
88 Transportation Research Record 1037 

Dynamic Aspects of Departure-Time Choice Behavior in a 
Commuting System: Theoretical Framework and 

Experimental Analysis 

HANI S. MAHMASSANI and GANG-LEN CHANG 

ABSTRACT 

The day-to-day dynamics of departure-time decisions of urban commuters and the 
underlying behavioral mechanisms determining user responses to dynamically 
varying time-dependent congestion patterns are addressed. A conceptual model is 
presented incorporating the boundedly-rational notion of an indifference band 
of tolerable schedule delay. The results of an experiment involving real com
muters interacting daily within a simulated traffic corridor are examined, with 
particular emphasis on the dynamics of user behavior. 

The departure-time decision of urban commuters is of 
fundamental importance to the study of peak-period 
traffic congestion and to the analysis of traffic 
control as well as to broader, demandside congestion 
relief measures, such as pricing, ridesharing incen
tives, flex time, and others (1). Previous work on 
the departure-time problem has -followed one of two 
principal lines: (a) econometric models of individ
uals' departure-time choices under fixed and known 
transportation level-of-service attributes (2-5) and 
(b) dynamic user equilibrium formulations i; ideal
ized traffic systems consisting of a single origin
destination pair connected by either a single route 
(6-13) or multiple routes (14,15), with congestion 

modeled either by using deterministic queues (~,.:!:.!_) 
or traffic-flow relationships (.h?.l. More elaborate 
reviews of these studies may be found elsewhere 
(15-17) • 
~There is, however, an important dimension of the 

dynamics of this problem that has received very 
little attention, namely, the processes governing 
commuters' day-to-day responses to the system's per
formance, including the effect of prior experience 
and perceptions on current decisions. These pro
cesses are undoubtedly complex because they involve 
behavioral aspects of individn;il clPr.ifdnn mnkin<J, 
learning, and judgment in the context of a complex 
interactive system. However, the understanding of 
these processes and the ability to represent them 
analytically are of considerable importance to the 
design and evaluation of congestion relief measures, 
particularly with regard to time lags that may be 
associated with users' responses to these measures 
and information dissemination programs that could 
influence these responses. Furthermore, these dy
namic aspects have significant implications for the 
stability of the system, as demonstrated by Horowitz 
in the context of route choice in a simplified 
transportation network (18). It is these dynamic 
processes underlying users' departure-time decisions 
in an urban commuting corridor that form the focus 
of this paper. 

An effort in this direction was recently pre
sented by Mahmassani and Chang (16), who addressed 
the day-to-day evolution of the time-dependent de
mand pattern resulting from the interaction between 

system congestion and user decisions. In addition, 
that study differed from the previous lines of re
search in its use of a process model of individual 
behavior consisting of a combination of relatively 
simple decision rules and heuristics, including ex
plicit mechanisms for learning over time, and incor
porating the notion of an "indifference band" of 
tolerable schedule delay. The latter reflects 
boundedly-rational, or satisficing (19), behavior of 
users in their daily commuting choices in an effort 
to explore behaviorally realistic decision rules as 
an alternative to the more restrictive but conve
nient utility maximization rule adopted in all pre
vious studies. Another different feature in that 
study was the use of a special-purpose traffic simu
lation model for the performance side, thus allowing 
for greater flexibility and realism in system rep
resentation. 

Understanding of these processes can of course 
best be furthered when coupled with observations of 
actual behavior. However, the acquisition of the 
necessary data at the desired level of richness in 
the real world presents formidable difficulties, in
cluding (a) the need to monitor in great detail both 
user decisions and the facility's time-varying con
gP.Rt inn lP.vels over a period of at lQast a few weeks 
and (b) the high degree of experimental control re
quired. An alternative approach has recently been 
used by Mahmassani et al. (20) whereby the behavior 
of actual commuters is observed under controlled 
conditions. Participants, facing a hypothetical 
though realistic commuting situation, supply daily 
departure-time choices in response to congestion 
conditions, which are in turn obtained by using a 
special-purpose traffic simulation model, given the 
time-varying demand pattern (resulting from the ag
gregation of the individual participants' decisions). 

In this paper the results of the first such ex
periment, involving 100 participants over 24 days, 
are examined from the perspective of the processes 
governing the dynamics of the users' behavior. Other 
aspects, such as traffic conditions or convergence 
properties of the system, are discussed elsewhere 
(~).The related conceptual background is presented 
in the next section, followed by a brief description 
of the experiment. The principal results are then 



Mahmassani and Chang 

examined and compared with the simulation results 
obtained earlier (16), and concluding comments are 
presented. 

CONCEPTUAL BACKGROUND 

Because the principal concern here is with the 
departure-time decision for home-to-work trips, it 
will be assumed that it is the only short-term deci
sion available to trip makers. This would be the 
case in a commuting corridor consisting of a single 
highway facility with residences and workplaces dis
tributed along this facility. As such, other choice 
dimensions normally available to trip rn.akers, such 
as the choice of mode or route, do not unduly divert 
the discussion from its central focus. Extension to 
the more general case would be possible, though it 
would require considerably more complexity in the 
presentation and notation. 

Given a work starting time wsi, a trip maker i 
will select, on day t, a departure time DT i t· The 
outcome of this decision will be an arciva'l time 
ATi,t• which follows the identity 

(1) 

where TTi t is the trip time experienced on day t 
(including travel time on the facility and all other 

components). The trip time naturally depends on the 
user's departure-time decision as well as that of 
all other users of the facility, that is, 

TTi,t = f (DTi,t• all i) (2) 

As mentioned in the previous section, prior stud
ies have assumed that users select their respective 
DTi, t so as to maximize their utility, wbich is 
usually formulated as a weighted sum of the attri
butes of the depacture-time opportuni·ties. Although 
theoretically appealing, the maximization paradigm 
has a number of limitations from a behavioral stand
point, especially in the context of a descriptive 
model of day-to-day choice dynamics. For instance, 
it requires users to possess information on all the 
decision alternatives, that is, that they know a 
priori or cah predict the time-dependent congestion 
pattern on any given day. This is clearly a diffi
cult task in view of the often substantial and well
documented variability of travel time during the 
peak period (9, 21) • In addit i on, it is not clear 
that the para:m-;ters of one's utility function would 
remain constant from day to day, but rather that 
users may update their relative trade-offs as they 
learn about the system's performance. Another as
sumption that is difficult to support in this con
text is that of the individual ability to evaluate 
the optimal solutions of rather complicated objec
tive functions (22). 

An alternative behavioral notion that suggests 
itself here is that of satisficing, proposed by 
simon (!2} as a model of so-called boundedly
r ational decision makers in search of an acceptable 
solution as opposed to a necessarily optimal one. 
Acceptability is usually defined relati ve to some 
aspiral!ion level. I n addition, it i s well estab-
1 ished in behavioral science that deci sion rules 
employed by individuals are greatly influenced by 
the nature of the task and the decision environment 
(22, 23) • In everyday decisions , the predominance of 
m;r\tal heuristics in i ndividual judgment, learning, 
and decision making is generally well accepted (~, 

24). Preference is usually for simpler, less demand
ing (in terms of cognitive strain on the decision 
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maker) rules, which subsequently may become more 
demanding in response to a more complex decision 
environment. 

A useful analogy here is between commuting behav
ior and consumers' repurchase decisions, to the ex
tent that the latter are repeated daily or fre
quently and involve nonmajor i terns . As such, the 
marketing research literature can provide some use
ful insights and possible guidance. Satisficing 
models have received increased attention and accep
tance in marketing reseaICh because of their ability 
to capture consumer choice behavior (25-27). The 
cole of satisfaction in the consumer dectsion pro
cess has been documented in a number of studies 
(_?!,29) , including that of Oliver (W, who identi
fied the adaption-level theory (31) as an appropri
ate one for explaining how past experience and cur
rent satisfaction interact in affecting repeat 
purchase behavior [see also the paper by Labarbera 
(Bl). Worthy of note is the recognition that the 
very basis for satisfaction and acceptability of a 
given outcome itself dynamically varies in response 
to prior outcomes as well as cecent experience (~. 

The application of some of these concepts to the 
dynamics of the departure-time choice pcoblem is 
presente d next. Trip makers can be viewed as search
ing for a departure time that yields a satisfactory 
outcome or arrival time. When user i is satisfied 
with ATi t • he is expected to maintain the s ame 
departure' time on the following day; thus DTi,t+l = 

DTi t · The acceptability of a particular outcome is 
evaiuated with respect to the trip maker's own de
sired arrival time. Note here that the latter quan
tity is generally diffe rent from the work start time 
ws 1, as shown empiricall y by Hendrickson and Plank 
(5). Users typically possess a preferred arrival 
time PAT1, which would prevail in the absence of 
congestion (yet still be wi thin the constraints of 
the workplace). It generally incorporates a safety 
margin to protect against lateness at work and allow 
some time for preparation at the onset of the work
ing day. One can thus expect a distribution of pre
ferred arrival times across the population, reflect
ing both workplace conditions as well a s inherent 
i ndividual prefe r e nces and risk attitude s . i'urther 
s upport for this notion is presente d later in this 
paper base d on analysis of the experiment. 

A pla usible sat i sficing mechani s m used in earlier 
s ;i.mulations (16) is based on the not ion of an "in
difference interval" or band of acceptable schedule 
delay. On a given day t, user i's schedule delay is 
soi,t = PATi - A'l'i,t· Letting 6 i,t be a b inary vari
able that takes the value 1 if the actual arr i val 
time on day t is acceptable to user i, and 0 other
wise, the decision rule can be stated as 

if 0 .'.:_ SDi,t < IBf.t or IBi,t < SDi,t 2 0 

otherwise ( 3) 

where IBi t and IBi tare two nonnegative threshold 
values reflecting what user i consider s tolerable 
earliness and tolerable lateness, respectively. The 
time interval within which an arrival time ATi t will 
be considered acceptable then becomes (PATi -'IBI,t• 
PATi + I s1,tl · 

The threshold values IBr t and IBi t can be ex
pected to vary across indi~iduals. ref lecting dif
fering preferential attitudes as well as workplace 
conditions. To the extent that the pref erred arrival 
time PATi reflects some of these same source s of 
variation, it can be expected to be corr elated with 
those threshold values. For this reason, in the em
pirical analysis section, various user groups will 



90 

be considered on the basis of their preferred ar
rival times. 

An individual's indifference band, reflecting his 
aspiration level on a given day, is not necessarily 
constant over time , particularly if the system is 
not in a steady state, such as after the imp.lementa
tion of a major new control or policy. This band is 
instead dynamically changing in response to the 
user ' s personal experience with the facility as well 
as information that he may have active.ly or pas
sively acquired from other sources. Insight into 
this phenomenon was obtained in earlier simulations 
(16). In particular, more distant users (relative to 
a~common work destination) would tend to adjust 
their aspirations more frequently than closer users 
in order to accommodate greater day-to-day variabil
ity and fluctuation in their longer commutes. Simi
larly, more distant users appear to require wider 
indifference bands . These aspects of user behavior 
are expl or·ed in the section on analysis of exper i
mental results. 

Information acquired through repeated usage of 
the facility , as well as from other possible 
sources , influences trip makers' s hort-ter-m depar
ture-time choice behavior in two major ways : (a ) the 
previously mentioned eftor on the aspiration level , 
defining the acceptability of particular outcomes, 
a nd (b) learning abou t the facility ' s performance, 
which provides the basis for th e user's travel time 
estimate and the subsequent departure-time adjust
ment in the event that the latest outcome was not 
acceptable. This adjustment is determined by both 
the current indifference band and the user's percep
tion of the system's travel time characteristics: it 
can thus be viewed as the following function: 

DTi,t+l - DTi,t = g(TTi,s• SDi,s: s = l, ..• ,t) (4) 

In this expression, the relative importance of 
terms corresponding to different values of s (days) 
is not expected to be uniform. Clearly, recent expe
rience is likely to contribute more heavily than 
that of more distant days . At one e nd of the spec
trum, user behavior could be purely myopic and af 
fected by the latest day only. At the other extreme, 
a.11 days from 1 to t could contribute with equal in
tensity to he user 's decision on day (ttl). How
ever , because of memory capacity limitations , the 
retrieval of prior information is not 1 ikely to go 
beyond a relatively small number of recent days . 

In summary, user behavior in this commuting sys
tem can be viewed as a boundedly-rat ional search for 
a satisfactory departure time. Conceptually, it con
sists of two principal components: (a) the accep
tance or rejection of a given day's decision out
come, which determines, respectively, whether the 
user will or will not mainta i n the same departure 
time on t he following day and (bl the amount by 
which departure time should be adjusted, if that is 
needed. The first component can be viewed as the 
stopping criterion in the user 's search process, 
whereas the second is analogous to the "step size." 
The former is based on the key notion of an indif
ference band of tolerable schedule delay. Prior ex
peri.ence with the facility, as the principal mecha
nism of information acquisition, enters the first 
component through its effect on the indifference 
band, and the second component through its contribu
tion to the user's learning about the facility's 
performance. 

It should be noted here that the use of schedule 
delay as the principal criterion for acceptability 
of a given decision outcome should not be taken to 
imply that other attributes, particularly travel 
time, will under no circumstances be explicitly 
evaluated by trip makers. Implicit is the assumption 

Transportation Research Record 1037 

that the range of trav·el times encountered by indi
viduals in this urban commuting system is such that 
users are effectively indifferent among the travel 
time outcomes of their departure decisions. Natu
rally , for excessively long travel times, this as
sumption is not likely to hold . In an intercity con
text , w)'lere travel times are much more substantial., 
explicit trade-offs between schedule delay and 
travel time should be expected , as in airline flight 
selection . However, in an urban commuting context, 
particularly for short-range, day-to-day decisions, 
schedule delay is clearly s ignificantly more highly 
valued (negatively) than travel time, as evidenced 
by the findings of Hendrickson and Plank (~ . Users 
are likely to control for their travel times through 
longer-run choices such as that of residence or 
workplace location. In a dynamically changing con
text, where users possess only limited information 
on the system's performance, boundedly-rational be
havior predicated on the most-important attribute 
appears to be plausible descriptivity. 

In the remainder of this paper, the results of an 
experiment for additional insight into the foregoing 
aspects of user behavior and the extent to which 
they appear consistent with the conceptual model 
presented i n this section are analyzed . However, no 
formal functional specification and estimation will 
be conducted herein , because the analysis is explor
a tory in nature and is intended at this stage pri
marily as an indication of the useful.ness of this 
general approach to studying the complex day-to-day 
dynamics o f commuter "behavior . The experiment itself 
is described in the next section. 

DESCRIPTION OF EXPERIMENT 

Given the previously mentioned difficulties of ob
taining aoequate data for the study of the day-to
day dynamics of commutru:: behavior, the approach 
recently described by Mahmassani et al. (20) con
sists of Observing the decisions of real CO""rnmuters 
placed in controlled and carefully desig ned hypo
thetical commuting si tuations. A number of important 
f eatures characterize this type of experiment, in
cluding the following: 

1. All the departure-time decisions that col
lectively determine the system's service levels can 
be observed, 

2. The analyst has a high degree of control over 
the information available to participants, and 

3. The interactions in the traffic system, which 
determine the user ' s decisions, are realistically 
captured hy a speci al-purpoi::c tr;iffic simulation 
model. 

The commuting context considered in this e xperi
ment consists of an urban corridor composed of a 
four-lane highway (two lanes in each direction) used 
by residents who live adjacent to i ·t for their daily 
home-to-work trips to a single work destination , 
s uch as a central business district (CBD) or a major 
industrial park. Concern here is with the inbound, 
or home-to-work, direction . The corridor is subdi
vided into nine identical 1-mi sectors, with the 
common destination located at the end of the last 
sector. Sectors are numbered from 1 to 9 in order of 
decreasing distance from the destination; Sector 1 
is the farthest outbound. Commuter residences are 
located in Sectors 1 through 5 only, each of which 
is treated as distinct trip origin, whereas Sectors 
6 through 9 are treated as a nonresiden~ial fringe 
area in which no trips are generated. 

The time-dependent departure pattern from each 
residential sector on any given day results from 
departure-time decisions made by the participants. 
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Each participant is assigned to only one sector and 
is assumed to represent a group of 20 trip makers 
who make identical decisions. A total of 400 trip 
makers was assumed in each of the residential sec
tors (or 200 trip makers per lane per sector), re
sulting in 20 participants for each of the five sec
tors in this experiment. 

The following information was initially provided 
to each participant: (a) a general description of 
the foregoing commuting context, (b) the partici
pant's residential sector, (c) the highway facil
ity's characteristics (number of lanes, free-flow 
speed), and (d) the work start time. 

With regard to the third item, note that similar 
facilities in the Austin area were indicated to the 
participants for anchoring purposes. With regard to 
the fourth item, all participants were placed in the 
familiar situation of having to start work at 8:00 
a.m. Although it would have been more representative 
of the real world to have had a distribution of work 
start times, still strongly peaked at 8:00 a.m. (~), 

it would have required considerably more partici
pants to attain a meaningful level of interaction in 
the system. The specification of a single work start 
time in this first experiment captures all the key 
phenomena of interest and avoids undue complexity. 

At the onset of the experiment, each participant 
was asked to state his or her preferred arrival time 
at work (PATi for participant i), in the absence 
of traffic congestion, given the official work start 
time ws. Naturally, PATi < ws for all i. 

Every simulation day,-each participant supplied a 
departure time and an anticipated arrival time, de 
noted hereafter by DTi,t and AATi,t• respectively, 
for user i on day t. The departure-time decisions of 
all individuals in a given sector were aggregated 
into a time-dependent departure pattern for that 
sector. These patterns formed the input to the high
way traffic flow simulation model, briefly described 
later in this section. The outcome of each partici
pant's decision (the actual arrival time ATi ti 
and the corresponding travel time TTi t were ~e
termined by the simulation and supplied to each par
ticipant individually on the following day before 
that day's choice. This iterative interactive pro
cess covered 24 simulation days, by the end of which 
the system had evolved to a stable state, with all 
participants maintaining the same choices from one 
day to the next. In order to relate the experiment 
to the participants' daily commute, it was adminis
tered daily, 5 days per week, during the entire 
period. 

The importance of information acquired through 
one's own commuting experience and from other possi
ble sources was discussed in the previous section. 
In this experiment, the informational scenario under 
which users have only their own actual experience to 
rely on is considered. Furthermore, to the extent 
that commuters do not usually maintain a written log 
of their departure and arrival times over a number 
of days, only the latest day's decision outcome was 
displayed to each participant. Other informational 
scenarios involving additional sources, such as mass 
media reports or word of mouth, were outside the 
scope of this particular experiment and may be ad
dressed in future work. 

In order to achieve the desired quality of the 
results, participants were selected very carefully, 
especially because their involvement was required 
for a period of several weeks. All 100 participants 
were affiliated with the University of Texas at 
Austin, and most were staff members or graduate stu
dents with formal work experience. In addition, 
these participants were scattered over various parts 
of the campus, thus controlling for information ex
change among participants during the survey period. 
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Before this experiment was conducted, a pretest 
was administered to a smaller and different group of 
individuals. Responses and suggestions from this 
pretest group led to helpful improvements in the 
procedure as well as initial insights into the be
havior of the system. 

A special-purpose, fixed-step macroscopic highway 
traffic simulation model was developed in conjunc
tion with this experiment. The highway facility is 
segmented into a number of sections, in which traf
fic flow is modeled by using well-established funda
mental traffic flow relationships; of particular 
interest is the speed-density model, which has the 
following form: 

v = (Vf - Vol (1 - K/Kolc + Vo (5) 

where 

V and K 

Vf and v0 

speed anrl density prevailing on a 
given highway section, respectively; 
free-flow speed and the minimum allow
able speed on the facility, respec-
tively; 

Ko maximum or "jam" density; and 
c = parameter reflecting the sensitivity 

of travel speed to density variations. 

In this experiment, the following parameter val
ues were used: Vf = 40 mph, Vo = 6 mph, Ko = 180 
vehicles/lane-mile, and c = 1.0. Further details of 
the simulation model are outside the scope of the 
present paper and can be found elsewhere (~,21..J. 

ANALYSIS OF EXPERIMENTAL RESULTS 

The presentation of the principal results of inter
est to the behavioral processes underlying user de
e is ion dynamics is organized around four types of 
quantities: 

1. Actions, meaning the actual departure-time 
decisions of users over the survey period (i.e., 
DTi ti for i = 1, ••• ,100 and t = 1, ••• ,24; 

~. Outcomes, which result from the foregoing ac
tions, namely, the actual arr iv al time AT i, t and 
associated travel time and schedule delay (TTi,t 
and SDi,t• respectively); 

3. Perceptions, by users, of the foregoing out
comes, translating into anticipated travel times and 
schedule delays (ATTi,t and ASDi,t• respectively); 
and 

4. Intentions, or preferences, which, when com
bined with the foregoing anticipated quantities, 
result in actual decisions; of concern here are the 
preferred arrival times PATi for all i and the an
ticipated arrival times AATi,t stated by all users 
along with their departure decisions on any given 
day. 

In addition to the description of the evolution of 
the foregoing quantities and their variation by geo
graphic sector (as a function of distance from the 
destination) and other factors, their interrelation, 
as discussed in the previous section, is explored. 
However, first the overall evolution of the system's 
behavior is summarized. 

Summary of System Evolution 

The system equilibrates when all users are essen
tially satisfied with the outcome of their depar
ture-time choices, thus maintaining the same daily 
departure pattern. In this experiment, no user 
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changed his or her departure time as of day 21; how
ever, the steady-state values were first attained on 
day 18 but were perturbed by a few participants who 
tried, unsuccessfully, to improve their outcome and 
subsequently returned to their steady-state choices. 
A clear geographic pattern in the evolution to the 
steady-state choices was apparent, with sectors 
closer to the destination generally reaching their 
steady-state earlier than more distant sectors. For 
instance, the steady-state departure patterns were 
reached (and maintained) in Sectors 1 through 5 as 
of days 20, 17, 16, 16, and 5, respectively. Fur
thermore, only a small fraction of the users in Sec
tor 4 kept searching for a satisfactory outcome 
beyond day 7, as revealed by Figure 1, which shows 
the day-to-day evolution of the departure-time dis
tribution (i.e., the fraction of users departing 
before time ton a given day) in Sector 4. The 
"ease" with which users in different sectors are 
able to attain a satisfactory outcome is further 
documented later in this section by looking at the 
frequency of departure time as well as anticipated 
arrival-time changes. 

Day 11- Day 24 L. Day I -Day 10 
,...~~~~~~~~>-r~-'-~-'-~_.. 

FIGURE 1 Cumulative departure pattern evolution for Sector 4. 

Of course, the overall system cannot be consid
ered in equilibrium so long as some sector has not 
yet reached its steady state, because changes in any 
sector will affect the outcomes of user decisions in 
other sectors through the traffic interactions. Ac
tually, the fact that many users maintained their 
departure-time choice despite the continued var ia
tion of travel times and schedule delays suggests 
the existence of the tolerable range associated with 
the boundedly-rational behavior described earlier. 
For instance, the day-to-day variation of the aver
age of the absolute value of schedule delay, per 
ccctor, in nhown in Figure 2, which reveals that 
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FIGURE 2 Evolution of average schedule delay in absolute 
values per sector. 
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this quantity still varied for Sector 5 for many 
days after users in that sector had stopped adjust
ing their departure times. 

Although it is clear that convergence was at
tained, it is not possible to ascertain, on the 
basis of this single experiment, the uniqueness of 
this pattern nor to derive conditions for its exis
tence. Further discussion of the convergence proper
ties of this experimental system may be found else
where (1Q). 

Preferred Arrival Time 

As mentioned earlier, commuters have different pre
ferred work arrival times. In this experiment, al
though the same common work start time (8:00 a.m.) 
was specified for all participants, the stated pre
ferred arrival time followed the distribution shown 
in Figure 3, which reveals that over 40 percent pre
fer to reach their workplace at least 15 min before 
the official work start time. This distribution is 
primarily a reflection of inherent differences in 
individual preferences and does not exhibit any sys
tematic variation across sectors. To the extent that 
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FIGURE 3 Preferred arrival time 
distribution. 

the excess time preferred by users can be inter
preted as a safety margin for avoiding lateness, the 
preferred arrival time provides a useful indication 
of a user's risk attitudes. Therefore, it has been 
used as a basis for segmenting the participants, and 
indeed significant differences in behavior across 
the three groups that were defined were found: 

• Group 1, including all users i such that 7: 30 < 
PATi< 7:40a.m., 

• Group 2, where 7:40 < PATi < 7:50 a.m., and 
• Group 3, where 7:50 < PATi ~ 8:00 a.m. 

The relative frequency distribution of users into 
each of the foregoing three categories is given in 
Table 1 per sector, as well as overall. 

The preferred arrival times represent the initial 
intentions of users before their experience with and 
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TABLE 1 Relative Frequency Distribution of 
Users into Preferred Arrival-Time Groups per 
Sector 

Percentage of Users by Sector 

Group 2 3 4 All 

I (7:30-7:39 a.m.) 10 15 5 5 10 9 
2 (7:40-7 :49 a.m.) 40 30 30 40 35 35 
3 (7 :50-8 :00 a.m.) so SS 65 SS SS S6 

subsequent learning about the system's performance. 
However, as learning develops through usage, these 
intentions evolve, as seen later in this analysis of 
the daily anticipated arrival times. 

Actions: Departure-Time Decisions 

Patterns exhibited by the 
time changes and the time 

frequency of departure
interval between succes-

s ive changes across sectors and across user groups 
are examined first. Also the effect of the previous 
day's outcome on the decision to adjust one's depar
ture time, particularly with regard to the existence 
of an indifference band of schedule delay, is high
lighted. In addition, the magnitude of this adjust
ment is examined relative to the previous day's 
schedule delay. 

Table 2 shows the respective proportion of par
ticipants in each sector who changed their daily de
parture time at least n times, where n = 1, ••• , 15 
(15 was the highest number of changes observed out 
of a maximum of 23 possible changes in 24 days). The 
overwhelming pattern is that the frequency of these 
changes increases with distance from the destina
tion, thus confirming the observation that more dis
tant sectors experience greater difficulty in con
verging to a steady state. 

TABLE 2 Proportion of Users in Each Sector 
with at Least n Departure-Time Changes 

Percentage of Users by Sector 
No. of 
Changes• 2 3 4 

l 100 100 100 100 7S 
2 100 100 95 6S 2S 
3 100 100 90 60 
4 100 95 8S 15 
5 90 90 70 5 
6 90 80 40 
7 90 75 30 
8 80 60 10 
9 65 50 
10 so 30 
11 35 15 
12 25 
13 20 
14 10 
15 5 

aMinimum number. 

Table 3 presents the same information as Table 2, 
but for each of the previously defined user groups 
within each sector. As expected, users in Group 1, 
who were initially willing to accept a wide safety 
margin, were able to conclude their search for an 
acceptable departure time significantly sooner than 
the other groups. (It should be noted here that com-
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parisons of Group 1 users across sectors is not 
meaningful given the small number of participants in 
this group in any one sector.) The same general 
trend is present for Groups 2 and 3, especially in 
Sector 1, in which residents encounter greater 
travel time fluctuation than in closer sectors, thus 
making it particularly difficult to successfully 
maintain a departure time that results in arrival 
within less than 10 min from the work start time. In 
addition, the preferential differences captured by 
the user groups may correspond to varying degrees of 
individual persistence, whereby users in Group 3 are 
less willing to adjust their indifference band to 
accommodate otherwise unacceptable outcomes. This 
particular aspect is more specifically explored in 
the context of the discussion of intentions. 

Table 4 shows, per user group within each sector, 
the mean number of days since the previous change 
for the nth change (n = 1, ••• ,15) as well as its 
standard deviation. Naturally, these numbers must be 
interpreted with caution because many of these aver
ages, particularly for higher values of n, are taken 
over a small number of participants. Al though no 
strong patterns are present in a uniform manner, the 
time until the first change appears to be of the 
same order of magnitude across the categories con
sidered, with the notable exception of Sector 4, in 
which a large fraction of users did not have to 
change their initial selection for a long time, 
which resulted in the large means and standard devi
ations seen in Table 4. It is also apparent that the 
variability of the interval between changes is 
greater for the closer sectors (though not for Sec
tor 5, where very few changes took place). More ac
curately, this variability is more evident for user 
groups in sectors where the decision to change was 
not clear-cut. For instance, users in Groups 2 and 3 
in Sectors 1 and 2 experienced outcomes that were 
clearly unacceptable to most, resulting in the low 
observed standard deviations in Table 4. This was 
less the case in Sectors 3 and 4, where the time be
tween consecutive changes varied considerably across 
users. These results will be contrasted later in 
this section with the time interval between changes 
in anticipated or intended arrival times reported by 
users. 

To ascertain the effect of the previous day's 
outcome on the decision to change departure time, 
the response, in each sector, to different levels of 
schedule delay (in 5-min increments) has been ex
amined. Thus for each sector, the fraction of those 
users experiencing a given schedule delay on day 
t - 1 that have changed their departure time on day 
t has been calculated. In order to detect the postu
lated evolution (see section on conceptual back
ground) of the users' indifference bands as the 
search progresses and still have enough observations 
to yield meaningful fractions, the data were aggre
gated on a weekly basis (each including 5 days). Al
though not all schedule delay levels are suf f i
c iently represented, two rather clear trends are 
suggested by these data. 

First, as expected, the fraction of users who 
find a particular schedule delay unacceptable and 
thus change departure time on the next day increases 
with the magnitude of the delay. This is exemplified 
in Table 5, which shows these fractions for Sector 1 
during the third week of the survey. Interestingly, 
no user experiencing lateness of up to 5 min or ear
liness of up to 10 min (relative to his or her re
spective preferred arr iv al time) decided to adjust 
departure time on the following day. 

The second trend concerns the evolution of the 
indifference band, whereby the fraction of users re
jecting a given outcome appears to decrease as the 
search progresses, shown as follows for selected 
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TABLE 3 Proportion of Users in Each User Group Within Sectors 1, 2, and 3 with at Least n 
Departure-Time Changes 

Percentage of Users by Sector 

2 3 
No. of 
Changes• Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Group I Group 2 

I 100 100 100 100 100 100 100 100 
2 JOO 100 100 100 100 100 100 
3 JOO 100 100 100 100 100 83.4 
4 JOO 100 100 66.7 100 100 83.4 
5 100 100 33.3 100 100 83.4 
6 100 100 33.3 66.7 100 66.7 
7 100 100 33.3 66.7 90.9 50.0 
8 71.5 100 50.0 81.8 16.7 
9 28.6 100 50.0 63.6 
10 14.3 81.9 33.2 36.3 
II 63.7 27.3 
12 45.5 
13 36.4 
14 18.2 
15 9.1 

3 Mlnimum number. 

Group 3 

100 
100 
100 

92.8 
69.7 
31.2 
23.4 

7.8 

TABLE 4 Mean and Standard Deviation of Nwnher of Days Between Consecutive Departure-Time Changes per User Group Within 
Each Sector 

Sector and Group 

Change Sequence No. 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3 5,1 5,2 5,3 

Mean I.SO 1.71 1.50 1.0 1.25 I.SO 1.0 2.83 1.84 1.0 5.3 5.58 I.SO 2.50 
SD 0.70 1.25 0.53 0.0 0.50 0.85 -a 2.31 0.89 0.0 6.0 4.28 1.00 0.68 

2 
Mean 2.50 2.14 1.27 1.0 1.40 I. 70 2.85 1. 76 1.5 3.67 1.0 1.0 
SD I.DO 0.78 0.47 0.0 0.55 0.48 3.10 1.64 1.0 4.30 0.0 0.0 

3 
Mean 2.50 1.28 1.09 5.67 1.20 1.60 2.80 2.92 4.75 7.57 
SD I.OD 0.49 0.30 2.89 0.45 1.07 1.64 1.78 4.30 5.50 

4 
Mean 7.50 2.28 1.20 3.50 1.80 1.60 1.0 3.83 4.50 4.0 
SD 0.70 1.25 0.63 1.85 0.83 1.58 0.0 3.00 4.90 -a 

5 
Mean 1.29 2.00 4.0 1.60 1.40 1.75 4.0 4.0 
SD 0.76 1.61 - a 0.89 0.52 0.95 3.24 - a 

6 
Mean 1.71 1.36 2.0 1.40 1.90 2.25 3.0 
SD l.25 0.92 -· 0.55 1.28 0.78 2.3 

7 
Mean 1.85 1.36 5.0 6.00 1.44 5.0 3.67 
SD 1.46 0.94 -a 4.12 1.33 4.20 1.15 

8 
Mean 1.50 1.40 1.0 1.87 4.0 1.0 
SD I.DO 0.96 0.0 1.64 - a -a 

9 
Mean 2.00 1.33 1.0 2.83 
SD 0.85 1.00 0.0 1.94 

10 
Mean I.SO 1.0 1.0 
SD 1.24 - • 0.0 

11 
Mean 1.40 3.30 
SD 0.55 0.58 

12 
Mean 1.25 
SD 0.50 

13 
Mean 1.0 
SD 0.0 

14 
Mean 1.0 
SD -• 

15 
Mean 2.0 
SD -· 

Note: SD = standard deviation in days. 
3 0nly one participant accounted for this change. 
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TABLE 5 User Response to Previous 
Day's Schedule Delay, Sector 1, Week 3 

Schedule Delay 
on Day t - 1 
(min)3 

<-15 
-15 to -11 
-10 to-6 
-5 to -1 
0-5 
6-10 
11-15 
16-20 
21-25 
>25 

Proportion of Users 
Experiencing Delay 
Who Change Departure 
Time on Day t (%) 

100.0 
84.6 
56.3 

0.0 
0.0 
0.0 

11.1 
33.3 
37.5 

100.0 

3 Note that schedule delay on day t for a given user is 
defined as the difference between that user's preferred 
arrival time and his or her actual arrival time on day 
t. As such, negative values of schedule delay cor
respond to late arrivals, whereas positive values cor
respond to early arrivals (relative to the preferred 
arrival time). 

schedule delays (the first column for lateness and 
the second for earliness) for Sector 1: 

Week 
1 
2 
3 
4 

Proportion of Users 
(%) by Schedule 
Delay (min) 
-10 to -6 
81.8 
45.5 
56.3 
4a.a 

16-2a 
laa.a 
78.6 
33.3 
a.a 

A comparison of the responses between the first and 
the final weeks reveals this decrease in all cases 
where sufficient data exist. However, the path dur
ing the intervening weeks is not necessarily mono
tonic, particularly for the negative schedule delays 
as shown in the second column of the foregoing tabu
lation. Naturally, there are other factors affecting 

18. 
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this response, such as the user preferential group, 
in addition to daily effects (aggregated in the 
weekly data) and random variation across users and 
days, which is of particular concern when the number 
of participants is relatively small. 

Further support for the above two trends can be 
obtained by examining the magnitude of the departure 
.time adjustment on day t (Le ., DT i t - DT i t-ll as a 
function Of SDi,t-1' Figures 4-8 show this adjust 
ment versus SDi,t-l ' for all users· in tile system 
for t = 2 , 6 , ll , 16 , and 24 . In Figures 4-B , a n 
asterisk corresponds to a single observation, a 
plotted number (2 to 9) refers to the number of par
ticipants with identical coordinates, whereas a plus 
sign represents at least la participants. When the 
focus is on the evolution of the points correspond
ing to a zero adjustment, these plots suggest that 
(a) as expected, there is a range of schedule delay 
that users are willing to tolerate and for which 
they do not adjust their departure time and (b) this 
range increases over time, indicating that users 
progressively accept greater schedule delay. In ad
dition, examining the relative magnitudes of the two 
plotted variables reveals that (a) earliness on a 
given day implies a later (or same) departure on the 
next day, whereas lateness implies an earlier (or 
same) departure, and (b) the magnitude of the ad
justment on day t is in most cases less than the 
corresponding magnitude of the earliness or lateness 
on day t - 1, which is consistent with a hypothe
sized rule in earlier simulations (16). 

Further insight into the relation between this 
adjustment and schedule delay on the previous day is 
obtained by examining (DTi,t - DTi,t-1l/SDi,t-l• For 
each user group in each sector, the average of this 
ratio was calculated for the nth change given that 
the user was respectively late and early on day 
t - 1, with n = 1, ••• ,8, and that the adjustment was 
nonzero. Table 6 shows these averages for Sector 1, 
which is representative of the other sectors. The 
variation of this ratio across user groups takes 
place in opposite directions depending on whether 
the adjustment is in response to an early or late 
arrival on the previous day. A plausible explanation 

* * 2 2 * * 2 
4 

* 2 * 2 8 
3 7 
7 * 3 

-30.~~~~~~~~~~~~~~~~~~~~~~~~c3 

-30. -18. -6. 6. 18. 30. 

FIGURE 4 Departure time adjustment versus deviation from preferred arrival time 
on previous day: Day 2. 
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FIG URE 5 Departure time adjustment versus deviation from 
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FIGURE 6 Departure time adjustment versus deviation from 
preferred arrival time on previous day: Day 11. 
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FIGURE 7 Departure time adjustment versus deviation from 
preferred arrival time on previous day: Day 16. 
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FIGURE 8 Departure time adjustment versus deviation from 
preferred arrival time on previous day: steady state. 

TABLE 6 Average Ratio of Departure-Time 
Adjustment to Previous Day's Schedule Delay, Sector 1 

Average Ratio by User Group 

Change 2 3 
Sequence 
No. E L E L E L 

1 0.67 0.29 0.56 0.38 0.50 0.52 
2 0.55 0.22 0.24 0.40 0.26 0.46 
3 0.38 0.23 0.24 0.19 0.46 
4 0.20 0.21 0.17 0.46 
5 0.11 0.25 0.12 0.5 1 
6 0.11 0.63 
7 0.90 
8 0.36 

Note: E and L refer to departure-time changes in response to earliness 
and lateness, respectively, on the previous day. 

is that lateness relative to a preferred arrival 
time that is closer to the official work start time 
is more likely to result in actual lateness for 
work i the adjustment in this case is larger (rela
tive to soi,t-1> than that when the latenes s is 
entirely within the excess time between PATi and 
WS. On the other hand, adjustments in response to 
earliness are larger for users with earlier pre
ferred arrival times, to avoid otherwise excessive 
earliness relative to the work start time. Table 6 
also reveals the general trend of a decreasing ad
justment ratio across successive changes, particu
larly in response to earliness. The trend is not as 
clear for responses to lateness. It should also be 
noted as one interprets Table 6 that the averages 
for the later changes are based on very few partici
pants. 

outcomes: Schedule Delay and Tra ve l Time 

It was seen earlier that the average schedule delay 
ultimately accepted by users in each sector in
creases with distance from the destination (Figure 
2), which suggests that more distant users ulti
mately accept larger schedule delays and as such 
possess wider indifference bands of tolerable sched
ule delay. This is supported by the more detailed 
analysis of the proportion of users accepting (at 
equilibrium) various levels of schedule delay, in 
5-min increments, presented in Table 7. 
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TABLE 7 Relative Frequency per Sector of 
Difference Between Preferred Arrival Time and 
Actual Steady-State Arrival Time 

Frequency by Sector 
!J." 
(min) 2 4 All 

Early 
21-25 20 15 10 0 0 9 
16- 20 30 25 25 0 0 16 
11-1 5 0 10 40 10 5 13 
6- 10 10 10 15 35 25 19 
1-5 0 5 5 30 45 17 

0 0 0 0 0 0 0 
La te 
(-!)- (-5) 20 0 5 10 15 10 
(- 6)- (-10) 20 20 0 15 5 12 
(-11)-(-15) 0 15 0 0 5 4 

at. = preferred arrival time minus actual arriva l time at steady state. 

The evolution of average travel time per sector 
is shown in Figure 9, which reveals the greater day
to-day fluctuation encountered by commuters origi
nating in more distant sectors and the ensuing dif
ficulty in converging to a steady state. Further 
details on the facility's traffic flow performance 
and the travel time character is tics of the system 
may be found elsewhere (20,11.l. 

Perceptions and Learning 

Direct information on user perception of travel time 
and schedule delay was not available from this ex
periment. However, of related interest are the an
ticipated travel time and schedule delay derived 
from the anticipated arrival time reported daily by 
users along with their departure-time choice. 

In order to examine how actual experience on a 
given day influences perception on the following 
day, the ratio of the actual travel time on day 
t - 1 to the anticipated travel time on day t is 
considered (i.e., TTi,t- 1/ATTi,tl. The average of 
this rati o is taken separ a tely over users experi
encing lateness and earliness (relative to PATil, 
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FIGURE 9 Evolution of average travel time for each sector. 
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respectively, on day t - 1 for each sector. Table 8 
shows these averages for days 1 through 6 along with 
the corresponding standard deviations. If the ratio 
is greater than 1, travel time is anticipated to be 
lower than on the previous day. It can thus be seen 
that users arriving late on day t - 1 appear, on 
average, to anticipate travel time on day t to be 
lower than on the previous day, whereas those arriv
ing early on day t - 1 anticipate higher travel time 
on the next day. This somewhat counterintuitive 
finding can be attributed to the allowance by early 
users of a safety margin over their latest experi
enced travel time when they reset their departure 
time. On the other hand, late users are somehow hop
ing to compensate for the latest experienced tr ave 1 
time by an earlier departure that would face less 
congestion. 

In order to compare the anticipated travel time 
on a given day with the actual travel time on that 
day, Figure 10 (a-e) shows the day-to-day evolution 
of the average d i f fer ence TTi t - ATTi t for Sectors 
1 through 5. Figure 10 rev~als cons

1
iderable daily 

fluctuation, with no clear decreasing pattern ap
pearing until day 16. Overall (with the exception of 
Sector 5), there seems to be no particular tendency 
of overestimation as opposed to underestimation. The 
key conclusion suggested here is that users can b e 
good travel time predictors only when the system has 
essentially stabilized. There is therefore no sup
port for the contention that users are systemati
cally learning about the facility's time-dependent 
performance, as is usually implied in a perfectly 
rational decision framework. Instead, local and 
somewhat myopic rules seem to be governing users' 
perception of the facility's performance. 

The day-to-day evolution of the average absolute 
value of the difference between actual and antici
pated schedule delay on a given day is shown in Fig
ure 11. The same conclusions apply here as previously 
because it can be established algebraically that 
soi,t - ASDi,t = ATTi,t - TTi,t · 

I nte n t ions: An t i c i pated Arr ival Time 

This analysis parallels that of the departure-time 
choices, particularly because the concern is primar-

Lli.t..!:IP 
-&- SECTOR1 

-5- SECTOR2 

-+- SECTORJ 

-*" S£CTOR4 

-+-SECTORS 

17 21 
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TABLE 8 Average Ratio of Actual Travel Time on Day t - 1 to Anticipated Travel 
Time on Day t for Early Versus Late Users by Sector 

Day t 

2 3 4 s 6 

Sector Ratio SD Ratio SD Ratio SD Ratio SD Ratio SD 

1 
E 0.75 0.07 0.78 0.05 0.74 0.13 0.47 0.06 0.48 0.08 
L 1.19 0.15 1.14 0.09 1.36 0.12 1.23 0.13 1.36 0.30 

2 
E 0.65 0.22 0.76 0.09 0.64 0.21 0.66 0.11 0.69 0.16 
L 1.04 0.03 I.IS 0.30 1.26 0.24 1.35 0.27 1.15 0.09 

3 
E 0.72 0.16 0.71 0.17 0.75 0.06 0.44 0.08 0.62 0.23 
L 1.31 0.29 1.30 0.29 1.21 0.17 1.38 0.22 1.33 0.23 

4 
E 0.76 0.14 0.76 0.13 0.75 0.13 0.85 0.11 0.88 0.08 
L 1.26 0.11 1.29 0.14 1.33 0.31 1.17 0.13 1.29 0.19 

5 
E 0.70 0.11 0.67 0.13 0.64 0.16 0.50 0.12 0.73 0.11 
L 1.10 0.14 1.23 0.23 1.22 0.18 1.10 0.0 

Note: E =group of users with early arrival on day t - 1. L =group of users with late arrival on day t - 1. 

ily with the changes in intentions in response to 
experience with the facility. Table 9 shows the 
fraction of users in each sector who modified their 
anticipated arrival time at least n times, where 
n = 1, •.• ,6. Comparing these data with Table 2 indi
cates that users are more prone to change actions 
before shifting intentions, as evidenced by the sig
nificantly fewer anticipated arrival-time changes. 
The same information is presented in Table 10 for 
each user group within Sectors 1, 2, and 3, respec
tively, thus confirming the general trend, discussed 
in conjunction with Table 3, that users with earlier 
preferred arr iv al times have to compromise less as 
the search progresses. 

15 
SECTOR 2 

9 

3 

3 

TABLE 9 Proportion of Users in Each 
Sector with at Least n Anticipated 
Arrival-Time Changes 

Percentage of Users by Sector 
No. of 
Changes• 2 3 4 All 

I 75 75 80 30 35 59 
2 50 60 25 5 28 
3 20 30 10 12 
4 15 10 5 
s 15 5 4 
6 10 2 

3 Minimum number. 
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FIGURE 10 Day-to-day evolution of average difference between actual and anticipated travel time for each sector. 
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FIGURE 11 Day-to-day evolution of average absolute difference between actual and anticipated schedule 
delay for each sector. 

Table 11 gives for each sector the mean number of 
days (and the standard deviation) since the previous 
revision for each of the n anticipated arrival-time 
changes, n = 1, ••• , 6. Unlike Table 4, a clear de
creasing trend is evident here, whereby users revise 
intentions at gradually smaller time intervals. As a 
matter of fact, the mean time until the first change 
is quite large, which indicates user persistence in 
initial intentions. However, as users progressively 
realize the inability to achieve their initial pref
erence, and as they develop a better feel for the 

system's performance, they appear more willing to 
revise their anticipated arrival time. Increasingly, 
a number of participants updated their anticipated 
arrival time only after the system had reached 
steady state. 

Table 12 presents the average number of depar
ture-time changes (and the standard deviation) that 
took place since the previous revision for each of 
the six anticipated arrival-time revisions. The num
ber of departure-time changes is an indication of 
the number of intervening unacceptable outcomes, and 

TABLE 10 Proportion of Users in Each User Group Within Sectors 1, 2, and 3 with at Least n 
Anticipated Arrival-Time Changes 

Percentage of Users by Sector 

No. of 
Changes• 

1 
2 
3 
4 
s 
6 

Group 1 

0 

8 Minimum number. 

Group 2 Group 3 

62.S 100 
37.S 90.0 
25.0 70.0 
12.S 40.0 

30.0 
20.0 

2 

Group 1 

33.3 

Group 2 Group 3 Group 1 Group 2 Group 3 

so.a 100 0 66.6 100 
16.7 100 33.3 61.S 
16.7 63.6 16.7 23.1 

18.2 16.7 
9.1 
9.1 
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TABLE 11 Mean and Standard Deviation of the Number of Days Between Consecutive Anticipated 
Arrival-Time Changes per Sector 

Sector 

Change 2 4 All Users 
Sequence 
No. Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

1 7.62 4.12 6.53 4.42 9.63 5.32 14.52 6.98 9.14 3.92 8.77 5.21 
2 4.54 2.99 5.08 3.68 6.89 5.13 6.00 _a 5.43 3.81 
3 3.63 1.60 3.80 2.90 2.00 2.00 3.44 2.28 
4 1.67 1.1 5 4.06 4.24 2.33 2.42 
5 1.00 0.00 4.00 -a 1. 75 1.55 
6 1.50 0.72 1.50 0.72 

8 0nly one participant was involved in this change, 

TABLE 12 Mean and Standard Deviation of the Number of Departure-Time Changes 
Between the Consecutive Anticipated Arrival-Time Changes per Sector 

Sector 

Change 2 
Sequence 
No. Mean SD Mean SD 

No change 6.00 1.80 6.00 2.60 
1 4.50 2.58 3.70 1.87 
2 2.61 2.14 2.74 1.72 
3 1.00 1.32 1.20 1.20 
4 0.80 0.83 1.50 0.70 
5 0.75 0.52 1.00 -" 
6 1.00 0.00 

0 0n1y one participant was involved in this change. 

is as such a measure of the number of failures until 
the next revision. As expected from the foregoing 
discussion, this number decreases as the search pro
gresses, reflecting the initial resistance (to re
vising intentions), which appears to weaken progres
sively. Table 12 also reveals that users in closer 
sectors encounter fewer "failures," on average, than 
those in more distant sectors. 

Finally, the direction of these readjustments is 
examined. Are users shifting their anticipated ar
rival to an earlier or a later time? And are they 
doing so consistently in one or the other direction? 
As suggested in the second section, users would tend 
to accept increasing earliness relative to their 
preferred arrival time in order to accommodate the 
fluctuations in system performance. This is indeed 
the case in this experiment, with 72 percent of all 
users who adjusted anticipated arrival time at least 
once consistently shifting to an earlier time. Only 
7 percent consistently shifted to a later time (ac
tually only two participants, both in Sector 4) , 
with the remaining 21 percent moving at least once 
in each direction. 

CONCLUSION 

This paper has presented the principal elements of a 
theoretical framework to describe the processes gov
erning commuters' daily departure-time decisions in 
response to experienced congestion patterns. Com
muter behavior is viewed as a boundedly-rational 
search for an acceptable departure time. A key no
tion is that of an indifference band of tolerable 
schedule delay that determines the acceptability of 
a particular decision outcome on any given day. This 
indifference band, which varies across individuals, 
also shifts in response to users' experience with 
the facility. 

3 4 

Mean SD Mean SD Mean SD 

3.50 2.30 2.50 1.22 1.30 0.63 
3.00 1.93 1.33 1.50 0.57 0.53 
1.56 2.06 1.00 -· 
1.00 0.00 

Although not intended as a formal validation of 
the foregoing model, an experiment involving real 
commuters interacting daily with a hypothetical sim
ulated traffic corridor was conducted over a period 
of 24 days, yielding valuable insights into the dy
namics of the departure-time decision and its inter
action with system performance. The results pertain
ing to the underlying behavioral processes were 
analyzed in this paper from the perspective of the 
key notions articulated in the conceptual framework. 

Of course, this is only one such experiment, 
which involves obvious restrictions because of the 
hypothetical nature of the commuting corridor. 
Nevertheless, it has been quite insightful, particu
larly given the difficulty and the scale of corre
sponding real-world observations at the desired 
level of detail. As such, it offers a useful comple
mentary approach to support the development of a 
comprehensive descriptive theory that would be sub
sequently validated, if only in part, in the field. 
Other experiments under different informational sit
uations (e.g., where information about system con
gestion is available by word of mouth or through 
media reports) are also contemplated. In addition, 
formal mathematical model building and parameter 
estimation will be conducted. 
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