scale testing and data analysis include James W. Reilly, Wayne R. Shrome, Alan W. Rowley, and Robert P. Murray. David R. Kinerson and Wilfred J. Deschamps of the Special Projects Section performed the electronics work for this project. The authors also wish to thank maintenance personnel of the Department's Region 1 and the New York State Thruway Authority for their assistance in site preparation and barrier erection on several occasions. The technical contributions of Larry N. Johanson, Daniel E. Peeser, and Frank Naret II of the Structures Design and Construction Division and of William E. Hopkins of the Facilities Design Division are also gratefully acknowledged. Research reported in this paper was conducted in cooperation with FHWA, U.S. Department of Transportation.

REFERENCES

Bridge Rail to Contain and Redirect 80,000-lb Tank Trucks

T. J. HIRSCH and W. L. FAIRBANKS

ABSTRACT

A standard Texas Type T5 traffic rail was modified to increase its height and strength to contain and redirect an 80,000-lb (36 297-kg) tank-type tractor-trailer at 50-mph (80.5-km/hr), 15-degree impacts. The height of the concrete parapet was increased to 48 in. (122 cm), and a concrete beam was mounted on concrete posts on the top of the parapet to achieve a total rail height of 90 in. (229 cm). One crash test was conducted on the bridge rail. The truck was contained and smoothly redirected. This test has shown that a bridge rail can redirect heavy tank-type trucks at speeds up to 50 mph and 15-degree impacts. The cost of this rail is estimated at about $125 per foot. Typical passenger car bridge rails in Texas now cost about $35 per foot.

Current bridge rails are designed to restrain and redirect passenger cars only. Collisions of large trucks with these bridge rails have in the past led to catastrophic accidents. Concern for the reduction of the severity of these accidents has led highway designers to devote more attention to the containment and redirection of large trucks at selected locations. The factors involved in the design of bridge rails to contain and redirect large trucks are not nearly so well understood or researched as those involved in the design of passenger car rails.
FIGURE 1 Tractor-trailer loaded dimensions, empty weight, and loaded weight.

<table>
<thead>
<tr>
<th></th>
<th>EMPTY WEIGHT</th>
<th>LOADED WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight on front axle</td>
<td>10,590</td>
<td>Weight on front axle</td>
</tr>
<tr>
<td>Weight on center axes</td>
<td>8,030</td>
<td>Weight on center axes</td>
</tr>
<tr>
<td>Weight on rear axes</td>
<td>9,700</td>
<td>Weight on rear axes</td>
</tr>
<tr>
<td>Total Empty Weight</td>
<td>28,320</td>
<td>Total Loaded Weight</td>
</tr>
</tbody>
</table>

FIGURE 2 Cross section of modified T5 bridge rail and bridge deck.
Therefore, it was the objective of this project to design, build, and test a bridge rail to contain and redirect an 80,000-lb (36 297-kg) tank-type tractor-trailer, as shown in Figure 1. The design was based on data presented elsewhere (1-5).

The rail selected was a modification of the Texas Type T5 traffic rail. The modified T5 rail consists of a concrete safety-shaped parapet 48 in. (122 cm) high and a concrete beam element 16 in. (41 cm) wide and 21 in. (53 cm) deep. The size of the upper concrete parapet was increased to 12 in. (30 cm) to minimize cracking.

The rail when impacted by heavy vehicles. The modified T5 concrete parapet can be placed in continuous lengths, which gives good structural continuity and strength. The thickness of the bridge deck below the concrete parapet was increased to 12 in. (30 cm) to minimize cracking.

The beam-and-post design was selected because of its open and aesthetic appearance. The concrete safety-shaped parapet was selected because of its past acceptable safety performance.

DESIGN TECHNIQUE

Earlier tests (1) have shown that the highest forces generated during the redirection of tractor-trailers occur when the tandem axles of the tractor and the front of the trailer impact the bridge railing. With the traffic rails tested in the past, a relatively small part of the total kinetic energy is expended in the redirection of the front axle of the tractor, and the rear tandem axles of the trailer tend to have an even smaller impact. With the knowledge that the total loaded weight on the tandem axles of the tractor would be approximately 34,000 lb (15 426 kg) (Figure 1), it was assumed that 10,000 lb (4540 kg) of this load (empty weight) would probably be transferred to the rail through the wheels and the axles. The remaining 24,000 lb (10 889 kg) (payload) would be transferred to the rail through the trailer.

Accelerometer data from past tests indicated that the tandem axles of the tractor would be subjected to a 50-msec average lateral acceleration of about 6 g. Therefore, equivalent static design forces of 60,000 lb (27 223 kg) (10,000 lb x 6 g) applied at a height of 21 in. and 144,000 lb (65 335 kg) (24,000 lb x 6 g) applied at a height of 84 in. (213 cm) were used to design the rail by using yield line theory for reinforced concrete. These procedures are outlined in Texas Transportation Institute (TTI) Research Report 230-2 (2).

DESCRIPTION OF BRIDGE RAIL AND DECK MODIFICATIONS

The modified T5 rail has a concrete beam 16 in. wide and 21 in. deep mounted on top. This modified bridge rail makes a combination bridge rail 90 in. high suitable to retain large 80,000-lb tank-type trucks or tractor-trailers impacting at 15 degrees and 50 mph. Drawings of this rail are shown in Figures 2, 3, and 4. The size of this bridge rail is compared with a 1979 Ford Thunderbird and the tank-type tractor-trailer in Figure 5. The modified T5 rail was constructed on a 14-degree curve, and the deck had a superelevation of 0.055 ft/ft (0.017 m/m). The rail was mounted vertically. The bridge rail was constructed in this manner, at the request of the sponsors, to closely simulate an expected installation in San Antonio, Texas.

The concrete parapet was basically a standard Texas Type T5 traffic rail that was heightened to 48 in. and thickened to 11 in. (28 cm) at the top and 20.5 in. (52 cm) at the bottom. It was anchored to the bridge deck by No. 6 stirrups spaced at 8 in. (20 cm) as shown, and 10 No. 8 longitudinal bars were used.

The concrete post was 21 in. high, 8 in. thick, and 5 ft long with 5-ft openings between posts. Each concrete post was anchored to the concrete rail by means of No. 7 bars (8 on the traffic side and 8 on the field side).

The concrete beam on top of the posts was 16 in. wide and 21 in. deep for the entire length of the rail. It contained No. 3 closed stirrups spaced at 8 in. center to center and 10 No. 8 longitudinal bars. The strength of the Texas standard bridge deck, which is 7 in. (18 cm) thick, was increased in many ways. The dimensions and reinforcement pattern of the standard bridge deck were essentially maintained throughout except in the cantilever portion of the deck. These changes are detailed in Figure 2. The length of the cantilever portion was decreased from 30 in. (76 cm) to 18 in., and the thickness was increased to 12 in. (30.5 cm). The size of the upper transverse bars was increased from No. 5 bars to No.
7, and the standard 5-in. (12.7-cm) spacing was retained. The size of the lower transverse bars was increased from No. 4 to No. 6, and the standard spacing of 10 in. (25.4 cm) was again retained. The size of the upper and lower longitudinal bars was increased to No. 6 from No. 4 and 5, respectively, and the spacing was increased from 12 to 17.5 in. (44.5 cm).

All reinforcing bars used in both the bridge deck and the rail had a minimum yield strength of 60 ksi (414 kN/cm²). It should be noted that all of the 28-day compressive strengths were well above the minimum specified strength of 3,600 psi (0.25 kN/cm²); however, the rail would have performed satisfactorily with the minimum 3,600 psi.

TRUCK CRASH TEST

This bridge rail system was designed to contain and redirect an 80,000-lb tank-type tractor-trailer. A simulated bridge deck with this rail system was built at the TTI proving grounds and tested with a 1980 Kenworth tractor-trailer ballasted with water.

FIGURE 4 Plan view of modified T5 bridge rail, bridge deck, and pier system.

FIGURE 5 Comparison of Thunderbird and 80,000-lb tank truck with modified rail.

FIGURE 6 Tractor dimensions and weight after crash test.
to 80,120 lb (36,352 kg). Drawings showing the
dimensions of this vehicle along with loaded and
unloaded weights on each axle or pair of axles are
shown in Figures 1 and 6. Photographs of the truck
before and after the test are presented in Figures 7
and 8.

The truck impacted the rail at 51.4 mph (82.7
km/hr) and an angle of 15 degrees. The impact point
was at the upstream edge of post 5, and the truck
was smoothly redirected and remained upright. Figure
9 shows the bridge rail and test site immediately
after the test. The truck entry and exit path can be
seen clearly. The truck sustained damage to the
right front and right tandem wheels. The cab of the
truck remained intact. The trailer body was dented
by the impact with the upper beam but did not rup­
ture. The trailer did, however, sustain a small
puncture (1/4 in. in diameter) from the exhaust
stack of the truck immediately following impact. A
summary of the crash test data is shown in Table 1.
The bridge deck supporting the rail was not
significantly damaged. It was determined from the
overhead film that the upper beam was deflected a
maximum of 4 in. (10 cm) and sustained a permanent
deflection of 0.6 in. (2 cm). Sequential photographs
of the overhead and frontal views of the crash test
are shown in Figure 10.

FIGURE 7 Tank truck weighing 80,000 lb before test.

FIGURE 8 Tank truck weighing 80,000 lb after test.

The truck was equipped with roll, pitch, and yaw
rate gyroscopes and x, y, and z accelerometers lo­
cated above the tractor tandem wheels. Graphs of the
filtered data from this instrumentation are presented
in Figures 11-15.

Other data were gathered on the truck during the
test. Maximum positive roll of the tractor tandem
axles was 17 degrees from the roll rate gyroscopes
and that of the trailer was approximately 15 degrees
from the high-speed film. From the accelerometers,
the longitudinal and lateral maximum average
0.050-sec accelerations were -1.77 g and 5.54 g,
respectively.

DISCUSSION OF RESULTS

NCHRP Report 230 (6) recommends the following cri­
teria for Test S21 (80,000 lb/50 mph/15 degrees):

1. The test article should smoothly redirect the
vehicle; the vehicle should not penetrate or go over
the installation;

2. Detached elements, fragments, or other debris
from the test article should not penetrate or show potential for penetrating the passenger compartment or present undue hazard to other traffic; and

3. Vehicle, cargo, and debris should be contained on the traffic side of the barrier.

According to these criteria, the test was a success. The bridge rail contained and smoothly redirected the truck and remained totally intact while doing so.

Impact severity as defined by the occupant flail space approach was also computed from the accelerometer data of tractor tandem axles, 100-Hz lo-pass maximum flat filter.

Maximum peak 0.050-sec acceleration (g)

Longitudinal

Lateral

Peak acceleration (g)

Longitudinal

Lateral

Note: 1 lb = 0.45 kg; 1 mph = 1.61 km/hr; 1 in. = 2.5 cm.
meter data. The recommended threshold values for the flail space evaluation of passenger cars are 40 and 30 ft/sec for the longitudinal and lateral occupant impact velocity, respectively, and 20 g for the highest 10-msec average deceleration after contact. The computed values for this test were well below these recommended values. The longitudinal occupant impact velocity was 7.2 ft/sec, and the highest 10-msec average occupant acceleration after contact was -1.83 g. The lateral occupant impact velocity was 8.03 ft/sec, and the highest 10-msec average acceleration was 11.16 g. Even though these recommended threshold values do not apply to large trucks, they were presented here for comparison purposes.

FIGURE 11 Vehicle longitudinal accelerometer trace of test.

FIGURE 12 Vehicle lateral accelerometer trace of test.

FIGURE 13 Vehicle vertical accelerometer trace of test.

FIGURE 14 Trailer lateral accelerometer trace of test.

FIGURE 15 Vehicle angular displacement of test.
The upper concrete beam centered at 79.5 in. (202 cm) was designed so that the tank trailer would strike it and be prevented from overturning.

The cross-sectional area of this modified rail is approximately 7.6 ft² (0.7 m²) as compared with approximately 2.6 ft² (0.2 m²) for a standard Texas Type T5 traffic rail. The approximate cost of this modified rail would be about $125 per linear foot, whereas a standard Texas Type T5 traffic rail normally costs about $35 per linear foot.

SUMMARY AND CONCLUSIONS

A standard Texas Type T5 traffic rail concrete safety shape was modified by increasing its height and strength so that it could restrain and redirect an 80,000-lb tank-type truck or tractor-trailer. The height of the concrete parapet was increased to 48 in. A concrete beam element 16 in. wide and 21 in. deep was mounted on concrete posts on top of the concrete parapet to achieve a total rail height of 90 in. The concrete posts were 8 in. thick, 5 ft long, and 21 in. (53 cm) high with 5-ft (1.5-m) openings between the posts. The rail was constructed vertically on a 14-degree curve with the deck super-elevated 0.055 ft/ft.

The crash test was conducted on this bridge rail with an 80,120-lb tank-type tractor-trailer impacting the rail at 51.4 mph and at an impact angle of 15 degrees. The vehicle was smoothly redirected.

This test has shown that a bridge rail can be built on a slightly modified Texas standard bridge deck to contain large tank-type tractor-trailer trucks and redirect them without rollover.

ACKNOWLEDGMENT

This research was conducted under a cooperative program between TTI, the Texas State Department of Highways and Public Transportation, and FMWA.

REFERENCES

1. T.J. Hirsch and A. Arnold. Bridge Rail to Restrain and Redirect 80,000 lb Trucks. Research Report 230-4F. Texas Transportation Institute, Texas A&M University, College Station, Nov. 1981.

Roadside Barriers for Bridge-Pier Protection

JAMES E. BRYDEN and RICHARD G. PHILLIPS

ABSTRACT

Seven full-scale crash tests were conducted to evaluate a concrete bridge-pier protection barrier. This barrier consists of four concrete half-section safety-shape barriers placed in front of the pier and flaring back from the pavement edge. The end of the concrete barrier is protected by a 6 by 6-in. box-beam guiderail bolted to the concrete. The barrier was impacted at various points with either 1,800- or 4,500-lb sedans at 15 and 25 degrees and a speed of about 60 mph. The original design caused vehicles to roll over when the concrete barrier was impacted at 25 degrees near the first bridge pier. The design was modified by extending the box beam across the face of the barrier directly in front of the pier. This eliminated the rollover problem and strengthened the barrier, resulting in performance in compliance with the standards in NCHRP Report 230.