more than three times as many 
passenger-miles per trip. Stratification by route 
type will eliminate that part of the total variance 
that is the result of the difference between the 
route-type mean and the overall mean. As the data in 
Table 4 indicate, the precision of both the pas­
senger-miles and the passenger-minutes estimates is 
improved substantially by a stratified sample. In 
contrast, the precision of the passengers estimate 
is essentially the same, which is explained by the 
relatively small differences among the means of the 
route types. 

TABLE 3 Denver Section 15 Data Stratified by Route Type" 

Passengers Passenger-Miles Passenger-Minutes 
Route Sample 
Classification Size Mean CV Mea n CV Mean CV 

Weekday Only 

Denver local 260 40 .9 0.631 156 0 .872 692 0.843 
Boulder lo cal 15 21.1 0.829 63.8 1.28 262 1.046 
Longmont local 12 4.2 1.07 8.3 1.23 22.0 0.658 
Denver circulator 34 11.4 1.24 25.2 1.30 125 1.465 
Intercity 16 28 .3 0.88 552 1.13 1,118 I .097 
Express 37 45 .6 0.40 490 0.467 1,462 0.491 
All routes 381 35.8 0.723 188 1.26 695 0.997 

All Days 

All routes 538 31.6 0,796 157 1.37 582 1.09 
Precisionb 

(percentage) 6.3 11.6 9.2 

~ l) l:l ri Yed from dnta in Ueuthel (13). 
llt1o1md on • :d mple random sample. 
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TABLE 4 Precision of Simple Versus Stratified Random 
Sample for Denver, Weekday Only' 

Sample Type Passengers 
Passenger­
Miles 

Passenger­
Minutes 

Simple random sample 
Stratified random sample 
(proportional allocation 
by route classification) 

0.073 

0.076 

8 DeriVed from data in Beuthel (1 3 ). 

0.127 0.100 

0.104 0.083 

The ratio estimate could also be applied to the 
coefficients of variation obtained from the strati­
fied sample. The resulting precision of the ratio 
estimate of passenger-miles per passenger should be 
substantially less than 10 percent and thus well 
within UMTA's guidelines. 

The potential for stratification by a number of 
variables can be determined from Table 5. The be­
tween-class variation is eliminated by stratifica­
tion. Thus, the greatest reduction in variance is 
achieved by selecting the classification with the 
highest between-day coefficient of variation. Strat­
ification by route type is best for passenger-miles, 
whereas stratification by day is best for passengers 
and passenger-minutes. Based on the weekday data, 
stratification by day in Denver with a random sample 
of one trip each day would be adequate for both pas­
senger and passenger-minutes estimates. A ratio 
estimate of passenger-miles should come close to 
giving a precision of 10 percent. A daily sample of 
one trip would represent a reduction of about one­
third from the current sample rate of two trips 
every other day. 

S ampl e f rom Extens ive Ride Checks Cas e S tudy 

Overview 

A number of transit properties have extensive ride­
checking programs in which every daily one-way trip 
is ride checked at least once during the year. At 
the end of the year ride-check data for at least one 
day are available for all routes so that comparisons 
of route performance cim be made. One problem with 
spreading the ride checks over the entire year is 
that route-level comparisons are biased by seasonal 
variations and ridership trends. To avoid this prob­
lem, some properties concentrate their ride checks 
in a short period of a few weeks. In some cases both 
spring and fall checks are made. 

A number of properties have used their 100 per­
cent ride checks as the data base for satisfying 
Section 15 reporting requirements. Because all of 

Weekday Section 15 Data• 

Day of 
Variablebc Day Week 

Passengers 0.582c 0.714 
(CV= 0.724)d 0.430° 0.113 
Passenger-miles I.OJ 1.24 
(CV= 1.27)d 0.758 0.265 
Passenger-minutes 0.821 0.982 
(CV= 0.997)" 0.564 0.163 
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these properties have considerably more daily one­
way trips than the 546 trips required by the stan­
dard Wells minimum random sample, a random sample of 
546 trips typically is drawn from the 100 percent 
ride checks. This two-stage sampling procedure is 
valid statistically if the first stage (the 100 per­
cent ride-check data) gives an unbiased estimate of 
passenger-miles, passenger-minutes, and total pas­
sengers. The ride checks that are spread over the 
entire year shou l d provide unbiased estimates as 
long as the checks for each route type such as local 
and express routes are distributed reasonably uni­
formly over the year. The ride checks that are con­
centrated in a short period, however, are likely to 
produce biased estimates because seasonal variations 
and secular trends are omitted. A partial solution 
in this case is to use a ratio estimate of pas­
senger-miles per passenger as the basis for estimat­
ing annual passenger-miles. Passenger-miles per pas­
senger measures average passenger trip length, which 
should be more stable over time than either pas­
senger-miles or total passengers. 

Milwaukee Case Study 

A test of the validity of using 100 percent system­
wide ride checks collected over a short period as 
the basis for Section 15 reporting requ i res data on 
average passenger trip length over time, which in 
turn requires an extensive ride-check data base. 
Milwaukee County Transit in Milwaukee, Wisconsin, 
nas the required data base in machine readable for­
mat. Time series ride-check data for one crosstown 
feeder line, Route 55, are given in Table 6. 

TABLE 6 Variations in Average Passenger-Miles per Passenger 
on Milwaukee Route 55 

Sample Passenger-Miles Coefficient Precision 
Month Size per Passenger of Variation (r) 

January 64 6.07 0.382 0.096 
October 62 6.38 0.392 0.100 
November 63 6.49 0.357 0.082 

The passenger-miles per trip estimates given in 
Table 8 are not true ratio estimates but the average 
of the ratio of passenger-miles per passenger over 
the 100 percent ride check for that time period. The 
precision of the estimate, thus, i s a measure of 
variation in the average of the ratios and is only 
an indirect measure of the variation in average pas­
senger-miles per passenger over the entire day. 
Clearly, the average of the average trip lengths is 

Time of Doy 

Denver 
All Local 

0.681 0.476 
0.242 0.209 
1.17 0.659 
0.480 0.279 
0.905 0.627 
0.415 0.299 

Peak vs 
Off-Peak 

0.696 
0.198 
1.18 
0.454 
0.917 
0.389 

Route 
Type 

0.647 
0.323 
0.972 
0.809 
0.849 
0.522 

~ l)crivcd from d• •• In Ucuthc l (IJ/. 
Mr.1rn Ya.lut-s: r•usuunori ::: JS. 8. p:iss~rtg4.lt •miles == J 88, and passenger-minutes= 695. 

~Whhin ·dny co"(ticicn1 uf varinffon, Sw/ .. 
<.:o~ffklrnt or ,•.n rhulon. 

e U"tWllen·d~ r co cmchrn1 of varln llon, St.i /X. 
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reasonably stable over time at least for Route 55. 
Pairwise tests for equality of the means between 
months showed that the null hypothesis of eguali ty 
could not be rejected at the 5 percent level. 

Although a sample of three 100 percent ride 
checks on one route over an 11-month period does not 
provide a definitive test of the hypothesis that 
average trip lengths a re stable over time, the re­
sults for Milwaukee are encouraging. A complete 
evaluation of the hypothesis would require time se­
ries data on systemwide average trip lengths as 
well. The trip lengths for individual routes may not 
be constant over time but the systemwide average 
could still be relatively stable. 

Two-Stage Estimation Case Study 

Overview 

As outlined in the Madison, Wisconsin, case study, a 
ratio estimate of average trip length (passenger­
miles per passenger) can improve the precision of 
the estimate of passenger-miles if the correlation 
between passenger-miles and passengers is high and 
if an accurate, independent estimate of total pas­
sengers is available. Total passenger-miles are com­
puted as the product of average trip length and 
total passengers. If a random sample of ride checks 
is used to compute the ratio estimate, then the ra­
tio and the resulting estimate of total passenger­
miles will be unbiased. 

In some cases ratio estimates of average trip 
length have been based on intensive ride checks con­
ducted over a short period of a few weeks. The as­
sumption is made that the ratio estimates are stable 
over time. The limited time series data on average 
trip length for one route in Milwaukee that were 
presented in the previous section support the time 
stability assumption, but systemwide data were not 
available. Although the assumption of time stability 
may be a good assumption, there is always the possi­
bility for change. Thus, a random or otherwise un­
biased sample over the time period of interest is 
the only method for assuring that an accurate esti­
mate of total passenger-miles is obtained. 

Albany Case Study 

As part of its transit route performance monitoring 
study, the Capital District Transit Authority (CDTA) 
implemented a new ride-check program using the sam­
pling techniques presented in the Bus Transit Moni­
toring Manual (_!!, 14) • The primary purpose of the 

75 

ride-check program was to estimate route-level aver­
age trip length and revenue per passenger within 15 
and 10 percent, respectively. Because accurate esti­
mates of route-level total boardings are available 
from 100 percent counts by drivers, it was e s timated 
that system-level estimates of average trip length 
and revenue per passenger would be within 5 and 2 
percent, respectively. 

The number of trips per route that is to be 
sampled for the ride-check program varies from a low 
of 2 to a high of 16 for weekdays. For weekends, the 
range is from 4 to 13 trips . The results of ride 
checks for three routes are given in Table 7. The 
variation in average trip length (passenger-miles 
per passenger) as measured by the coefficient of 
variation is less than that for passengers and for 
passenger-miles. The precision of the estimates of 
average trip length is computed in two ways : (a) 
direct computation based on the coefficient of vari­
ation of the trip lengths for each observation and 
(b) ratio estimate based on the coefficients of 
variation of passenger-miles and passengers and the 
correlation between passenger-miles and passengers. 
The direct estimates of precision are within the 
specified 15 percent level, and two of the ratio 
estimates are slightly above the 15 percent level. 

The CDTA's total ride-check program requires 503 
weekday and 233 weekend ride checks. The total pro­
gram of 736 ride checks is considerably larger than 
the minimum Wells' sample of 546. The advantage of 
CDTA' s approach is that precise estimates of trip 
lengths and average fare are obtained at the route 
level. If only systemwide estimates are of interest, 
then the sample size can be reduced substantially 
particularly when the ratio estimate for average 
fare is used as was shown for the Madison, Wis­
consin, case study, 

Extensive Ride-Check Case Study 

Overview 

An extensive ride-check program in which every daily 
one-way trip is checked at least once a year can be 
conducted either manually or with automatic pas­
senger counters (APCs). Properties with extensive 
manual count programs are generally interested in 
total passengers, load profiles, and running times. 
Passenger-miles are usually not of direct interest 
so they are usually computed only for a sample of 
trips for Section 15 reporting purposes. In con­
trast, with APCs passenger-miles can easily be com­
puted for all sample trips with essentially no extra 
effort. 

TABLE 7 Estimation of Average Trip Lengths from Ride Checks-Albany• 

Passenger- Passenger-Miles 
Passengers Miles per Passenger 

Precisiond 
No.of Mean Mean Meanc 

Route Observations (CV)b (CV) (CV) Direct Ratio 

9 16 24.4 44.8 1.86 0 .145 0.161 
(0.450) (0.531) (0.331) 

12 15 16. l 42.4 2.47 0.136 0.151 
(0.442) (0.710) (0.299) 

8 9 19.3 40.0 2.05 0.112 0.126 
(0.304) (0.355) (0.180) 

~Derived from dntD jn Transit Route Performance Monitoring Study {14). 
Codficlent of vn.rlation. 

c Average of the ratio of passenger-miles to passengers. The unbiased estimates of passenger-miles per 
pa!i11:n5ur fQr lho three rnu lct i:ire t.84, 2.63, and 2.01~ rospc~tlvely. 

dDirccr cs-lln1111 v of prciai-Jion Is bruiod on the formula for D ."timph1 rnndom Jiitn·,pla. 1111: ulio estimate 
Is ba~~d 0 11 a r• llo cJl!m 11 1c uJfni; 11u:1,.,,cn11:er-miles and s,:, JCfliJtU; lhnt b,CV3m/p = cvim + CV~ 
- ipcv1,.,,cvp, 
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Because of the expense of the APC counting units, 
only a small fraction of the fleet can be equipped. 
Various sampling strategies can be developed depend­
ing on the data needs of the property and the logis­
tics of assigning buses. 

Columbus, Ohio, Case Study 

The Central Ohio Transit Authority (COTA) contracted 
with a consultant to undertake a comprehensive ride­
check program using APCs. The APCs provide route­
level data on passengers, passenger-miles, pas­
senger-minutes, vehicle-hours, vehicle-miles, and 
runuluy tlme!; !;U that both route- and system-level 
performance measures can be computed. A weekday pro­
ductivity analysis report is produced every 4 months. 

Because passenger-miles are obtained routinely 
from the APCs, the Section 15 reporting requirements 
are easily met. The six AFC-equipped buses could 
cover the entire fleet of 234 peak-hour buses in 
about B weeks. During the course of a year each ve­
hicle block could be sampled five or six times. 
Thus, the primary concern is not the sample size but 
the need for an unbiased sample. Although the pre­
cise details of the sampling procedure used by COTA 
were not available, the sampling procedure appears 
to involve a trade-off between coverage and route­
or corridor-level problem solving. All vehicle 
blocks have been covered at least once. Multiple 
checks have been made for a few select routes. 

For system-level estimates a random sample of 
vehicle blocks each day will give the best results. 
In contrast, for evaluating route operational char­
acteristics, 100 percent checks done route by route 
are likely to be more useful. The result is a point 
estimate of demand at the route level. The system­
level estimates should still be reasonably accurate 
as long as the routes are selected in random order. 

RUMMARY AND CONCLUSIONS 

The three cases of alternatives to the standard 
Wells random sample approach demonstrate that sub­
stantial reductions in sample size are possible 
within the UMTA-imposed constraint of a precision of 
10 percent. In Madison, Wisconsin, a reduction of 
the sample rate to one trip per day still provided a 
more than adequate level of accuracy. Further im­
provements in accuracy were made possible by using a 
ratio estimate of passenger-miles per passenger. 
Stratified sampling with stratification by day of 
the week and route type appeared to have some po­
tential. 

st. Louis chose a fairly complicated two-stage 
stratification by time period and day of the week to 
reduce the required sample size. Analysis indicated 
that a simple random sample or a random sample 
stratified by day would be nearlv as accurate. In 
contrast, the standard Wells sample for Denver did 
not quite meet the UMTA accuracy requirements. By 
using the ratio estimate, howewir, the 10 percent 
precision level could just be met. Stratification by 
route typP reRulted in a further incre.ii;e in pre­
cision. 

The second major group of Section 15 data collec­
tion procedures, the sample from extensive ride 
checks, requires the assumption of time stability of 
average trip length when the extensive ride checks 
are concentrated in a short period. Ride-check data 
available from Milwaukee on one route indicated that 
average trip lengths were reasonably stable over a 
period of 11 months. 

The two-stage estimation approach also uses aver­
age trip length to improve accuracy or reduce sample 
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size. In Albany, New York, application of the ap­
proach at the route level required only modest 
sample sizes to achieve a precision of 15 percent 
for a 90 percent confidence level. The total sample 
size of more than 700 trips could be reduced sub-
stantially if only system-level estimates were of 
interest. 

The last approach is the extensive ride-check 
program that is of interest for Section 15 purposes 
when passenger-miles are computed for all ride 
checks. Full computation of passenger-miles is more 
likely for APC-based programs than for manual ride­
check programs. As shown by the Columbus, Ohio, APC 
program, a large sample is obtained. A primary con­
cern of the sampling plan for Section l!:i purposes 
should be to give an unbiased estimate of annual 
passengers, passenger-miles, and other data of in­
terest. 

The case studies show that there are many oppor­
tunities for improving the accuracy of the standard 
Section 15 data collection programs. If the only 
concern is with meeting the minimum accuracy re­
quirements, then improved sampling plans can he used 
to reduce the sample size. The potential for simple 
stratification or ratio estimates can be evaluated 
using the existing Section 15 data base. Use of 
ratio estimates is possible if an accurate, inde­
pendent estimate of total passengers is available. 

Additional research is needed to determine how 
Section 15 data collection requirements can best be 
met with the alternatives to the standard Wells sam­
pling procedure. Identification of the variability 
in average trip length is a key problem that re­
quires an extensive ride-check data base. Such data 
bases are currently available in only a few systems. 

From a broader perspective the UMTA requirement 
for estimating annual passenger-miles with a pre­
cision of 10 percent needs to be reviewed. If the 
focus of Section 15 were on developing accurate es­
timates of total annual passengers, the data could 
possibly be made more relevant to transit operators. 
Additional reeearch ie needed to explore alternative 
means of integrating passenger counts obtained from 
ride checks with other techniques for estimating 
total passengers. 
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Transit Operator Performance Evaluation: 

Study Group Review at Muni 

LARRY S. ENGLISHER, MARTIN J. MORGENBESSER, and JOHN P. ATTANUCCI 

ABSTRACT 

The results of a study group review of employee performance evaluation at the 
San Francisco Municipal Railway are outlined. The review was undertaken as one 
step of a demonstration funded by the Urban Mass Transportation Administration, 
which is aimed at improving the reliability of transit service. Muni is cur­
rently implementing study group recommendations as part of the ongoing demon­
stration. The study group process was used in a previous study of safety issues 
at Muni and proved quite helpful. By bringing together representatives of other 
transit properties that have been addressing similar problems, the study group 
was able to "brainstorm" and exchange ideas. Both Muni staff and the represen­
tatives from other properties left the 4-day session with new insights and 
ideas. The study group addressed several components of a performance standards 
and motivation program, including measurement of performance, setting targets, 
establishing incentive and awards programs, ongoing procedures for appraisal 
and communication, and outlining and operating under a system of discipline. 
Among the aspects of performance discussed were attendance and punctuality; 
adherence to schedule i safety i courtesy and appearance i stress and substance 
abusei and general conformance to rules, procedures, and directives. 

The San Francisco Municipal Railway (Muni) has un­
dertaken a transit service reliability demonstration 
under a Service and Methods Demonstration grant from 
the Urban Mass Transportation Administration. The 
objective of the demonstration is to improve the 
reliability of service delivered to transit passen­
gers by applying a variety of management and opera­
tional strategies. Among the primary strategies are 
an operator performance evaluation and motivation 
program, an attendance management program, and on­
street supervision and control strategies. 

Multisystems initiated the project in December 
1983, preparing summary papers to generate discus-

sion on possible demonstration strategies. The 
papers reviewed Muni' s current performance evalu­
ation procedures and the approaches of several other 
transit authorities, including Metro-Dade, Houston 
Metro, Seattle Metro, MTC (Twin Cities), Flint MTA, 
Chittenden County (Vermont) , and San Diego Transit. 
The papers also included summaries of the following 
approaches to improving productivity and motivation 
outlined in research performed by the Urban Insti­
tute (l): monetary incentives, performance ap­
praisal, performance targeting, job enrichment, and 
employee assistance programs. Research on the causes 
of absenteeism among transit employees was also re-




