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ABSTRACT 

The development of an empirical random utility travel demand model, like the 
development of most other statistically based models, typically includes test­
ing and comparing several different functional specifications of the model to 
determine which specification best explains the available data. This paper is 
concerned with comparisons based on prediction success tables and indices. It 
is shown by example that prediction success tables and indices can lead to 
selection of the incorrect model when a correctly specified model is compared 
with an incorrectly specified one. This can happen even with data sets suffi­
ciently large to make the effects of random sampling errors negligibly small. 
Accordingly, it is concluded that prediction success tables and indices should 
not be used for model selection. Alternative selection procedures that are both 
reliable and easy to use are described. 

The development of an empirical random utility 
travel demand model (e.g., a logit or probit model), 
like the development of most other statistically 
based models, typically includes testing and compar­
ing several different functional specifications of 
the model to determine which specification best 
explains the available data. For example, in devel­
oping a logit mode choice model, a specification in 
which the utility function is linear in the travel 
time might be compared with a specification in which 
the utility function is linear in the logarithm of 
the travel time. A variety of formal statistical 
procedures for testing and comparing alternative 
specifications of models is available (!_-!) • The 
discussion in this paper is concerned with compari­
son procedures based on prediction success tables 
and indices (]_) • These procedures have no formal 
justification, but they have greater intuitive 
appeal than do many of the formal procedures and 
therefore are attractive in practice. 

A prediction success table for a model of choice 
among J alternatives contains J rows and J columns 
The entry in the ( i, j) cell of the table is the 
number (or proportion) of individuals in the avail­
able data set who are observed to choose alternative 
i and predicted by the model under consideration to 
choose alternative j. Intuition suggests that a 
model with relatively large diagonal elements in its 
prediction success table is likely to provide a 
better explanation of the available data than is a 
model with relatively small diagonal elements be­
cause the former model gives a higher proportion of 
correct predictions of choice than does the latter. 
A single indicator of a model's prediction success 
can be obtained by forming a suitable average of the 
diagonal elements of its prediction success table. 
The resulting prediction success index provides an 
unambiguous criterion for discriminating among sev­
eral models when no model dominates the others in 
terms of all of the diagonal elements of the models' 
prediction success tables. 

The purpose of this paper is to show by means of 
examples that an erroneously specified model can 

have larger diagonal elements in its prediction 
success table and a larger prediction success i ndex 
than does a correctly specified model. This can 
happen even with data sets sufficiently large to 
make the effects of random sampling errors negligibly 
small. Thus, contrary to intuition, prediction suc­
cess tables and indices do not provide reliable 
means for comparing models with different specifica­
tions. Alternative comparison techniques tha t a re 
both reliable and easy to use are described in the 
final section of the paper. 

DEFINITIONS OF PREDICTION SUCCESS TABLES AND INDICES 

Prediction success tables and indices were proposed 
originally by McFadden (3) as goodness-of-fit indi­
cators for random utility models. A prediction suc­
cess table for a model can be developed as follows. 
Let the available data consist of observations of N 
individuals who choose among J alternatives. Let 
Pjn denote the probability that ind ividual n in 
the data set (n = 1, ••• , N) chooses alternative j 
(j = 1, •.• , J) according to the model under con­
sideration. Let Sjn equal 1 if individual n is 
observed to choose alternative j and 0 otherwise. 
For each pair of alternatives (i,j) (i,j = 1, •.• , J) 
define Nij as 

N 
Nij r SinPjn (1) 

n=l 

and define 'IT ij by 

11 ij = Nij/N (2) 

Then Nij and 11 ij respectively represent the number 
and proportion of individuals in the data set who are 
observed to choose alternative i and predicted by the 

model to choose alternative j. Nii and 11 ii respec­
tively represent the number and proportion of indivi-
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duals who are correctly predicted to choose alterna­
tive i. A prediction success table for the model is 
theA J x J array whose (i,j) element is either Nij 

or 11 ij• Eithe r form of the table contains the same 
diagnostic informa tion, and it is a mat ter of con­
venience which is used. In this paper, it will be 

convenient to use the form based on ;ij· 
The total proportion of choices successfully pre­

dicted by the model under consideration is 

J 

11 ., I 11 j j 
j=l 

(3) 

This constitutes a goodness-of-fit index for the 
model. However, a better index can be achieved by 
averaging the differences between the proportions of 
correct predictions for each alternative obtained 
from the model and the proportions of correct pre­
dictions that would be obtained if each alternative 
were assumed to be chosen by each individual with a 
probability equal to the alternative's observed ag­
gregate share. The resulting prediction success 
index is 

where 

11. J. 

J 

I 11 jk 
k=l 

(4) 

(5) 

[Equation 4 corrects a typographical error in a pre­
vious study (1_) that has the effect of exchanging the 
order of the subscripts on the right-hand side of 

Equation 5.) When.; (or;) is ~sed t~ compare models, 

the model with the largest 11 (or a) value is pre­
ferred to the others because this model yields the 
largest proportion of correct predictions in the 

case of; or, in the case of;, the largest increase 
in the proportion of correct predictions relative to 
the proportion implied by the observed aggregate 
shares. 

CRITERION FOR EVALUATING USEFULNESS OF PREDICTION 
SUCCESS TABLES AND INDICES 

In this paper, prediction success tables and indices 
will be evaluated according to their abilities to 
distinguish between correctly and incorrectly speci­
fied models. Before this can be done, it is necessar y 
to consider the effects of random sampling errors on 
the ability of any statistical procedure to distin­
guish between correct and incorrect models and to 
identify a method for dealing with these effects. 
Random sampling error arises because different indi­
viduals with the same observable characteristics 
(i.e., the same values of a model's explanatory 
variables) and the same sets of alternatives may 
make different choices because of the effects of 
unobserved factors. As a result, the estimated pa­
rameter values, choice probabilities, and goodness­
of-fit statistics for a model tend to have different 
values in different finite samples of individuals. 
These random fluctuations in estimation results can 
cause a goodness-of-fit statistic for an incorrectly 
specified model to be more favorable than that for a 
correctly specified model on occasion, even if the 
statistic usually or on the average favors the cor­
rect model. Random sampling error therefore consti­
tutes a "noise factor" that impairs the ability of 
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test statistics to distinguish correct models from 
incorrect ones. 

Random sampling error always can be made negligi­
bly small by making the sample used for estimating 
and testing models sufficiently large. Moreover, if 
the sample is large enough to make the effects of 
sampling error negligible, then it always is possi­
ble to determine unambiguously whether a model is 
correct by comparing the values of its choice prob­
abilities for each set of values of the explanatory 
variables with the observed choices of individuals 
with the same values of the explanatory variables. A 
model whose choice probabilities for the available 
alternatives differ from the observed proportions of 
individuals choosing these alternatives is incor­
rect. Accordingly, it is reasonable to demand for 
comparison statistics, such as prediction success 
tables and indices, that they be capable of distin­
guishing without error between correct and incorrect 
models in the absence of random sampling error. In 
formal statistical terms, this property of a test is 
called consistency. Statistical test procedures that 
are not consistent usually are considered to be 
unacceptable. 

In the next section, it will be shown by example 
that prediction success tables and indices are not 
consistent when used to discriminate among models. 
In other words, prediction success tables and indices 
can result in the selection of an incorrect model in 
a comparison with a correct one, even if the sample 
used for estimating and testing the models is large 
enough to make random sampling errors negligibly 
small. To show this, it is necessary to be able to 
evaluate the limits ~f theA entries in a prediction 

success table and of 11 and a as the sample size ap­
proaches infinity (large-sample limits). It follows 
from the strong law of large numbers that as the 

sample size N approaches infinity, the entries 11 ij in 
a prediction success table approach 

11 ij = E [Qi (X) pj (X) I (6) 

where Qi(X) denotes the true probability that a 
randomly selected individual for whom the values of 
the explanatory variables are X chooses alternative 
i (i.e., the probability according to the correctly 
specified model and the true parameter values), Pj(X) 
denotes the large-sample limit of the probability ac­
cording to the model under consideration that a ran­
domly selected individual for whom the values of the 
explanatory variables are X chooses alternative j, 
and E denotes the expectation over the distribution 
of explanatory variables X in the population being 

sampled. The large-sample limits of; and; are ob­
tained by substituting Equation 6 into Equations 3 
and 4. These limits will be denoted by 11 and a , 
respectively. 

TWO EXAMPLES OF INCONSISTENCY 

Suppose that a model of choice among two alterna­
tives (e.g., mode choice between automobile and 
transit) is being developed. Then J = 2, and 

(7) 

(8) 

where the argument X of P1 and Q1 has been suppressed 
to simplify the notation. If P1(X) = Q1 (X) for all X 
(i.e., the model under consideration is correctly 
specified) , Equations 7 and 8 become 

(9) 
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(10) 

By subtracting Equation 9 from Equation 7 and Equa­
tion 10 from Equation 8, one obtains the large-sample 
limits of the differences between the diagonal ele­
ments of the prediction success tables of an arbi­
trary model P and the correctly specified model Q. 
Denote the limits of these differences by 611jj(j = 
1,2). Then 

(11) 

(12) 

Now suppose that models P and Q yield the same pre­
dictions of the aggregate shares of alternatives 1 
and 2. Then E (P1 - Q1) and 

611 11=611 22 (13) 

Equivalently, 

Finally, suppose that in addition to satisfying 
E(P1 - Q1) = O, P1 has the property that 

(15) 
0 otherwise 

In other words, model P assigns individuals deter­
ministically to alternative 1 if Q1 (X) > E (Q1l and 
deterministically to alternative 2 otherwise. Model P 
is misspecified because P1(X) t Q1(X) whenever Q1(X) 
differs from 1 or O. However, it can be seen from 
Equation 14 that 61111 > 0 and trn 22 > 0. Therefore, if 
the sample size is large enough to make random sam­
pling errors negligibly small, the diagonal elements 
of the prediction success table of the erroneous 
monPl P will exceed the correspondin<J elements of 
the prediction success table of the correct model Q. 
Similarly, the goodness-of-fit indices; and ; will 
be larger for model P than for model Q when the sam­
ple size is sufficiently large. Thus, the prediction 
success tables and indices will lead to selection of 
the wrong model in large samples and are inconsis­
tent. The following example illustrates this result 
numerically. 

Example 1 

Tn il mndel of mode choice between automobile and 
transit let mode 1 be automobile and mode 2 be tran­
sit. Let the correctly specified model be 

1/(1 + exp(-0.lT)] (16) 

where T denotes transit travel time minus automobile 
travel time in minutes. Let the distribution of T in 
the sampled population be uniform on the interval 
(-10,101. Thep E(Q 1)

2
= E(Q 2) = o.s in this popula­

tion, and E(Q1) = E(Q2) = 0.27. It follows from set­
ting Pi Qi in Equation 6 that the large-sample 
limit of model Q's prediction success table is 

Table (Q) 
fo.21 
lo.23 

0.231 

0.27 

The values of 11 and a for model Q are 11 (Q) 
a (Q) = 0.04. 

Now define the misspecified model P by 

(17) 

0.54 and 
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if T > 0 
(18) 

otherwise 

Then E (P1) = E (Q1), and E (P1Q1l = 0.31. It follows 
from Equation 6 that the large-sample limit of model 
P's prediction success table is 

Table (P) 
[

0.31 

0.19 
(19) 0.19] 

0.31 

The values of 11 and a for model P are 11 (P) = 0. 62 and 
a (P) = 0.12. Thus, if the sample size is sufficiently 
laz:gt! and models Q and P are compared by using their 
prediction success tables or their 11 - or a -values, 
the erroneous model P will be accepted and the cor­
rect model Q rejected. This is true despite the fact 
that model P yields predictions that can be both un­
reasonable and highly erroneous. For example, sup­
pose that T = 1 for a certain population group (i.e., 
transit travel time exceeds automobile travel time by 
1 min). Then model Q yields the result that 48 per­
cent of the members of this group use transit, where­
as model P yields the unreasonable and erroneous re­
sult that no members of the group use transit. 

Example 1 shows that the use of prediction suc­
cess tables and indices for model selection can lead 
to selection of an erroneously specified model and 
rejection of a correctly specified one. However, the 
erroneous model P used in this example cannot be 
obtained through maximum-likelihood estimation, 
which is the standard method for estimating empirical 
choice models. This suggests the possibility that 
prediction success tables and indices may discrimi­
nate correctly among models when the sample size is 
large if consideration is restricted to models that 
can be obtained through maximum-likelihood estima­
tion. The next example shows that even when this 
restriction is imposed, prediction success tables 
and indices can select the wrong model. 

Example 2 

As in Example 1, let individuals choose between the 
modes automobile (mode 1) and transit (mode 2). Let 
the correctly specified model be given by Equation 
16. Assume that the values of T in the sampled popu­
lation are restricted to those shown in Table 1 
(e.g., because the sample is stratified) and that 
each of these values occurs with probability 1/9. 
Let the erroneous model be specified as 

P1 = 1/(1 + exp(-nC)] (20) 

where a is a positive constant and C is the cost 
of transit travel minus the cost of automobile travel 
in dollars. Assume that in the sampled population / 
there is a unique value of C associated with each 
value of T (e.g., because of the stratification 
procedure that is used) and that the c-values cor­
responding to the T-values are as shown in Table 1. 

TABLE 1 Values of Explanatory 
Variables for Example 2 

T(min) c ($) 

-80.0 -1.00 
-60.0 -0.97 
-20.0 -0.52 
-10.0 -0.29 

0.0 0.0 

T(min) 

10.0 
20.0 
60.0 
80.0 

c ($) 

0.29 
0.52 
0.97 
1.00 
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The large-sample limit of the prediction success 
table of the correct model Q i s 

Toblo (Q) • [:: :::: : : ::::] (21) 

The TT - and a -values of model Q are TT (Q) = 0. 8092 and 
a (Q) = 0.3092. The large-sample limit of the maximum­
likelihood estimate of <>, which can be computed by 
using methods described elsewhere (4), is 4.2877. 
The large-sample limit of the prediction success 
table of the erroneous model P can be obtained from 
Equation 6 by using Equation 16 to evaluate the Q 

probabilities and Equation 20 with ci O. 2332 to 
evaluate the P probabilities. The result is 

Table (P) 
[

0.4060 

0.0940 

0.0940] 

0.4060 
(22) 

The TT - and a -values of model P are TT (P) = O. 8120 and 
a (P) = 0. 3120. It can be seen that the prediction 
success tables and TT - and a-values all favor the 
erroneous model P. Although the differences between 
the prediction success tables and TT - and a-values of 
the two models are small, a comparison of the models 
based on any of these criteria will lead to accep­
tance of the erroneous model and rejection of the 
correct one if the sample size is large enough to 
make random sampling errors negligible. As an exam­
ple of the prediction errors that can result from 
selection of the incorrect model, suppose that tran­
sit improvements cause T to decrease from 20. 0 to 
10.0 for a certain population group while C remains 
unchanged. Then model Q yields the result that tran­
sit ridership in this group increases by 126 per­
cent, whereas model P yields the result that there 
is no change in transit ridership. 

DISCUSSION 

The examples presented here show that prediction 
success tables and indices are unreliable means for 
discriminating among models. They can result in 
acceptance of an incorrect model and rejection of a 
correct one, even when the sample used for estima­
tion and testing is large enough to make random 
sampling errors negligible. Because, as will now be 
discussed, comparison procedures that do not have 
this deficiency are readily available, prediction 
success tables and indices should not be used for 
model selection. 

The appropriate procedure to use for comparing 
two models depends on whether the models are nested 
or nonnested. TWo models are nested if one model can 
be obtained from the other by assigning appropriate 
values to the latter model's parameters. In nonnested 
models, this cannot be done; given the values of 
either model's parameters, it is not possible to 
choose values of the other model's parameters so 
that the two models become identical. Models P and Q 
in Example 1 are nested because P can be obtained 
from Q by setting the coefficient of T in Q equal to 
_,. Models P and Q in Example 2 are nonnested. See 
the discussion by Horowitz (1) for further examples 
of nested and nonnested models. 
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Comparisons of nested models can best be carried 
out by using likelihood ratio or t-tests (3). In a 
comparison of a correctly specified model-with an 
incorrectly specified one, these tests always select 
the correct model in the absence of random sampling 
error (i.e., they are consistent). When random sam­
pling error is present (as it always is in practice), 
likelihood ratio and t-tests have high probabilities 
of selecting the correct model when a correctly 
specified model is compared with one that is se­
riously erroneous (_!). Likelihood ratio and t-tests 
are easily implemented because they rely on informa­
tion that is virtually always included in the out­
puts of computer programs used for estimating random 
utility travel demand models. 

Nonnested models can be compare d easily by using 
the likelihood ratio index statistic modified to 
account for the effects of any differences in the 
numbers of estimated parameters in the models being 
compared (1,2). Like the likelihood ratio and t-tests 
for nested-models, comparisons based on the modified 
likelihood ratio index are consistent and with sam­
ples of practical size, where random sampling error 
is present, have high probabilities of selecting the 
correct model when a correctly specified model is 
compared with a seriously erroneous one (1,2). Com­
parisons based on the modified likelihood ratio index 
can be implemented by using information that is in­
cluded in the outputs of existing computer programs 
for estimating random utility travel demand models. 

ACKNOWLEDGMENT 

The research reported in this paper was supported in 
part by an assistance agreement between the Urban 
Mass Transportation Administration and the University 
of Iowa. 

REFERENCES 

1. J.L . Horowitz. Evaluation of Usefulness of Two 
Standard Goodness-of-Fit Indicators for Compar­
ing Non-Nested Random Utility Models. In Trans­
portation Research Record 874, TRB, ~ational 
Research Council, Washington, D.C., 1982, pp. 
19-25. 

2. J.L. Horowitz. Statistical Comparison 
Nested Probabilistic Discrete Choice 
Transportation Science, Vol. 17, 1983, 
350. 

of Non­
Models. 

pp. 319-

3. D. McFadden. Quantitative Methods for Analyzing 
Travel Behaviour of Individuals: Some Recent 
Developments. In Behavioural Travel Modelling, 
(D.A. Hensher and P.R. Stopher, eds.), Croom 
Helm, London, 1979. 

4. J .L. Horowitz. Identification and Diagnosis of 
Specification Errors in the Multinomial Logit 
Model. Transportation Research, Vol. 14B, 1980, 
pp. 331-34. 

Publication of this paper sponsored by Committee on 
Passenger Travel Demand Forecasting. 




