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Development and Application of Time-Series 
Transit Ridership Models for Portland, Oregon 
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ABSTRACT 

Described in this paper are the development and application of a methodology to 
identify and analyze the factors that influence changes in public transit 
ridership. The data used in the model development and testing are from Port­
land, Oregon and cover the period 1971 through 1982. Models were developed at 
the system, sector, and route levels, and were used to assess the impacts of 
past changes in service level and fare, as well as to forecast future transit 
patronage. The statistical approach used here was developed by Box and Jenkins 
for time-series data, and is therefore more appropriate and powerful than the 
more traditional regression analysis. Of particular interest here is the 
identification of the lag structures and functional forms that constitute the 
relationships between transit ridership, level of service, travel costs, and 
market size. 

Analysis of past variation in transit ridership and 
forecasting of future ridership are two important 
concerns for the public transit analyst. Before a 
service or fare change is instituted, its potential 
impact on ridership must be assessed. After imple­
mentation and equilibrium conditions have been 
reached, the impact of the change must be analyzed. 
Has ridership increased or decreased, and has this 
been the result of the service or fare change? Often 
it is difficult to isolate the variation in rider­
ship that can be attributed to a fare or service 
level change from the effects of some exogenous 
factor such as a change in gasoline supply or price. 

There are usually several processes that are 
occurring simultaneously, each affecting ridership 
in some way. A change in transit ridership in 1979, 
for example, might have been strongly related to 
rapidly increasing gasoline pr ices and supply con­
straints. But changes in the size of the travel 
market or in the level of transit service would also 
have had a direct impact on ridership levels if 
these variables were also changing during this time. 
Thus, any study of the variation in transit rider­
ship must consider all of the relevant factors that 
are also exhibiting variation. Similarly, to satis­
factorily forecast future transit ridership, a clear 
understanding of these factors is necessary. 

TWo basic classes of models (cross-sectional and 
time-series) have been developed by transportation 
analysts. Each class seeks to define the nature of 
travel demand and the factors that influence it. 
Cross-sectional models are developed using data 
collected at one point in time. Often, intensive 
travel surveys are undertaken and detailed charac­
teristics of the transportation system are measured. 
The level of detail of the data allows the develop­
ment of models that are able to relate microlevel 
character is tics of the system. For example, charac­
ter is tics of individual trip-making patterns such as 
traveler demographics and travel costs and time by 
competing modes can easily be handled with cross­
sectional models. However, using these models to 
assist in evaluating the impacts of a change over 
time involves some degree of risk. It is not clear 
that structural relationships estimated at one point 
will remain stable over time. In addition, data are 

expensive and time-consuming to collect and analyze. 
Time-series models are based on data collected over 
a period of time and thus allow for direct measure­
ment of the nature of these dynamics. The trade-off 
is that the level of detail for time-series data is 
usually not nearly as great as for cross-sectional 
data. This reduces the precision with which time­
series models can approximate true time-dependent 
structural relationships in the data. However, time­
series data are typically collected regularly by the 
transit operator and are readily available to the 
analyst. Because the nature of these relationships 
may itself change over time, it seems clear that 
models based on time-series data are more likely to 
capture these dynamics than those based on cross­
sectional data. 

There have been several important efforts in 
recent years in the development of time-series-based 
transit ridership models. Of particular importance 
is the work of Gaudry (!_,~), Kemp (l_,_!l, and Wang 
(2,~J. The data in this paper are built on the work 

of these researchers, and extend it into several 
important areas: 

1. A methodology is proposed that provides a 
logical framework for the analysis and forecasting 
of transit ridership. The essence of the methodology 
is that in order to assess past impacts or to fore­
cast future variation, a model must be developed 
that is time-series in nature and explicitly con­
siders all of the relevant factors that influence 
transit ridership. 

2. Consideration is given to the functional 
relationship between the input variables and transit 
ridership, particularly the nature of the delay that 
exists between a change in an input variable and 
when its effects in ridership can be measured. Also 
of importance is the method of specifying transit 
service level when using time-series data. 

3. Extensive use is made of a statistical meth­
odology that has not had wide application in trans­
portation, the Box-Jenkins time-series models. This 
technique resolves several problems that occur when 
standard regression models are used with time-series 
data, including multicollinearity and serial corre­
lation. Recent availability of the appropriate com-
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puter software makes use of this approach practical 
and available to most analysts. 

METHODOLOGY 

The proposed methodology that has been used in this 
research includes three phases. The first phase, 
model development, consists of postulating the form 
of the model, identifying the structural relation­
ships between transit ridership and the input vari­
ables, estimating the model parameters, and checking 
the validity of the model. Impact Analysis is the 
second phase. Here, the model that has been devel­
oped is used to determine the impact on ridership of 
a previous change in transit service level or fare. 
The final phase is forecasting, in which the model 
is used to forecast future transit ridership levels 
(Figure 1). 

M0del Development 

It is hypothesized that transit demand can be de­
scribed as a function of level of service, cost, and 
market size. This approach has been variously used 
by Gaudry (.!_,~), Kemp (2._,_!), and Wang (~,£_). 

A model structure suggested by theory must be 
tempered with the reality of the data that is actu­
ally available. The model considered here has been 
developed with this balance in mind. the model can 
be written as 

where 

Rt; transit ridership, 
SLt level of transit service, 
TCt travel costs by automobile 

' <!Jo 

"" ''" .C• 
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(1) 

and by transit, 

Postulate 
all 
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size of the travel market, 
seasonal factors such as weather, 
interventions such as gasoline shortages, 
marketing plans, and so forth, and 
the noise model or error structure. 

The first issue to be considered with respect to 
model form is the level of change that can be ex­
pected for a given change in the input. In other 
words, does that relative change in transit rider­
ship depend on whether the change in the input is 
large or small? It is assumed here that changes in 
transit ridership resulting from changes in service 
level or travel costs are subject to the law of 
diminishing returns. That is, for a fixed market 
size, there is a maximum number of transit riders 
that can be expected to use the transit system (as­
suming no capacity constraint) even if service level 
is raised to an extremely high level and if the 
transit fare is zero. For a variety of reasons, some 
travelers must or will always use their automobile 
no matter how attractive public transit becomes. 
Thus, for each additional increment of service level 
that is added, for example, there will be a smaller 
increase in the number of new riders that result. 
While a more generalized functional form can be 
used, log transformations, which have other useful 
properties as well, have been used here. 

The second issue with respect to model form is 
that of lagged response. Changes in service level, 
travel costs, or market size do not always result in 
instantaneous changes in transit ridership. It takes 
time for potential riders or current riders to hear 
about or perceive a ch2nge in the level of servicei 
for example, and then make decisions about whether 
to change their pattern of usage. For this reason, 
the function relating transit ridership to changes 
in the independent variables must allow for these 
lag effects. While the form of the lag is unknown, 
it may have the form as shown in Figure 2. 
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FIGURE 1 Methodology for analysis and forecasting of public transit ridership. 



Kyte et al. 

()_ 

:I 
V1 
O'.'. 
w 
0 
a:: 
~ 
w 
(.'.) 

z 
<( 
:r: 
u 

TO T1 

TIME 

T2 T3 

TO= Time at which change in service level 
or fare is implemented 

T1 = First response in ridership lo the 
change is measured 

T2 = Maximum rospons o 
T3 =Time at which ro$po nse/effect disappears 

F1GURE 2 Lagged response. 

Previously, the variables of the model were listed 
in general form as service level, travel cost, market 
size, and seasonal variation. The final issue with 
respect to model form is the specific form of the 
variables. 

Service Level 

One of the major determinants of transit ridership 
is the level of service available on the transit 
system. Most cross-sectional travel demand models 
use such measures as in-vehicle time, waiting time, 
and access time by transit and by automobile for 
each origin-destination pair to describe level of 
service. In time series models, however, the data is 
simply not available at this level of disaggrega­
tion. Typically, time-series demand models use such 
measures as platform hours or miles of service as a 
surrogate for transit service level. [Exceptions are 
Gaudry (1) and Kemp (3,4), who each attempted to 
construct waiting time- ind in-vehicle time time­
ser ies for Montreal and San Diego. Gaudry was work­
ing at the system level, while Kemp was working at 
the route level.) Here, platform hours, platform 
miles, and route miles are used. 

Platform hours and platform miles are gross mea­
sures of the amount of service provided each day, 
but each also includes nonservice layover and dead­
head time. Route miles describes the extent of the 
coverage of the system. Classification of the data 
by service change category (frequency of service, 
times of operation, network modification, new route, 
service reduction, and route elimination) provides a 
further useful refinement. Combinations of these 
three variables are also of interest. Platform miles 
per platform hour yields a crude measure of system 
speed, while platform miles per route mile describes 
the intensity of service over a given network. 

For the Portland data, at the route and sector 
levels, these variables are reasonable estimates for 
level of service. At the system level, the aggrega­
tion of service level into one variable such as 
platform hours results in a variable that is insen­
sitive to the variation of ridership productivity by 
geographic sector of the service area. For this 
reason, the service level variable has been disag­
gregated by sector, even when using the system data. 

Travel Cost 

Two variables are used to describe travel cost: 
transit fare and gasoline price. Transit fare is the 
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actual (average) cost for a transit trip, while 
gasoline price is a surrogate for the cost of an 
automobile trip. Assuming that trip lengths have 
remained fairly stable between 1973 and 1982, gaso-
1 ine price is a reasonable estimate of automobile 
travel costs. It can be argued on economic grounds 
that both transit fare and gasoline price should be 
deflated using the consumer pr ice index [see Kemp 
(l_,j_) for a discussion of this approach). However, 
it was found here that nondeflated prices are more 
directly correlated with transit ridership. The size 
of the travel market (market size) is described by 
employment. 

Seasonal Variation 

Transit ridership varies in a seasonal manner for 
two major reasons. First, ridership declines in the 
summer are directly related to vacations from school 
and work. Second, adverse weather conditions during 
the nonsummer months (particularly during the winter) 
often make transit more attractive than walking or 
using an automobile. In regression analysis, seasonal 
variation must be specifically accounted for by 
dummy variables. Seasonal variation can be con­
sidered in the transfer function models more simply 
by adding a seasonal difference and/or a seasonal 
multiplicative component to the error structure of 
the model. 

Other variables 

The variables listed previously are the primary ones 
considered here. Others that could be tested include 
the effects of gasoline supply constraints (1973-
1974 and 1979) , marketing and promotional programs, 
and construction of capital facilities. 

Identifying , Estimating, and Checking the Model 

The statistical methodology that has been used to 
develop these models has come to be known as the 
Box-Jenkins approach. The models themselves are 
known as autoregressive-integrated moving average 
(ARIMA) models. This approach is based on the phil­
osophy that models should be parsimonious (or repre­
sented with the smallest possible number of param­
eters) and that model building should be iterative. 
That is, there is a logical sequence of steps and 
checks that should be followed when constructing a 
model and that may need to be repeated until a 
satisfactory model results. These steps include 
identification of a tentative model based on various 
s ta tis tics constructed from the data itself, esti­
mation of parameters for the tentatively identified 
model, and diagnostic checking for model adequacy. 
One of the most important aspects of this approach 
is that the form of the model is not assumed in 
advance but is inferred based directly on the data. 
While theory may provide some guidance regarding 
which variables to include and the signs of the 
model coefficients, the analyst must look to the 
data for clues regarding the lag structure of the 
independent variables and the error structure of the 
model. 

Tentative models are identified by analysis of 
the autocorrelation function (ACF) and partial auto­
correlation function (PACF) of a given series Zt. 
For a discussion of the ACF and PACF, the reader is 
referred to Box and Jenkins (7). The class of ARIMA 
models of particular interest- here is the transfer 
function model, which can be written as 

(2) 
i 



12 

where Yt is the dependent variable, or the transit 
ridership series in this case. The Xi t terms are 
the independent variables or those factors that ex­
plain or effect the variation in Yt• The polynomial 
ratio w i (B)/6 i (B) represents the lag structure asso­
ciated with the variable Xit• The error structure 
is represented by the ARIMA model 0 (B)at/$ (B). 

An example may help to illustrate this general 
form. Suppose that two factors, service level (SL) 
and transit fare (F) are found to affect transit 
ridership. Further, the effects of a service level 
change begin immediately and decay over the next 
several time periods, while transit fare has an 
impact one period (month) after a fare change. Then, 
the general model (Equation 2) can be written as 

Rt = (w o/1-6 B) SLt + w lFt-1 + [0 (B) at/$ (B) l (3) 

Several methodologies exist tor identifying the form 
of the transfer function model. The one used here is 
not unlike stepwise regression in which one variable 
is added to the model at a time. The following steps 
are included in this process: 

Step 1. Differentiate between each series of 
interest so that each is stationary. 

Step 2. Analyze the ACF and PACF for the dependent 
variable (or output series) Yt• The 
ARIMA model suggested for this series 
should then be used as the first approxi­
mation for the noise model of the trans­
fer function model so that 

(4) 

Step 3. Add the first variable X1t to the model 
with a lag structure sufficient to cover 
all lags possibly suggested by theory. 
Estimate the parameters of this model 
using generalized least squares methods 
so that 

Yt =voXlt +v1 X1t-l +v2 X1t-2 + ••• 
+ [a (B) at/P (B) l 

Yt 

Yt 

= v (B) xlt + [0 (B) at/$ (B)] (5) 

Step 4. Analyze the coefficients v (B) repre­
senting the lag structure for the vari­
able X 1 t and keep only those that are 
statistically significant [v ' (B)] and 
of the correct sign. Re-estimate the 
model parameters using only those coef­
ficients v' (B) so that 

=v'(B)x1t+ (0 (B) at/$ (B)] (6) 

Step 5. Add the second variable X2t and follow 
the procedure of Steps 3 and 4. After 
analysis and re-estimation, the model 
will be of the form 

= v' (B)x1t + v '2(B)x2 t + [0 (B) at/$ (B)] (7) 

Step 6. After all of the input variables have 
been added in this manner, and the sig­
nificant ones identified and estimated, 
the model can be estimated in its more 
parsimonious form of 

Yt = l [wi(B)/6 i(B)] Xit + (0 (Blat/$ (B)] 
i 

(8) 

where 

the output series, 
the transfer function poly­
nomial ratio, 
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the input series, xit 
(B)/$ (B)at 

B 

the ARIMA noise model, and 
the backshift operator. 

Step 7. Finally, the independence of the 
uals at, the adequacy of the 
model (0 (B) at/$ (B)] and the 
pendence of the at series with 
Xit series can be checked. 

res id-
noise 
inde-
each 

If all conditions are satisfied, the model is 
assumed to be in its final form. It should also be 
noted that a one-way relationship is assumed between 
Xit and Yti that is, Xit may cause changes in Yt, but 
not vice versa. Although this assumption is a reason­
able approximation for this case, it should be 
pointed out that, in fact, a two-way relationship 
does exist. For example, continued growth in transit 
riderohip will eventually require an increase in 
capacity and thus in level of transit service pro­
vided. This case can be handled by the general 
multiple time-series model, but will not be covered 
in this report. For a discussion of the multiple 
time-series methodology, see Tiao and Box (~). 

Impact Analysis 

The transfer function model developed in the first 
phase (model development) provides an indication of 
the average response of transit ridership to changes 
in service level or transit fare. The model is esti­
mated based on all of the service level or transit 
fare changes that occur during the period for which 
the data are available and thus the elasticities 
represented by the model coefficients represent the 
combined effect of all of these changes. If, how­
ever, the analyst desires to study the impact of one 
particular change, that change must somehow be iso­
lated from the other changes that occurred during 
the study period. This can be achieved using inter­
vention analysis. 

Intervention analysis, developed by Box and Tiao 
(9), is based on the transfer function mode l but 
with the addition of a variable that represents one 
specific change or even t . The event, which could be 
a strike, the impleme ntation of a marketing program, 
or a gasoline shortage, is represented by a binary 
variable ~ jt• which assumes a value of 0 before 
or a f t e r tne event and a value of 1 during the time 
that the event or intervention is taking place. 

The basic form of the transfer function model 
with intervention is 

[wi(B)/6i(B)] Xit + l [wj(B)/6j(B)] ~jt 
j 

+ [0 (B) /$ (B)] at (9) 

The variables of Equation 9 are the same as pre­
viously defined for Equation 8, with the addition of 
the j intervention variables~ jt• 

The following steps are included in the impact 
analysis: 

step 1. Identify, estimate, and check the trans­
fer function model. This represents the 
model development phase. 

Step 2. Describe the past change whose impact is 
to be analyzed. Formulate an intervention 
variable to represent this change. 

Step .l. Modify the data base to eliminate the 
effects of this change from the other 
data representing this variable. For 
example, if the impact of a previous 
$0.05-fare increase is to be analyzed, 
this increase should be subtracted out of 
the fare data. 
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Step 4. Re-estimate the model with the interven­
tion variable included, as in Equation 9. 
If the coefficient of the intervention 
variable is statistically significant, 
the coefficient represents the effect of 
the specific change under analysis. If 
the coefficient is not statistically 
significant (that is, not significantly 
different than zero) , then the interven­
tion had no measurable impact on transit 
ridership. 

Forecasting 

The transfer function model developed in the first 
phase (model development) can also be used to fore­
cast future levels of transit ridership. But because 
the model depends on several inputs, these variables 
must also be assumed or forecast. Some of the input 
variables are under the direct control of the tran­
sit manager (e.g., service level and fare), and 
thus, a given policy option (e.g., reduced fares) 
can be assumed. Other variables such as employment 
and gasoline price, however, are exogenous and these 
must be forecast directly. Forecasts of the input 
variables are accomplished by using "univariate" 
models. A univariate model for gasoline price is 
simply a model of today's gasoline price as a 
function of past values of gasoline price. 

The following steps are included in the forecast­
ing phase: 

Step 1. Identify, estimate, and check the trans­
fer function model. This represents the 
model development phase. 

Step 2. Describe the nature of the forecast prob­
lem including the input assumptions and 
the length of the forecast period. 

Step 3. Forecast the future values of the exoge­
nous input variables, such as employment 
and gasoline price. 

Step 4. Using either the forecast or assumed 
values for the input variables, forecast 
the future values of transit ridership. 

The actual computations involved in transfer 
function forecasting are complex and are not de­
scribed here. Several computer programs include the 
forecasting process and, once a transfer function 
model has been developed, are straightforward and 
easy to use. See, for example, SAS <.! .. QJ and SCA (11) 
for further information. 

CASE STUDY: PORTLAND, OREGON 

The Portland, Oregon metropolitan area includes 1. 2 
million people and covers over 900 mi2 • The tran­
sit operator in Portland is the Tri-County Metro­
politan Transportation District of Oregon (Tri-Met). 
Tri-Met was formed in 1969 by the Oregon legislature 
to take over the private bus operations within the 
City of Portland and to expand services into the 
rapidly growing three-county area. 

Starting from 50,000 weekday riders in 1970, 
ridership had grown to over 140,000 by 1980, averag­
ing a 9-percent annual growth rate. The 3-year pe­
riod 1973-1976 saw nearly a 20-percent annual in­
crease. Platform hours and miles increased at an 
annual rate of nearly 7 percent between 1972 and 
1982. The major period of expansion was from 1973 to 
1976 when the annual growth rate was 14.5 percent. 
Area coverage, as measured by route miles, increased 
by 4.3 percent annually during this 10-year period. 
Service level intensity (platform miles per route 
mile) increased by an annual rate of 11.5 percent 
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from 1973 to 1976, but remained constant between 
1976 and 1982. 

By nearly all measures, automobile travel costs 
increased significantly during this pPrion, while 
transit travel costs declined. Gasoline price in­
creased at a 15.6-percent annual rate during the 
10-year period, with the largest increase occurring 
between June 1979 and June 1980, when a 30-percent 
annual rate was recorded. Employment increased at an 
annual rate of between 2 and 5 percent until 1980 
when it began to decline. Some of these trends are 
shown in Figures 3 through 7. 

Model Development Phase 

Data for Portland, Oregon covering 1971 through 1982 
were used to develop a total of 16 transit ridership 
models: one for the system as a whole, six repre­
senting distinct geographic sectors of the Portland 
region, and nine for individual routes in the Port­
land transit system. The three different data sets 
used here and their interrelationships are given in 
Table 1. 

Four input variables were used for each of the 
models: transit service level, transit fare, gaso-
1 ine price as a surrogate for automobile operating 
costs, and employment as a measure of the travel 
market size. Natural logarithms of the data were 
used, so that model coefficients give the elastic­
ities directly for each variable. The nature of the 
market response was included in the model by intro­
ducing lagged variables. This allowed a direct 
assessment of the time delay between the introduc­
tion of a service level or fare change and when a 
change in ridership could be measured. Service level 
delays ranged from 1 to 10 months for the system 
model and O to 3 quarters for the sector and route 
models. Fare delays ranged up to 2 quarters. A 
summary of the elasticities and lags are given in 
Table 2. 

Examination of Table 2 shows that there are some 
important consistencies in the results obtained by 
the three model categories. For example, the re­
sponse delay to service level changes tends to be 
about two to three times longer for urban routes 
than for suburban routes. Another comparison is the 
consistency of the elasticities for the four input 
variables between the system model and the sector 
models, as shown in Figures 8 and 9. Note that the 
elasticities estimated for the six sector models 
tend to vary around the system mean for each 
variable. 

Impact Analysis Phase 

The elasticities computed in the model development 
phase represent an average elasticity for a given 
variable over the entire study period. If four ser­
vice changes were implemented during a given period, 
for example, the service level elasticity would be 
an average of the impact of each service level 
change. However, to study the impact of a specific 
service level change, an intervention variable, 
which represents that change alone, must be added to 
the model. The model is then re-estimated with the 
intervention variable and the coefficient yields the 
elasticity of the specific change under study. If 
the variable coefficient is not statistically s ig­
nificant, it can be concluded that the change had no 
measurable impact on ridership. 

Eleven service changes instituted between 1973 
and 1979 were analyzed using the intervention analy­
sis technique. The results are given in Table 3. 
Seven of the eleven changes were found to have had a 
significant impact on ridership. 
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FIGURE 3 Transit ridership, system level, Portland data. 
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FIGURE 4 Platform hours, system level, Portland data. 
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FIGURE 5 Average transit fare, Portland data. 

130 

100 

70 

30+-- ,--...--.---.-----.----.---r---r---.---.--..., 
72 73 74 75 76 77 78 79 80 81 82 83 

FIGURE 6 Gasoline price, Portland data. 
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F1GURE 7 Tri-County employment, Portland data. 

Forecasting Phase 

The models developed in the initial phase of this 
project can be used to forecast future transit 
ridership variation. For example, the impact of a 
future fare change can be estimated using the ap­
propriate model. But because the model depends on 
future variation in gasoline price and employment as 
well, these variables must also be forecast or as­
sumptions must be made about their future values. 

Figure 10 shows the results of a forecast of 
system ridership for 12 periods (months) ahead. It 

TABLE 2 Summary of Models 

Data 
Aggregation 

System 
Sector 

Route 

Model Description 

Data 
Period 

Monthly 
Quarterly 

Quarterly 

Model 
Description 

System 
City radial lines 
City crosstown lines 
Urban Eastside lines 
Westside suburban lines 
SW suburban lines 
SE suburban lines 
City radial line 

Route 2 
Route 3 
Route 6 
Route 8 

City Crosstown line 
Route 71 
Route 72 
Route 73 
Route 75 
Route 77 

Service Level 

Elasticity 

.5 1 

.71 

.60 

.55 

.80 

.49 

.88 

l.81 
l.73 
.23 
.25 

.72 

.55 

.35 

Lag 

1,10 
2 
0-3 
2 
0 
0 
0,2 

0,2 
0,2,3 
0 
3 

0 
0 

0 
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TABLE 1 Summary of Portland Data Base 

Variable 

System level data 
Transit ridership 
Service level 

Travel costs 

Market size 
Sector and route level data 

Transit ridership 
Service level 

Travel costs 

Market size 

Time-Series 

Average weekday originating transit riders 
Daily platform bus hours 
Daily platform bus miles 
Daily route miles 
Daily platform miles per route mile 
Average bus fare in cents 
Gasoline price per gallon in cents 
Total employment by county 

Total weekday boarding rid ers 
Daily platform bus hours 
Daily platform bus miles 
Daily rout e miles 
Daily platform miles per route mile 
Average bus fare in cents 
Base cash fare in cents 
Gasoline price per gallon in cen ts 
Total employment by county 

was assumed that service level and fare were set by 
policy and that gas pr ice and employment had to be 
forecast using time-series models. These results, 
with a mean absolute percent error of 2.1 percent, 
show the high quality of forecast that can be 
achieved by using this approach. 

COMPARISON WITH STANDARD REGRESSION MODELS 

It has been traditional to use multiple regression 
models when developing models that relate transit 
ridership to explanatory variables. Using time-series 
data with regression models, however, invariably 
leads to a variety of statistical problems. Table 4 
contains data that highlight the following major 
areas in which problems are likely to arise by con­
trasting standard regression with transfer function 
models: multicollinearity, autocorrelated errors, 
lag structures, and coefficient estimates and stan­
dard errors. To determine whether these problems 
would, in fact, result, both standard regression and 
transfer function models were developed using the 
Portland system data. 

In using the nondifferenced data, a high degree 
of correlation was found among the input variables. 
Seven of the ten input variable combinations were 
highly correlated, with correlation coefficients of 

Fare Gas Price Employment 

Elasticity Lag Elasticity Lag Elasticity Lag 

-.29 0 .32 0 .49 0 
- .13 0 .14 0 .43 0 
-.42 0 .39 0 
-.15 0 .18 0 .65 0 
-.32 0 .31 0 .47 0 
-.22 I .28 0 .67 0 
- . 16 0 .27 0 .69 1 

-.39 0 .72 0 1.14 2 
-.90 0,1 l.39 0-3 
-.80 0 .62 0 .95 0 
- .35 2 l.23 0,1 

3.24 2 
.68 3 
.60 0 

1.72 3 
.24 2 

Note: Elasticity:::: total eJastlcity for given variable . Lag= lag or delay for which change in ridership was measured. 
cates that a change b ridership was measured 2 quarters after the lnput variable was changed. 

A lag of 2 using quarterly data, for example, in di-
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TABLE 3 Impact Analysis of Past Service Changes at the Route Level 

Coefficient 
of the 

Significant l11LtH v~uliuu 
Route Date Type of Change Impact? Variable 

2 1975 Frequency improvement Yes .13 
1978 Route extension No impact 

3 1973 Frequency improvement Yes .II 
1974 Frequency improvement, route extension Yes . 13 
1978 Service reduction No impact 

6 1974 Route extension No impact 
1975 Frequency improvement Yes .23 

71 1979 Frequency improvement, route extension Yes .72 
72 1976 Route extension 
75 1979 Route extension 
77 1979 Frequency improvement 
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t. Aalual rldonhlp data 
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! one slandard error 
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10 

FIGURE 10 Comparison of forecasts, system model. 
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0.60 or greater (see Table 5). Second, the residuals 
were highly correlated and not independent as re­
quired for regression models. Third, the delay in 
the response to service level changes would hav e 
been missed if only contemporaneous correlations 
were included in the model. Finally, the biased 
standard errors from the regression model would have 
erroneously led to the conclusion that one of the 
variables (service level-suburban lines) was statis­
tically significant when in reality it was not (see 
Table 6). These results argue for the wider applica­
tion of the appropriate statistical methodology when 
time-series data are used. 

CONCLUSIONS 

This paper has presented the initial results from 
the development and application of Box-Jenkins 

Yes .8 1 
No impact 
Yes .35 

transfer function and intervention models to time­
ser ies transit ridership and operations data for 
Portland, Oregon. The results indicate that this 
methodology is appropriate for evaluation and fore­
casting of transit ridership changes. Evidence is 
presented for the lag structure of the market re­
sponse to the various factors that influence transit 
ridership. Service level changes, for example, may 
require up to 2 quarters or 10 months for their 
effects to be realized, while fare changes have lag 
effects of up to 1 quarter or 1 month. Response to 
gasoline prices and employment level changes are 
more rapid, though lag effects have been found at 
the route level for up to 3 quarters for gasoline 
price changes. 

This work has also shown the consistency of re­
sults that may be obtained between system and route 
models when using different data bases. In addition, 
the effectiveness of intervention variables to model 
a specific change or event was demonstrated. Finally, 
some evidence was found on the variation of the 
structural relationships in the model over time. 

While requiring a somewhat longer learning period 
than would more traditional multiple regression 
analysis, time-series ARIMA models offer a substan­
tial advantage to the transportation analyst. With 
the recent availability of new computer software 
designed specifically to handle time-series prob­
lems, their use in transportation analysis will 
hopefully increase. 

There are several areas in which further research 
is needed; some of this work is now underway by the 
authors of this paper, including: 

1. Development of route level models for all 37 
route pairs operated by the Portland transit system. 
This will enable a thorough statistical analysis of 
elasticity measures of service level and transit 
fare, and a better categorization of impact of these 
changes. 

2. Development of multiple time-series models 
that will enable a study of two-way causality. 
Multiple time-series models are much more difficult 
to develop than transfer function and intervention 
models, but the r esults of the work provide more 

TABLE 4 Comparison of Standard Regression and Transfer Function Models 

Comparison 

Correlated input variables 

Automobile-correlated errors 

Lag structure for input 
variables 

Coefficient estimates and 
standard errors 

Standard Regression 

Yes, the input variables are highly correlated; 
multicollinearity is present 

Yes, the error structure is highly autocorrelated, 
violating basic model assumptions 

No, on ly contemporaneous correlation assumed 

Estimates are inefficient and the standard errors 
(and thus the significance tests) are biased 

Transfer Function 

No, data are differenced 

Yes, but model structure allows for correlated errors 

Yes, methodology directly investigates the nature of dynamic relation­
ships 

Estimates are efficient and the standard errors are unbiased 
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TABLE 5 Correlation Matrix Showing Multicollinearity of 
Nondifferenced Data 

Service Level 

City Suburban Gasoline 
Input Variables Lines Lines Fare Price Employment 

Service level 
City lines 1.00 .96 .45 .85 .89 
Suburban lines .96 1.00 .48 .88 .84 

Fare .45 .48 1.00 .80 .60 
Gasoline price .85 .88 .80 1.00 .89 
Employment .89 . 84 .60 .89 1.00 

TABLE 6 Comparison of Coefficient Estimates: 
Standard Regression versus Transfer Function Models 

Input Variables 

Service level 
City lines 
Suburban lines 

Fare 
Gas price 
Employment 

Coefficient Estimate and Standard 
Error 

Regression 

.39 ± .21 

.31 ± .12 
-.30 ± .08 

.27 ± .07 

.48 ± .09 

Transfer Function 

.28 ± .17 

.08 ± .06 
-.28 ± .07 

.25 ±.I I 

.57 ± .26 

useful insights into the structure and dynamics of 
the factors that influence change in transit rider­
ship. 
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