
TRANSPORTATION RESEARCH RECORD 1 Q 3 7 

Transportation Demand 
Analysis and Issues in 
Travel Behavior 

rn<IID 

TRANSPORTATION RESEARCH BOARD 
NATIONAL RESEARCH COUNCIL 
WASHINGTON. D. C. 1985 



Transportation Research Record 1037 
Price $14.00 
Editor: Naomi Kassabian 
Compositor: Harlow A. Bickford 
Layout: Marion L. Ross 

lliodes 
highway transportation 

2 public transit 

subject areas 
12 planning 
13 forecasting 

Transportation Research Board publications are available by order­
ing directly from TRB. They may also be obtained on a regular 
basis through organizational or individual affiliation with TRB; af­
filiates or library subscribers are eligible for substantial discounts. 
For further information, write to the Transportation Research 
Board, National Research Council, 2101 Constitution Avenue, 
N.W., Washington, D.C. 20418. 

Printed in the United States of America 

Library of Congress Cataloging-in-Publication Data 
National Research Council. Transportation Research Board 

Transportation demand analysis and issues in travel behavior. 

(Transportation research record ; 1037) 
1. Transportation- Forecasting-Congresses. 

2. Transportation-Planning-Congresses. I. National 
Research Council (U.S.). Transportation Research 
Board. 
TE7.H5 no.1037 
[HEll] 
ISBN 0-309-03953-3 

380.5 s 
[380.5'93] 
ISSN 0361-1981 

86-5251 

Sponsorship of Transportation Research Record 103 7 

GROUP I-TRANSPORTATION SYSTEMS PLANNING AND 
ADMINISTRATION 
William A. Bulley, H. W. Lochner, Inc., chairman 

Transpmtation Data, Economics and Forecasth1g Section 
Joseph L. Schafer, Northwestern University, chairman 

Committee on Passenger Travel Demand Forecasting 
Frank S. Koppelman, Northwestern University, chairman 
Moshe E. Ben-Akiva, Werner Brog, William A. Davidson, 
Christopher R. Fleet, Lawrence V. Hammel, Susan Hanson, Joel L. 
Horowitz, Stephen M. Howe, Peter M Jones, Terry Kraft, David 
L. Kurth, Steven Richard Lerman, Eugene J. Lessieu, Hani S. 
Mahmassani, Eric J. Miller, Eric Ivan Pas, Martin G. Richards, 
Aad Ruhl, Earl R. Ruiter, James M. Ryan, Bruce D. Spear, 
Timothy J. Tardiff 

Committee on Traveler Behavior and Values 
Mary Lynn Tischer, Federal Highway Administration, chairman 
Julian M Benjamin, James C. Echols, David T. Hartgen, David A. 
Hensher, Joel L. Horowitz, Dennis C. Judycki, Ryuichi Kitamura, 
Lidia P. Kostyniuk, Steven Richard Lerman, Arnim H. Meyburg, 
Robert E. Paaswell, Richard H. Pratt, Sandra Rosenbloom, Earl R. 
Ruiter, Peter R. Stopher, Antti Talvitie, Carina Van Knippenberg, 
Edward Weiner 

James A. Scott, Transportation Research Board staff 

Sponsorship is indicated by a footnote at the end of each paper. 
The organizational units, officers, and members are as of 
December 31, 1984. 

NOTICE: The Transportation Research Board does not endorse 
products or manufacturers. Trade and manufacturers' names 
appear in this Record because they are considered essential to its 
object. 



Contents 

ALTERNATIVE METHODS TO ESTIMATE ROUTE-LEVEL TRIP TABLES AND 
EXPAND ON-BOARD SURVEYS 

I 

Moshe E. Ben-Akiva, Peter P. Macke, and Poh Ser Hsu .. . . . . . .. . ...... ... . . ........ . .. . 

ROUTE CHOICE ANALYZED WITH STATED-PREFERENCE APPROACHES 
Piet H. L. Bovy and Mark A. Bradley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

TESTS OF THE SCALING APPROACH TO TRANSFERRING 
DISAGGREGATE TRAVEL DEMAND MODELS 

Hugh F . Gunn, Moshe E. Ben-Akiva, and Mark A. Bradley. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 

IMPLEMENTATION OF SERVICE-AREA CONCEPTS IN SINGLE-ROUTE 
RIDERSHIP FORECASTING 

Alan J. Horowitz and David N. Metzger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

THE USEFULNESS OF PREDICTION SUCCESS TABLES FOR DISCRIMINATING 
AMONG RANDOM UTILITY TRAVEL DEMAND MODELS 

Joel L. Horowitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

TRAVEL DEMAND FORECASTING WITH THE QUICK-RESPONSE 
MICROCOMPUTER SYSTEM : APPLICATION AND EVALUATION OF USE 

G. Scott Rutherford and Norma T . Pennock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

USING REGIONAL FORECASTING MODELS OF THE URBAN TRANSPORTATION 
PLANNING SYSTEM FOR Df'JAILED BUS ROUTE ANALYSIS 

Peter R. Stopher, William A. Davidson, Laiky K. Tamny, and Gary S. Spivack . . . . . . . . . . . . . . 52 

THE DEMAND FOR PERSONAL TRAVEL IN DEVELOPING COUNTRIES: 
AN EMPIRICAL ANALYSIS 

Angus Deaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

ANALYSIS OF AUTOMOBILE OWNERSHIP BY USING A 
DIVISIVE HIERARCHICAL TECHNIQUE 

Joke M. Jager and Wim H. Scheltes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

AUTOMOBILE AVAILABILITY AND ITS APPLICATION IN TRANSPORTATION STUDIES 
Janusz Supernak and David Schoendorfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

ATTRIBUTE THRESHOLDS AND LOGIT MODE-CHOICE MODELS 
W. Young and D. Bertram ..... .. ...... . . . ...... . .... . .... .. . ... ........ .. .. .. .. . 81 

DYNAMIC ASPECTS OF DEPARTURE-TIME CHOICE BEHAVIOR IN A COMMUTING 
SYSTEM: THEORETICAL FRAMEWORK AND EXPERIMENT AL ANALYSIS 

Hani S. Mahmassani and Gang-Len Chang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

TRANSFER MODEL UPDATING WITH DISAGGREGATE DATA 
Frank S. Koppelman, Geok-Koon Kuah, and Chester G. Wilmot . . . .. . . .. .. . . .... . ... . ... 102 

iii 



Addresses of Authors 

Ben-Akiva, Moshe E., Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass. 02139 
Bertram, D., Department of Civil Engineering, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3168, 

Australia 
Bovy, Piet H. L., Institute for Town Planning Research, Delft University of Technology, P.O. Box 5043, 2600 GA Delft, 

Netherlands 
Bradley, Mark A., Cambridge Systematics Europe, Laan van Meerdervoort 32, 2517 AL The Hague, Netherlands 
Chang, Gang-Len, Department of Civil Engineering, University of Texas, Austin, Tex. 78712 
Davidson, William A., Barton-Aschman Associates, Inc., 820 Davis Street, Evanston, Ill. 60201 
Deaton, Angus, Research Program in Development Studies, Woodrow Wilson School, Princeton University, Princeton, N.J. 

08540 
Gunn, Hugh F ., Cambridge Systematics Europe, Laan van Meerdervoort 32, 2517 AL The Hague, Netherlands 
Horowitz, Alan J., Center for Urban Transportation Studies, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, 

Wisc. 53201 
Horowitz, Joel L., Departments of Geography and Economics, University of Iowa, Iowa City, Iowa 52242 
Hsu, Poh Ser, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass. 02139 
Jager, Joke M., Department of Civil Engineering, Delft University of Technology, H. Gorterhof 154, 2624 XL Delft, 

Netherlands 
Koppelman, Frank S., Department of Civil Engineering and Transportation Center, Northwestern University, Evanston, Ill. 

60201 
Kuah, Geok-Koon, Department of Civil Engineering, University ofMary];in1\ College Park, McL 20742 
Macke, Peter P., Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass. 02139 
Mahmassani, Harri S., Department of Civil Engineering, University of Texas, Austin, Tex. 78712 
Metzger, David N., Center for Urban Transportation Studies, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, 

Wis. 53201 
Pennock, Norma T., TRANSPO Group, 23 148th Avenue, S.E., Bellevue, Wash. 98007 
Rutherford, G. Scott, Washington State Transportation Center, 135 More Hall, FX-10, University of Washington, Seattle, 

Wash. 98195 
Scheltes, Wim H., Netherlands Institute of Transport (NVI), Polakweg 13, 2288 GG Rijswijk, Netherlands; formerly with 

Delft University of Technology 
Schoendorfer, David, Department of Civil Engineering, University of Pennsylvania, Philadelphia, Pa. 19104 
Spivack, Gary S., Southern California Rapid Transit District, 425 S. Main Street, Los Angeles, Calif. 90017 
Stopher, Peter R., Schimpeler~Corradino l\.ssociates, 425 South ~Aain Street, Los Angeles, Calif. 90274 
Supernak, Janusz, Department of Civil Engineering, San Diego State University, San Diego, Calif. 92182 
Tamny, Laiky K., Beverly Enterprises, 873 S. Fair Oaks Avenue, P.O. Box 90130, Pasadena, Calif. 91109 
Wilmot, Chester G., National Institute for Transport and Road Research, CSIR, P.O. Box 395, Pretoria 0001, South Africa 
Young, W., Department of Civil Engineering, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3168, 

Australia 

iv 



Transportation Research Record 1037 1 

Alternative Methods to Estimate Route-Level 

Trip Tables and Expand On-Board Surveys 

MOSHE E. BEN·AKIV A, PETER P. MACKE, and POH SER HSU 

ABSTRACT 

Several estimation techniques of route-level trip tables are reviewed and 
tested. Current industry practice of simple expansion of an on-board survey by 
total boardings is compared with expansion by the iterative proportional fit­
ting (IPF), constrained generalized least-squares, and constrained maximum­
likelihood methods. An intervening-opportunity model, which does not use the 
on-board survey, is also tested. The more complex methods achieve better accu­
racy and reduced bias by combining the survey data with ride-check data. An 
empirical case study demonstrates that under the assumption of error-free ride­
check data the IPF technique is preferred because of its computational ease 
without loss of accuracy. The IPF method should enable transit operators to 
obtain much more accurate trip tables and more reliable on-board survey results 
for a small additional computational cost. 

Ridership data at the level of a single transit 
route are required for setting headways, for evalu­
ating alternative operating strategies (such as ex­
press bus and short turning), and for forecasting 
revenues. [See, for example, studies by Furth and 
Wilson (_!), Ceder (_~), and the U.S. Department of 
Transportation (l_) .] For patronage forecasting ap­
plications, route-level trip tables serve as the 
base for pivot-point techniques that use elastici­
ties to predict the effects of changes in headways, 
travel times, and fares [see, for example, the study 
by Nickesen et al. (4)]. 

In this paper the- issue is addressed of obtaining 
cost-effective estimates of route-level or1g1n­
destination (OD) trip tables from two data sources-­
an on-board survey and ride-check data. This could 
be easily extended to include data from other 
sources. 

There are several reasons for trying to combine 
ride-check data efficiently with an on-board survey. 
On-board survey data have several severe limita­
tions: they are expensive to collect, subject to 
response bias problems, and require a long pro­
cessing time. This implies that on-board survey data 
are likely to have large sampling errors because of 
the small sample sizes and significant biases be­
cause of response errors and being out of date. How­
ever, they are the only data that contain disaggre­
gate OD information. 

Ride-check data, on the other hand, are compar­
atively less costly to collect and consequently are 
collected at more frequent intervals. Processing 
time, particularly in the advent of hand-held elec­
tronic data acquisitors, is shorter. They are also 
not subject to response bias problems. However, they 
consist of aggregate passenger counts and by them­
selves could not yield OD information without resort 
to restrictive assumptions. Thus, the objective of 
this research is to utilize these more accurate, un­
biased, aggregate data to improve the accuracy and 
reduce the biases of on-board surveys. 

Alternative estimation methods are presented of 
route-level OD trip tables that expand a small sam­
ple on-board survey by using ride-check data. This 
results in much greater accuracy of the available 
route-level OD information. The aternative methods 

are illustrated with actual data from the Boston 
area. The estimation results are compared with those 
obtained by an intervening-opportunity method based 
on ride-check information alone and with a matrix 
obtained by expansion with a single factor of the 
survey OD matrix to the total boardings counted in 
the ride checks. 

PROBLEM FORMULATION AND NOTATION 

Consider a bus route for which the available data 
consist of a small-sample on-board survey with in­
formation on the passengers' boarding and alighting 
stops and on and off counts from a ride check. 

The population of interest is all the passenger 
trips taking place on the route in one direction and 
during a fixed time interval. For example, all trips 
on Route 77 in the outbound direction during the 
evening peak period would constitute a population of 
interest. Samples are taken at different points in 
time (days, months). Therefore, the investigated 
trip table represents average conditions during the 
survey period. 

For the OD survey a sample of bus runs is drawn 
and on these runs the survey questionnaire is usu­
ally distributed to all passengers. 

The ride checks usually consist of counts on all 
the bus runs spread over the survey period. It is 
assumed that the counts for a given bus run are sta­
ble from day to day during the survey period. The 
methods developed here treat the ride-check informa­
tion as error free as a first approximation. In a 
later stage of this research this restriction will 
be released and errors in the ride-check data will 
be considered by using the approach presented by 
Ben-Akiva et al. (5). 

Let i and j d;note an origin and a destination 
stop or group of stops, respectively, where i = 1, 
••• , I and j = 1, ••• , I. Denote the number of pas­
sengers boarding transit vehicles at i = 1, ••• , I 
and alighting at j = i, ••• , I during a given time 
period by t i j · 

The number of passengers boarding and alighting 
at every stop is known from the ride check. Denote 
the number of passengers boarding at i by ti. and 



2 

the number of passengers alighting at j 
Thus, 

by t.j· 

I 
t 1 = L t1J· i= I , . .. , I 

. i=l 

J 
t.1 = L t11 j = I, . • . , l 

l= i 

I 
t .. = L 

i=J 

I 

t;. = L t.1 
j=! 

(1) 

(2) 

(3) 

where t denotes the number of total boardings. 
Denet~ the number of observations in the on-board 

survey by t~. and the observed cell frequencies by 
t~j• i = 1, ••• , I, j = i, ••• , I, such that 

I I 
L L 

i=l j=i 
t ~ = t0 

lj •• 

ESTIMATION METHODS 

An on-board survey is usually expanded by a single 
factor, f = t /t0 , for all the observations during 
the given time

0

peri~d. In the following section al­
ternative methods are presented that use the ride­
check boarding and alighting counts, ti.• i = 1, ••• , 
I and t.j• j = 1, ••• , I, to expand the trip table 

observed in the on-board survey, t~j• i = 1, ••• , I, 
j = i, ••• , I, and to obtain combined estimates of 

the trip table, tij , i = 1, ••. , I, j = i, ••• , I. 
The alternative methods investigated in this 

paper are iterative proportional fitting (!PF), con­
strained generalized least squares (CGLS), con­
strained maximum-likelihood estimation (CMLE), and 
an intervening-opportunity approach. The last method 
does not use data from an on-board survey. 

IPF Method 

The IPF method has been widely used in transporta­
tion and other fields. It has been referred to as 
the biproportional method (~),the Furness or Fratar 
iterative procedure (llr the Kruithof algorithm (_!!), 
or Bregman' s balancing method (9). In general, IPF 
estimates for a two-dimensional- matrix are propor­
tional to base matrix entries with a constant of 
proportionality for each row and each column. These 
multiplicative expansion factors modify the base 
entries to be consistent with the known row and 
column totals for the matrix. 

The IPF estimator for OD pair (i,j) is given by 

(4) 

where the proportionality constants or balancing fac­
tors ai and bj are determined such that the estimated 
values satisfy the row and column constraints in 
Equations 1 and 2, as follows: 

I 
E 

j=i 
l;j =I;. i =! , . . . ,I (5) 

j 

ilj = t.j L j =I, ... , I (6) 
i=l 

The !PF estimator in Equation 4 can also be de­
fined as the outcome of the following constrained 
optimization problem: Minimize 

I I 

L L tu [log (t11 /t5) - l] 
i= l j =i 

(7) 
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subject to Equations 1 and 2, where the objective 
function may be interpreted as a measure of informa­
tion or as a measure of the discrepancy between the 
matrix {tij} and the initial matrix {t~j }. Note that 

for tO· = 0 the corresponding t· · value is zero as 1J 1J 
wall, ~nd the cell is emitted from the objective 
function. A solution exists if 

I I 
L I· = E t · 

i=l 
1
' J=I .J 

and it is given by the first-order conditions of the 
Lagrangian: 

i =!,. .. ,I j = i,. . . , I (8) 

where >.i, i = 1, . • • , I and llj, j = 1, ... , I are the 
Lagrangian multipliers of the constraints 1 and 2, 
respectively. The solution of Equation 8 can be ex­
pressed by Equation 4 where 

a;= exp(;>..1) i =I, ... , I (9) 

j =I, ... , I (10) 

Thus, the balancing factors may be interpreted as 
exponential transformations of the Lagrangian multi­
pliers of the boarding and alighting constraints. 

The !PF estimator in Equation 4 is also defined 
by the property of constant cross-product ratios, as 
follows: 

(11) 

for any OD pairs (i,j) and (u,v) with tSj > 0 and 

t~v > 0. 
The variances of the !PF estimates may be calcu­

lated by using a linear approximation to obtain 

Var (iii) e. E E L L (a ~ 1/a t~v) Ii (aiu/at ~2) Ii cov(t~., t~Q) 
u v k Q 

(12) 

The covariances of the observed cell frequencies are 
unknown. On the assumption that the t~j's are the 
outcomes of independent random draws from large pop­
ulations, it is possible to approximate their sam­
pling distributions by independent Poisson variates 
[see, e.g., the study by Drake (.!Q)] to obtain 

Var(iu)~L E [(3t;1/ 3t~v)lil 2 t~v (13) 
u v 

CGLS Method 

The CGLS estimation method has been presented by 
Theil (11) and has recently been used to estimate OD 
t ablei; by McNeil (lll and by Hendrickson and McNeil 
(13 ,14). This method is based on the assumption that 
the simple expansion by f = t • .ft?. of the 

entries in the base matrix {t~j} provides un­
biased estimates of the true values {tij}• Thus, a 

base value (f•t~j) can be expressed as equal to the 

unknown true value (tijl plus an error term denoted 
by <ij• as follows: 

i=!, ... ,I j=i, ... ,I (14) 

where E[<i·] = O. 
With mai;rix notation, the CGLS estimator can be 

expressed as follows: Minimize 

(f · t 0 
- t)' V- 1 (f · t 0 

- t) (15) 

subject to 
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Rt= r (16) 

where 

t 0 ,t K x 1 vectors of observed values and un-
known parameters, respectivelyi 

K number of cells in the base matrixi 
V K x K variance-covariance matrix of t 0 i 
r = C x 1 vector of C linearly independent row 

and column constraintsi and 
R C x K constraint incidence matrix whose 

elements are either 0 or 1. 

The CGLS estimator is given by 

i = f · t 0 + VR'(RVR'f 1 (r - Rt 0
) (I 7) 

and the variance-covariance matrix of the estimated 
values is 

cov(t'}= a 2 [V-VR'(RVR'f 1 RV] (18) 

with the following estimator for a 2 : 

s2 = j[tr(V)/K](f·t0 -t)'V-1 (f· t0 -t)}/c (19) 

where tr (V) is the trace of matrix V. Note that the 
normalization with tr(V)/K that appears in this for­
mulation is different from the derivations by Theil 
(11) and McNeil (12) because they assume a normal­
ized covariance matrix V whose trace equals the num­
ber of cell entries to be estimated. 

This least-squares estimator is not unbiased in 
situations with small cell values. The bias arises 
from the fact that the correct model is given by 

f. tij = (20) 

0 

This implies that 

(21) 

where the equality is likely to hold only for large 
tij• [See, for example, studies by Judge et al. (15) 
and by Heckman (16) .) 

CMLE Method 

A maximum-likelihood estimator requires specific 
assumptions about the sampling distributions of the 
different data sources. It is often assumed that the 
base OD matrix is generated by a multinomial sam­
pling process. Other distributions that may be con­
sidered are the multivariate hypergeometric, which 
tends to the multinomial as the population from 
which the sample is drawn tends to infinity, and 
independent Poisson distributions of the observed 
cell values. The sampling distributions of the pas­
senger counts could be approximated by the Poisson 
distribution. However, in this paper, the ride 
checks are considered to be observed without errors. 
On the assumption that all the available counts are 
compatible, the technique becomes a maximum-likeli­
hood estimation subject to constraints. This method 
was previously applied to OD matrix estimation by 
Landau et al. (17) and by Geva et al. (18). 

Under the Poisson assumption, the maximum-likeli­
hood estimator is found by solving the following: 
Maximize 

I I t~ 
L = II II (tu '1 /tij !) exp (-tii) 

i=l j=i 
(22) 

3 

subject to Equations 1 and 2. The Lagrangian for the 
logarithm of the likelihood function is as follows: 
Maximize 

!··-!·) IJ I. 

(23) 

The first-order conditions are 

aL0 /at;i = -1 + (tij/tu)- a; - bi= 0 (24) 

and the constrained maximum-likelihood estimator is 

i = 1, ... , I j = i, .. ., I (25) 

where ai, i = 1, ••• , I and bj, j = 1, ••• , I are the 
balancing factors as well as the Lagrangian multi­
pliers of the constraints 1 and 2, respectively. 

The same result is obtained for the multinomial 
and, by using an approximation, for the multivariate 
hypergeometric distributional assumptions: 

i= I, ... , I j = i, ... , I (26) 

Another way of solving the constrained maximum­
! ikelihood problem is to substitute the constraints 
into the objective function. For the multinomial 
distribution the kernel of the unconstrained log­
likelihood function with a smaller set of unknown 
parameters can be written as follows: Maximize 

l-1 I I 1-1 

~ ~ 
j=2 j=j 

tij Qn tij + ~ t~iQn t 1i + ~ t?1 Qn tu 
j=l i=l 

Use the constraints 1 and 2 to solve for 

1-J 

tn =t; - ~ t;i 
. j= i 

j 

t1 · =t ·- ~ t1· 
J .J i=2 J 

i= 1, ... , I 

j = 1, ... ' I 

(27) 

(28) 

(29) 

and substitute into Equation 27. The first-order 
conditions of Equation 27 yield the following ex­
pression for the maximum-likelihood estimator: 

i = 2, ... , I j = i, ... , I - 1 (30) 

Note that Equations 30 and 26 are the same by sub­
stituting 

For the unconstrained maximum-likelihood formulation 
estimates of the asymptotic covariance matrix of the 
tij's are given by minus the inv~rse of the matrix of 

second derivatives evaluated at t. Differentiate the 
first-order conditions with respect to tuv• u = 2, 
••• , I, v = u, ••• , I - 1 to obtain the Hessian of 
the log-likelihood function as follows: 

-(tij!tfj)- (tYiftfj) - (t?1/tfi) for u = i and v = j 

-(tij/t ii) j = i, ... , I - I for u * i and v = j 

(31) 

-(tfi/t~1) i = 2, ... , I for u = i and v *i 

0 

Minus the inverse of this Hessian evaluation at t 
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provides an estimate of the variance-covariance ma­
trix of t. 

With both the MLE and the linear regression ap­
proaches it is possible to extend the analysis to 
include stochastic ride-check data. The MLE approach 
can also be extended to test for more complex pat­
terns of response biases, particularly in the on­
board survey (~)· 

Problem of Nonstructural Zeros 

The IPF and CMLE estimators retain zero values in 
the expanded matrix for cells that had zero observa­
tions in the survey. The problem lies in the struc­
ture of those estimators; it is avoided with the 
CGLS method. (Note, however, that the CGLS estimates 
may have negative values.) 

The problem of nonstructural zeros can be over­
come by the grouping of stops in order to reduce the 
dimensionality of the trip table, by choosing an 
appropriate sampling strategy, by substituting arbi­
trary small numbers in the zero cells of the survey 
matrix, or by a Bayesian technique suggested by 
Bishop et al. (19, pp. 401-433) and by Kirby and 
Leese <M1.l. 

The last approach (shown in the following para­
graph) is a method of smoothing the observations 

[t~jl over the cells of the matrix. Let the probabil­

ity of observing the sample matrix entries [t~jl be 
expressed by the multinomial distribution and denote 
for each cell of the matrix the probability that a 
trip occurs from i to j by Pij<Pij ~O, for all i,j) 
where 

I I 

~ ~ Pii= 1 
i=l j=i 

The smoothing method estimates nonzero values for 
cells that are empty by chance but have a nonzero 
probability that a trip is made. The method also 
reduces the values of nonempty cells in such a man­
ner that the cell entries continue to add up tot~.· 

The Bishop et al. (19) estimator for the smoothed 
cell values is obtained with the following proce­
dural steps: 

l. 
based 

2. 

Select prior probabilities [P~jl, which may 
on external information or the survey data; 

Compute the posterior probabilities: 

be 

Pij = (tfi + kpfl )/(t~ + k) i = 1, ... 'I, j = i, ... 'I (32) 

where the weighting factor is given by 

k = [(t~)2 - ~ (tfl)2 JI ~ (tfl - t~ p~)2 
i,j i,j 

(33) 

3. Compute the "smoothed" cell estimates: 

ill= t~ Pij = [t~/(t~ + k)J CtB + k·pfl) i=l, ... ,I, j=i, . .. ,I (34) 

The prior probabilities P~j can be simply assumed 
to be equal. Thus, p<fj = l/K where K is the number of 
cells. Alternatively, the prior probabilities may be 
based on the ride-check data in the form 

pij = (t; .. t.j)/(t..)2 (35) 

By using the latter prior probabilities, the follow­
ing expression is obtained for the smoothed sample 
matrix: 

ill= [t~/(t~ + k)J {tB + [k(ti. · t.j)/(t.J2lf (36) 
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where 

k= fct~)2 - ,---~1 -~ (tij)21 I~ -~ {tij- [(t; .. t.j)/t..] f 2 ~ J=t J i=l j=J 

(37) 

Intervening-Opportunity Method 

The intervening-opportunity approach is based on the 
ride-check information alone. The assumption for 
choosing a particular OD matrix among the many OD 
patterns that will satisfy the on and off counts is 
that at a given stop every qualified passenger on 
the bus is equally likely to alight (21,22). A pas­
senger is qualified if the boarding stop was at least 
a certain minimum number of stops m before the given 
stop and if he has not previously alighted. Let Vij 
be the volume of passengers originating at stop i who 
are still on board and eligible to alight at stop j; 
passengers are eligible to alight at j if j - i ~m 
and if they have not alighted at a stop before j. 
Thus, for j > i + m, 

j-1 

vii= t;. - ~ t;k 
k=i 

and for j < i + m, Vi j 
vij = ti.·> At stop j 

j 

~ Vii=V.i 
i=l 

o. (For j i + m, 

passengers are el igible to aligh t and t .j passengers 
actually aligh t. Thus, a frac~on t_.j/V .j o_f al~ eli­
gible passengers alighted at J. This fraction is ap­
plied to every boarding stop i for which there are 
eligible passengers: 

£,=ft ,N ,) V,, 
•J " •J' ·J~ •J 

i= 1 _. -;j-m (38) 

The tests of this method in this paper are based on 
a minimum trip length of zero stops because groups 
of stops are considered in the case study. 

CASE STUDY 

In the previous section the following four methods 
were presented to estimate route-level trip tables 
by expanding an on-board sample with ride-check data: 

• Simple expansion by total boardings 
• IPF 
• CMLE 
• CGLS 

A trip table can also be synthesized by the inter­
vening-opportunity approach, which is based on ride­
check data alone. In this section of the paper the 
results are reported of applying these five methods 
to a data set consisting of a small-sample on-board 
survey and ride checks recently collected for the 
Massachusetts Bay Transportation Authority (MBTA). 
The data were collected by Cambridge Systematics 
during a 4-week period in November and December 1983 
for the MBTA bus routes in the Northwest Corridor of 
the Boston metropolitan area. The methods were ap­
plied to Routes 350 and 77. 

Description of the Data 

Route 350 is 15. 2 mi long and runs as an express 
route from the suburbs of Burlington (1) , through 
Woburn (2), Winchester (3), Arlington (4 and 5) and 
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Cambridge (6 and 7) to the central business district 
(CBD) in Boston (8). [The numbers in parentheses 
refer to the eight groups of stops defined for this 
route; there is an approximately equal number of 
stops per group in the suburbs and a finer division 
(down to single stops) between Arlington and Bos­
ton.] The estimation of trip tables for Route 350 
was performed for the morning peak (6:00 to 9:00 
a .m.) in the inbound direction with 76 observations 
from the on-board survey and 485 total boardings 
counted in the ride check and for the afternoon peak 
(4:00 to 7:00 p.m.) in the outbound direction with 
61 observations from the on-board survey and 200 
total boardings counted by the ride check. The ride­
check information is complete, and total boardings 
or alightings at each stop of the route for each 
time period and direction are available. The simple 
expansion factors for the two matrices for Route 350 
are approximately 6 for the a .m. peak and 3 for the 
p.m. peak. 

Route 77 is 5 .5 mi long and serves the communi­
ties of Arlington and Cambridge. It is a high­
densi ty route with scheduled headways of 3 min for 
the a.m. peak (6:00 to 9:00 a.m.) and 4.5 min for 
the p.m. peak (3:00 to 6:00 p.m.). The route was 
divided into seven groups of stops; the most impor­
tant were Harvard Square in Cambridge (1), Arlington 
Center (5), and Arlington Heights (7). For the morn­
ing peak in the inbound direction, 54 observations 
were available from the on-board survey and 2,148 
passengers were counted in the ride check. For the 
afternoon peak in the outbound direction, 138 obser­
vations were available from the survey and 1,617 
passengers were counted by the ride check. 

Note that for Route 77 the simple expansion fac­
tors are about 40 and 12 for the a.m. and p.m. 
peaks, respectively, as compared with factors of 
about 6 and 3 for Route 350. The influence of the 
on-board sample information on the estimated matrix 
for Route 77 should therefore be much less signifi­
cant than the case of Route 350. 

Analysis of the Results 

The five estimated matrices (described earlier) with 
total boardings normalized to 100 are given for each 
route and direction in Tables 1-4. The IPF and the 
CMLE estimators require iterative solution methods, 
which in all tested cases converged rapidly. 

A comparison of the IPF, CMLE, and CGLS ma tr ices 
for the outbound direction of Route 350 versus the 
matrix obtained by the intervening-opportunity model 
demonstrates the influence of the OD information 
from the on-board survey on the estimation results. 
The IPF, CMLE, and CGLS matrices are more concen­
trated (in accordance with the OD observations) than 
the intervening-opportunity matrix, which gives more 
evenly distributed cell entries. 

The IPF, CMLE, and CGLS matrices (see Tables 1-4) 
exhibit the special character is tics of Route 350, 
which consists of two segments--the first is from 
the CBD in Boston (8) and Cambridge (6 and 7) to 
Arlington Center (4) and Winchester (3) (see the 
first two rows of the matrices for the outbound 
direction) and the second is from Arlington Center 
to the outer suburbs in Woburn (2) and Burlington 
(1) (see row 5 of the matrices). This characteristic 
is blurred in the intervening-opportunity matrix, as 
can be seen from a comparison of the respective 
matrices. 

A comparison of Route 350 estimation results with 
those for Route 77 shows the effect of the on-board 
survey sample size: with the smaller sample for 
Route 77 the IPF, CMLE, and CGLS cell estimates are 
closer to those of the intervening-opportunity model 
than with the larger sample size of Route 350. 
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The comparison of the different matrices can be 
facilitated by applying the following root-mean­
square difference measure for a normalized matrix: 

(39) 

or by a measure of average weighted fractional error: 

tA j~ Cfl]/t..) [(t;j - t])/t]J 2 ~ y, (40) 

where the IPF results denoted by t~j are used as the 

basis for comparison and K is the number of nonempty 
cells in the estimated matrix. The values of these 
measures for the four cases analyzed are given in 
Table 5. The comparison clearly shows that the IPF, 
CMLE, and CGLS estimators yield practically identi­
cal results in all four cases. It is interesting to 
note that the intervening-opportunity matrix, esti­
mated from the ride-check data, is closer to the IPF 
matrix than the simple expansion based on the on­
board survey. 

Table 6 presents a comparison of the alternative 
methods relative to the CMLE method. Under the Pois­
son distributional assumption the following log­
likelihood function is obtained: 

-C + ~ ~ tfl Qn tii (41) 
l J 

where 

C = t + ~ ~ Qn tP. ! 
.. i j JJ 

(42) 

This log-likelihood function is evaluated for the 
four estimation methods constrained by the ride­
check data: CMLE, IPF, CGLS, and intervening opportu­
nity. The values for the non-CMLE methods are sub­
tracted from the maximum value obtained for the CMLE 
matrix. These differences are given in the top three 
rows of Table 6. The bottom of this table shows the 
results of the likelihood ratio test of the inter­
vening-opportunity model. Thus, if the distribution 
assumption of the CMLE method is true, the inter­
vening-opportunity assumption can be rejected in 
three of the four cases analyzed. It can also be 
noted once again that the CMLE, IPF, and CGLS 
methods produce similar estimates. 

Calculation of Standard Errors of the !PF-Estimated 
Tr ip Table 

A nonparametric approach to standard error estima­
tion known as the "bootstrap" method was employed to 
check the results obtained by the linear approxima­
tion of Equation 13 for the IPF technique. The boot­
strap method does not make any distributional as­
sumptions or any approximations and hence should 
provide a reasonable basis for comparison [see stud­
ies by Effron (23-25) for extensive discussions). 

To illustrate "the application of this method, 
consider Route 77 in the inbound direction. The full 
population of 2, 14 7 trips is cast into OD pairs 
(i,j) according to the matrix cell probabilities 
(Pijl deri ved from the Bayesian seeding procedure 
(tij = Pij " 2 , 1 47). F rom this gener ated population a 
ranaom sample of the des i red size , say 100 tr ips , is 
picked. This sample constitutes one on-board survey 
outcome and is used as input for the IPF procedure. 
The variance of the IPF results of 1,000 repetitions 
of this p.rocess is an estimate of Var ( tij ) for the 
IPF estimator . The bootstrap variance estimates for 
the four cases considered are given in Tables 7 and 
8. 



"' TABLE i · Five Estimated Matrices for MBTA Route 350: Inbound Direction TABLE 2 Five Estimated Matrices for MBTA Route 350: Outbound Dirnction 

Boarding Stop by Section Boarding Stop by Section 

8 7 6 5 4 3 2 I Total 8 7 6 s 4 3 2 I Total 

Normalized IPF-Updated Matrix Normalized !PF-Updated Matrix 

Alighting stop Alighting stop 
Section ~ Section 

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.2 18.4 23.9 20.2 4.2 0.1 67.0 
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.4 0.5 4.0 10.8 0.5 3.3 19.5 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.4 0.6 0.3 0.5 0.6 0.2 2.5 
5 15.S 4.1 0.2 0.0 0.0 0.0 0.0 0.0 19.8 5 0.0 0.0 0.0 0.0 0.3 0.5 0.6 0.2 1.5 
4 20.9 0.6 0.2 0.2 0.0 0.0 0.0 0.0 21.9 4 0.0 0.0 0.0 0.0 0.0 0.3 4.9 3.3 8.5 3 12.0 9.5 0.2 0.1 0.4 0.1 0.0 0.0 22.3 3 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.1 0.5 2 2.1 0.3 1.1 0.1 6.4 0.1 0.6 0.0 10.7 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 _Q,Q_ __Ll_ _Q,Q_ _Q,Q_ 23.l _Qi_ Ql 0.0 -1.i,.L 1 0.0 0.0 0.0 _Q,Q_ _Q,Q_ _Q,Q_ _Q,Q_ ..ill.. __Q,i_ 

Total 50.5 16.3 1.6 0.4 29.9 0.4 0.8 0.0 100.0 Total 0.0 0.0 LO 19.5 28.5 32.5 11.0 7.5 100.0 

Normalized CMLE-Updated Matrix Normalized CMLE-Updated Matrix 

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.2 18.1 24.9 19.4 4.2 0.1 
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.4 0.7 3.2 11.6 0.7 2.8 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.4 0.6 0.2 0.5 0.6 0.1 
5 15.9 3.8 0.1 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.2 0.5 0.7 0.1 
4 20.7 0.9 0.2 0.1 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.3 4.5 3.7 
3 11.5 9.9 0.2 0.1 0.5 0.1 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.1 
2 2.4 0.2 1.1 0.1 6.1 0.0 0.7 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1 0.1 1.4 0.1 0.1 23.3 0.3 0.1 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 

Normalized CG LS-Updated Matrix Normalized CGLS-Updated Matrix 

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.2 18.5 23.1 21.1 4.0 0.0 
7 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 7 0.0 0.0 0.4 0.5 4.7 9.8 0.4 3.7 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.4 0.5 0.4 0.5 0.5 0.2 
5 15.5 4.1 0.2 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.2 
4 20.9 0.5 0.2 0.2 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.4 5.3 2.9 
3 12.6 8.5 0.2 0.2 0.4 0.3 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 
2 1.5 0.3 1.1 0.1 7.0 0.2 0.5 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1 -0.1 2.9 -0.l -0. 1 22.5 -0.1 0.3 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 

Normalized Intervening-Opportunity Matrix Normalized Intervening-Opportunity Matrix 

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.8 14.4 18.3 21.2 7.2 4.6 
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.2 4.2 5.5 6.2 2.1 1.3 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.5 0.7 0.8 0.3 0.2 
5 14.5 4.7 0.5 0.1 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.3 0.4 0.5 0.2 0.1 
4 10.0 3.2 0.3 0.1 8.3 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 3.1 3.5 1.2 0.8 
3 ID.I 3.2 0.3 0.1 8.4 0.2 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 
2 4.7 1.5 0.2 0.0 3.9 0.1 0.2 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1 11.2 3.6 0.4 0.1 9.3 0.2 0.6 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 

Normalized Simple-Expansion Matrix Normalized Simple-Expansion Matrix 

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 14.8 39.3 18.0 3.3 0.0 
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 3.3 4.9 0.0 4.9 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
5 14.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
4 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 3.3 8.2 
3 9.2 2.6 0.0 0.0 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 2.6 0.0 1.3 0.0 3.9 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 2.6 0.0 0.0 46.l 1.3 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 



TABLE 3 Five Estimated Matrices for MBT A Route 77: Inbound TABLE 4 Five Estimated Matrices for MBT A Route 77: Outbound 
Direction Direction 

Boarding Stop by Section Boarding Stop by Section 

7 6 5 4 3 2 I Total 7 6 5 4 3 2 I Total 

Normalized !PF-Updated Matrix Normalized !PF-Updated Matrix 

Alighting stop Alighting stop 
Section Section 

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 22.7 6.8 12.2 14.1 18.4 5.7 80.0 
6 15.5 3.8 0.0 0.0 0.0 0.0 0.0 19.4 6 0.0 2.5 0.6 0.3 2.4 5.2 0.1 I I.I 
5 6.2 1.2 0.0 0.0 0.0 0.0 0.0 7.4 5 0.0 0.0 0.0 0.2 0.1 0.8 0.1 1.3 
4 JO.I 0.9 0.2 1.0 0.0 0.0 0.0 12.2 4 0.0 0.0 0.0 0.4 0.2 0.4 0.2 1.2 
3 12.6 0.5 0.1 0.6 0.6 o.o 0.0 14.5 3 0.0 0.0 0.0 0.0 0.6 3.5 1.0 5.1 
2 19.4 8.7 0.2 I.I 3.4 2.5 0.0 35.3 2 0.0 0.0 0.0 0.0 0.0 0.4 0.9 1.3 
I ..2..,2_ __LQ__ ....Q.1_ 0.4 Ll.. bl. 0.0 _!..Ll... I 0.0 .JLlL Q,Q_ .JLlL .JLlL .JLlL .JLlL __Q&_ 

Total 69.7 16.1 0.8 3.1 5.2 5.2 0.0 100.0 Total 0.0 25.2 7.4 13.2 17.6 28.7 8.0 100.0 

Normalized CMLE-Updated Matrix Normalized CMLE-Updated Matrix 

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 22.8 6.7 12.2 14.0 18.7 5.6 
6 15.5 3.9 0.0 0.0 0.0 0.0 0.0 6 0.0 2.5 0.6 0.3 2.6 5.0 0.1 
5 6.1 1.3 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.2 0.2 0.8 0.1 
4 10.1 0.9 0.1 1.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.4 0.2 0.4 0.2 
3 12.6 0.6 0.1 0.6 0.6 0.0 0.0 3 0.0 0.0 0.0 0.0 0.7 3.4 I. I 
2 19.0 8.3 0.1 1.0 3.3 3.5 0.0 2 0.0 0.0 0.0 0.0 0.0 0.4 0.9 
I 6.4 1.2 0.4 0.4 1.3 1.7 0.0 I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Normalized CGLS-Updated Matrix Normalized CGLS-Updated Matrix 

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 22.7 6.8 12.2 14.3 18.1 5.8 
6 15.5 3.8 0.0 0.0 0.0 0.0 0.0 6 0.0 2.5 0.6 0.3 2.3 5.3 0.1 
s 6.3 1.0 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.3 0.1 0.9 0.0 
4 9.8 0.9 0.5 1.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.4 0.2 0.4 0.2 
3 12.7 0.5 0.1 0.6 0.6 0.0 0.0 3 0.0 0.0 0.0 0.0 0.6 3.6 0.9 
2 19.4 9.0 0.6 1.1 3.4 1.8 0.0 2 0.0 0.0 0.0 0.0 0.0 0.4 0.9 
1 6.0 0.8 -0.4 0.4 1.2 3.4 0.0 I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Normalized Intervening-Opportunity Matrix Normalized Intervening-Opportunity Matrix 

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 22.1 6.3 I l.I 13.4 21.1 5.9 
6 15.7 3.6 0.0 0.0 0.0 0.0 0.0 6 0.0 3.1 0.9 1.5 1.9 2.9 0.8 
5 5.9 1.4 0.1 0.0 0.0 0.0 0.0 5 0.0 0.0 0.1 0.3 0.3 0.5 0.1 
4 9.3 2.1 0.1 0.6 0.0 0.0 0.0 4 0.0 0.0 0.0 0.3 0.3 0.5 0.1 
3 10.l 2.3 0.1 0.6 1.4 0.0 0.0 3 0.0 0.0 0.0 0.0 1.7 2.7 0.7 
2 21.7 5.0 0.3 1.4 2.9 3.9 0.0 2 0.0 0.0 0.0 0.0 0.0 1.0 0.3 
I 6.9 1.6 0.1 0.4 0.9 1.3 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Normalized Simple-Expansion Matrix Normalized Simple-Expansion Matrix 

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 18.8 9.4 9.4 18.8 13.8 10.9 
6 14.8 3.7 0.0 0.0 0.0 0.0 0.0 6 0.0 2.2 0.7 0.0 3.6 4.3 0.0 
5 I I.I 1.9 0.0 0.0 0.0 0.0 0.0 s 0.0 0.0 0.0 0.0 0.0 0.7 0.0 
4 7.4 0.0 0.0 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
3 16.7 0.0 0.0 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 0.7 2.9 2.2 
2 14.8 7.4 0.0 0.0 1.9 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 1.4 
I 13 .0 1.9 1.9 0.0 1.9 1.9 0.0 I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

..... 
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TABLE 5 Normalized Root-Mean-Square Difference and Average 
Weighted Fractional Error Between the IPF and the Other Methods 

Route 350 Route 77 

Method Outbound Inbound Outbound Inbound 

CMLE 
RMS difference .0035 .0022 .0007 .0032 
Avg weighted frac-

tional error .8259 .7776 .2082 1.1860 
CGLS 

RMS difference .0035 .0033 .0010 .0028 
Avg weighted frac-

t ionaJ error 2.2495 1.8458 .3287 1.8165 
Simple expansion 

RMS difference .0334 .0486 .0206 .0236 
Avg weighted frac-

tiona] error 5.4923 6.5511 3.8541 6.1512 
Intervening opportunity 
RMS difference .0232 .0485 .0089 .0122 
Avg weighted frac-

tional error 18.4021 59. 1127 3.6810 3.7156 

t?. 61 76 138 54 
t 200 485 1,617 2,148 
J(° 29 27 25 25 

TABLE 6 Log-Likelihood Differences Between CMLE and the 
Other Methods 

Route 350 Route 77 

Outbound Inbound Outbound Inbound 

!PF .2 .3 4.4 .5 
CGLS .7 2.1 .0 1.9 
Intervening 

opportunity 20.5 44.7 I I.I 4.5 
Likelihood ratio test 

of intervening-
opportunity matrix 

Test statistic 41.0 89.4 22.2 9 .0 
K 29 27 25 25 
Critical chi-square 
value at the 0.005 
level of significance. 13.1 11.8 10.5 10.5 

Reject the intervening-
opportunity matrix? Yes Yes Yes No 

In the case of Route 350, the results of the 
bootstrap method and the approximation were close 
for cells with large OD flows, being within 10 per­
cent for most cases. This holds true for both direc­
tions. However, for the Route 77 cases, where the 
expansion factors are very large, the approximation 
te;hnique tends to yield estimated standard errors 
that are greater than those obtained by the boot­
s trap technique. In the OU tbound direction, where 
the total is expanded from 138 to 1,617, results are 
reasonable, being within 10 percent for most cells. 
However, in the inbound direction, where expansion 
is from 54 to 2,148, the approximate standard errors 
are 12 to 44 percent greater for the large-value 
cells. 

More comparisons are needed before any general 
conclusions can be made, but the foregoing results 
would indicate that where expansion is not too 
large, the proposed standard error estimation tech­
nique is quite promising. The results of the pro­
posed technique would appear to give an upper bound 
where its accuracy is poor, and hence the results 
are on the conservative side. 
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TABLE7 Bootstrap Variance Estimates: Route 350, Standard 
Error Estimation 

Boarding Stop by Section 

8 7 6 4 

Inbound: Approximate Standard Error for !PF Matrix 

Alighting 
stop 
Section 
8 0.0 0.0 0.0 0.0 o.o 0.0 
7 0.0 0.0 0.0 0.0 0.0 0.0 
6 0.0 0.0 0.0 0.0 o.o 0.0 
5 12.7 12.7 1.9 0.0 o.o 0.0 
4 7.8 7.5 2.4 1. 3 0.0 0.0 
3 13.6 13.8 2.2 1.2 5.0 I. I 
2 5.7 4.0 3.1 1.0 6.2 0.8 
1 0.5 5.5 0.5 0.4 5.9 1.0 

Inbound: Bootstrap Standard Error Estimate 

8 0.0 0.0 0.0 0.0 0.0 0.0 
7 0.0 0.0 0.0 0.0 0.0 0.0 
6 0.0 0.0 0.0 0.0 0.0 0.0 
5 12.9 12.9 1.2 0.0 0.0 0.0 
4 6.6 6.4 I.I 0.4 0.0 0.0 
3 14.5 15 .5 1.3 0.4 4.9 0.5 
2 6.3 3.8 2.1 0.4 6.6 0.4 
I 0.7 6.0 0.4 0.2 6.1 0.5 

Outbound: Approximate Standard Error for !PF Matrix 

8 0.0 0.0 0.9 3.4 4.8 5.8 
7 0.0 0.0 1.2 2.7 4.6 5.6 
6 0.0 0.0 1.3 2.2 1.4 2.1 
5 0.0 0.0 0.0 0.0 1.2 1.7 
4 0.0 0.0 0.0 0.0 0.0 1.5 
3 0.0 0.0 0.0 0.0 0.0 0.7 
2 0.0 0.0 0.0 0.0 0.0 0.0 
I 0.0 o.o 0.0 0.0 0.0 0.0 

Outbound: Bootstrap Standard Error Estimate 

8 0.0 0.0 0.4 2.5 4.7 5.8 
7 0.0 0.0 0.4 2.4 4.7 5.9 
6 0.0 0.0 0.3 0.8 0.6 0.8 
5 0.0 0.0 o.o 0.0 0.4 0.6 
4 0.0 0.0 0.0 0.0 0.0 1.5 

' 00 00 0.0 0.0 0.0 0.2 
2 0.0 0.0 0.0 0.0 0.0 0.0 
I 0.0 0.0 0.0 0.0 0.0 0.0 

Effect of On-Board Sample Size on Accuracy 
of IPF Estimates 

2 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
2.2 
2.2 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.7 
0.7 

3.6 
2.5 
2. 1 
1.8 
2.7 
0.7 
0.0 
0.0 

3.4 
2.0 
0.8 
0.6 
2.8 
0.2 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.4 
2.5 
0.8 
0.8 
2.5 
0.3 
0.0 
0.0 

0.6 
2.5 
0.5 
0.4 
24 
0.1 
0.0 
0.0 

In order to assess the effect of the on-board survey 
sample size on the accuracy of the !PF-estimated OD 
f lows, the bootstrap technique was applied with dif­
ferent sample sizes for the on-board survey. Sample 
sizes between 100 and 1,000 observations were used 
for the case of Route 77, inbound direction: the 
total number of boardings was 2,147. As a criterion 
for estimation accuracy the weighted trace of the 
matrix of variances obtained by the bootstrap simu­
lation method was used for the IPF estimator. The 
weighted trace is the sum of variances of the cell 
estimates weighted by the relative mean cell values 
tij/t ••• This is to reflect the greater role taken by 
larger cell values in route design decisions. 

A graph comparing the weighted trace with the on­
board sample size is given in Figure 1 for the sim­
ple expansion and !PF methods. As may be observed, 
the addition of the ride-check data reduces the 
weighted trace significantly, particularly for small 
on-board surveys. In reality, because of budget con-
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TABLE 8 Bootstrap Variance Estimates: Route 77, Standard 
Error Estimation 

Boarding Stop by Section 

G 4 3 2 

Inbound: Approximate Standard Error for IPF Matrix 

Alighting stop 
Section 

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
6 45.3 45.3 0.0 0.0 0.0 0.0 0.0 
5 21.2 21.2 0.0 0.0 0.0 0 ,0 0.0 
4 36.6 27.9 5.8 25.0 0.0 o.o 0.0 
3 31.0 17.5 4.0 18.4 19.7 0.0 0.0 
2 67.9 54.0 5.8 25.4 28.7 40 .3 0.0 
1 39.2 18.7 4.6 12.l 21.9 40 .3 0.0 

Inbound: Bootstrap Standard Error Estimate 

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
6 38.4 38.4 0.0 0.0 0.0 0.0 0.0 
5 18.9 18.9 0.0 0.0 0.0 0.0 0.0 
4 27.2 22.4 2.7 10.6 0.0 0.0 0.0 
3 22.9 13.2 2.0 7.8 13.8 0.0 0.0 
2 57.5 48.5 2.7 10.5 20.8 19.8 0.0 
1 27.2 15.3 2.2 5.9 16.2 19.8 0.0 

Outbound: Approximate Standard Error for !PF Matrix 

7 0.0 18.5 8.0 11.8 17.9 25.9 11.6 
6 o.o 18.5 8.0 8.0 I 5.5 21.6 3.3 
5 0.0 0.0 0.0 5.2 3.4 6.1 2.4 
4 o.o 0.0 0.0 7.3 5.3 7.4 3.9 
3 0.0 0.0 0.0 0.0 8.3 11 .9 8.9 
2 0.0 0.0 0.0 0.0 0.0 7.0 7.0 
1 o.o 0.0 0.0 0.0 0.0 0.0 0.0 

Inbound: Bootstrap Standard Error Estimate 

7 o.o 17.0 
6 0.0 17.0 
5 0.0 0.0 
4 0.0 0.0 
3 o.o 0.0 
2 0.0 0.0 
1 0.0 0.0 

strain ts, on-board surveys are likely to be small, 
so it would appear that including ride-check data is 
likely to improve the accuracy of the OD flow esti­
mates. 

CONCLUSION 

This comparison of the numerical estimation results 
confirms that the !PF, CGLS, and CMLE estimators 
produce similar trip tables under the assumption 
that the ride-check data are deterministic. The sim­
ple expansion and intervening-opportunity estimates 
differ significantly from those obtained by the 
other methods. Criteria for the choice of estimation 
method for specific applications should include the 
following: 

•Reasonableness of the assumptions, 
•Computational burden, 
•Flexibility in terms of the information that 

can be included in the estimation procedure (e.g., 
different data sources with different levels of ac­
curacy and biases), and 

•Ability to provide measures of the accuracy 
of the estimates. 

An evaluation of the presented estimators according 
to these criteria leads to the following conclusions: 

7.9 
7.9 
o.o 
0.0 
0.0 
0.0 
0.0 

9.0 16.2 23.8 10.3 
7.3 14.0 20.4 3.1 
3.1 2.3 4.1 1.9 
3.1 2.4 3.1 1.8 
0.0 7.8 11.9 9.0 
0.0 0.0 4.1 4.1 
0.0 0.0 0.0 0.0 

1. The simple expansion procedure retains the 
biases that are likely to be present in an on-board 
survey and does not use efficiently the information 
available from the ride check. On the other hand, 
the intervening-opportunity approach, based solely 
on the ride-check data, is also not an appropriate 
technique at the level of a single bus route. 

2. The !PF, CGLS, and CMLE methods, which com­
bine the small-sample OD data from the on-board sur­
vey with the more accurate ride-check information, 
appear to perform equally well in the four cases 
that were tested. Among these three methods the !PF 
method is the simplest. For the CGLS and CMLE 
methods it is possible with relative ease to obtain 
measures of reliability of the estimated matrix en­
tries. A simple estimation technique has been tested 
for the standard errors of the !PF method. As indi­
cated, initial results are promising. Thus, the only 
major drawback of the IPF method is that the assump­
tion of deterministic constraints cannot be relaxed. 

3. The key assumptions of the CGLS estimator are 
that the base matrix entries are unbiased estimates 
of the true matrix values and that the error terms 
are normally distributed. Therefore, the CGLS esti­
mator does not have optimal properties for small­
sample on-board surveys and matrices with small cell 
entries. 

4. The CMLE method requires assumptions on the 
sampling distributions of the base matrix values. 
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1 OU 200 300 400 500 600 700 800 900 l 000 Sample Size 
FIGURE 1 Weighted trace for simple expansion and IPF. 

The solution technique is computationally more com­
plex than that for the IPF method. Accuracy measures 
for the matrix cell entries are readily available. 

5. With both the CMLE and the least-squares ap­
proaches it is possible to e x tend the analysis to 
include stochastic ride- check data. This is a more 
realistic assumption because the ride-check data are 
also derived from a sample of bus trips and there­
fore are not free of sampling errors. 

6. In terms of flexibility (e.g., consideration 
of multiple sources of information with different 
levels of accuracy), the CMLE approach is the most 
favorable among those considered. 

Thus, for the case of an on-board survey and de­
terministic ride-check data the IPF technique with 
Bayesian seeding of nonstructural zero cells appears 
to be the most effective method, although the CMLE 
and CGLS methods also produce satisfactory results. 
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ABSTRACT 

An application of scenario-based, or stated-preference, survey and analysis 
techniques is described in the context of cyclists' route choice. Route choice 
modeling with observed choice data is hampered by the cost of processing net­
work data and by the difficulty of assessing the alternative routes and the 
perceived attributes of the routes considered by individual travelers. An al­
ternative approach is to obtain stated evaluations of well-defined hypothetical 
routes. Such data were collected from commuting cyclists in the city of Delft 
in the Netherlands and analyzed by using functional measurement to estimate the 
relative importance placed on such route attributes as time, traffic level, and 
surface quality. Though the techniques used are well founded in the marketing 
and psychology literature, the route choice context raises issues that are par­
ticularly important for their application in transport analysis. A case study 
of the application of stated-preference techniques to route choice is discussed 
and empirical results obtained for urban bicycle trips are presented. 
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An understanding of the relative influence of time 
and cost versus qualitative factors on route choice 
is valuable in several types of transport system 
analysis. Alternative plans for new roads or cycling 
facilities may involve changes in travel times that 
must be weighed against costs or benefits in terms 
of other choice factors. These trade-offs are impor­
tant in predicting the use of new facilities and 
assessing the benefits to the users. Such informa­
tion may also be useful for large, network-based 
studies to define the paths that best represent 
travel alternatives and to assign the predicted 
flows for those alternatives to the network. Despite 
these clear needs for a more thorough understanding 
of the trade-off process in route choice behavior, 
theory building as well as modeling efforts in this 
field are still in need of development. There may be 
many reasons for this. For example, a route in a 
network is a difficult concept to deal with in quan­
titative and statistical analyses. Also, the choice 
situation with routes is relatively complex, being 
composed of many alternatives, which are not all 
clearly distinguishable and overlap slightly. Tack-
1 ing the route choice problem with revealed-prefer­
ence random-utility modeling approaches, therefore, 
poses serious difficulties to the researcher. One 
way to overcome a number of these problems is to 
collect preference data by offering hypothetical 
travel options to individuals in survey form, each 
option defined in terms of the attributes assumed to 
be most important. This general method is what is 
termed the "stated-preference" approach as opposed 
to revealed preferences inferred from choices among 
real options. 

An application of stated-preference survey tech­
niques in modeling route choice of bicyclists in the 
city of Delft in the Netherlands is described. 

The relative importance of factors such as travel 
time, surface quality, traffic level, and cycling 
facility type was studied by varying them experimen­
tally across sets of hypothetical routes. A second­
ary focus of this study was a practical one, that 
is, to assess the relative performance of various 
techniques for route description, grouping of alter­
natives, measuring preferences, and estimating pref­
erence functions in a hypothetical route choice 
context. 

The main approach used in this study to assess 
cyclists' trade-offs is called functional measure­
ment. This technique originated in the field of 
mathematical psychology (_!) and has been developed 
in applications to many choice contexts, some within 
the transport modeling field (1). Thus, the purpose 
here is not to argue or extend the theoretical va­
lidity of the techniques, although the behavioral 
assumptions are made clear. Rather, the objective of 
this paper is to provide empirical evidence of the 
utility and efficiency of standard, established 
techniques of the stated-preference approach in 
route choice analysis and application. 

APPROACHES TO ROUTE CHOICE ANALYSIS 

In the past, route choice analysis has followed two 
main approaches. In the motivational-attitudinal 
approach, travelers are asked to state their reasons 
or motivations in selecting routes in a network. The 
results are often in the form of qualitative evalu­
ations of the adequacy and importance of individual 
route attributes and of overall beliefs about alter­
native routes (3,4). From such studies it is gener­
ally agreed that the single most important influence 
on a driver's choice of route is travel time but 
that there are other important factors as well. Such 
studies provide useful input to other approaches by 
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identifying choice factors, helping to define market 
segments, providing operational definitions for 
qualitative factors, and giving insight into the 
relevant choice sets and choice constraints facing 
individuals. Although it is possible to relate in­
tended or actual choices to reported perceptions and 
attitudes (~}, it is difficult to apply such rela­
tionships in assessing policies that can be charac­
terized only as chan~es in observable route attri­
butes. 

With the revealed-preference approach, observable 
route characteristics are related directly to ob­
served route choices, often by using an individual 
random-utility maximization framework, such as that 
of the logit model (6,7,pp.299-330). This approach 
requires knowledge or -an estimate of the set of al­
ternative routes considered by each person, as well 
as objective data for all salient attributes for 
each route in the set. Collection of such data is 
generally difficult and costly and does not ensure 
that the route characteristics used in modeling con­
sistently represent the subjective measurements of 
those attributes made by travelers. This problem is 
especially relevant to route choice, where travelers 
perceive many route characteristics continuously, 
and these perceptions may vary a great deal over the 
course of travel. A variation on the revealed­
preference approach requires travelers to state the 
choice alternatives considered for a familiar choice 
context and to provide their perceived values along 
a given set of attributes for each alternative. With 
this information, it is possible to estimate the 
relative importance and interactions of perceived 
route attributes in behavior. 

STATED-PREFERENCE STRATEGY 

The stated-preference approach is similar to this 
latte~ form of revealed-preference analysis, but 
with the set of choice alternatives and their attri­
butes given in a hypothetical context and behavior 
measured as a rating, ranking, or stated choice 
among the alternatives rather than as an actual 
choice. Although the responses are not subject to 
the perception processes and choice constraints of 
actual choice contexts, Louviere et al. (_!!) found 
that the two approaches, carried out on the same 
sample, resulted in similar trade-offs among impor­
tant mode-choice factors. In a larger mode-choice 
study (_~), which included bicycle commuting, models 
from scenario-based data validated well against the 
sample's actual choice among their self-described 
mode alternatives. 

Though stated-preference methods are still evolv­
ing rapidly, applications in the transportation 
field are already numerous. Theoretical background 
as well as practical aspects of application may be 
found in numerous reports (10-12). The relative ad­
vantage of the stated-preference approach, in most 
cases, is the controlled nature of the choice sce­
narios. This feature allows greater freedom in de­
fining choice contexts, alternatives, and attributes 
as well as direct comparison with the responses 
across individuals. The ability to obtain multiple 
responses from each individual reduces sample size 
requirements and also enables the estimation of 
truly individual models. With these advantages comes 
the liability that the success of the approach de­
pends largely on the consistency of the hypothetical 
alternatives and the corresponding sets of attri­
butes with their perception in actual choice situ­
ations. 

The study by Morisugi et al. (13) is the only 
application of a stated-preference a-;IBlysis to route 
choice known to the authors. The study uses hypo-
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thetical route attributes to estimate values of time 
for qualitative route factors such as reliability, 
comfort, and safety by trading off between two fac­
tors at a time. In contrast, the authors designed a 
study by using the full-profile approach in which 
each hypothetical route was defined completely in 
terms of a selected set of variables. 

Because of the peculiarities of a route, a simple 
transfer of experiences from other travel-related 
choices does not appear justified: spatial percep­
tion and visual impressions play an important role 
in the identification by the traveler. Unlike modes, 
routes cannot be readily labeled or classified into 
easily understandable categories and because a route 
is in fact a chain of different links, it is in­
trinsically heterogeneous. These aspects of routes 
require special consideration in a stated-preference 
study. 

To examine the usefulness of stated-preference 
techniques in route choice analysis, a study was 
designed to serve both substantive and methodologi­
cal aims: to analyze trade-offs of cyclists for 
route characteristics of their regular home-to-work 
trip (this trip purpose generates a large proportion 
of urban bicycle travel in the Netherlands) and to 
study the importance of various experimental design 
features and presentation techniques in the perfor­
mance of the stated-preference approach. 

CONTEXT OF THE SURVEY 

In order to keep comprehension problems to a mini­
mum, the study was directed toward frequent and ex­
perienced bicycle commuters. Hypothetical route 
choice situations were arranged and presented to 
them in questionnaire form. In the questionnaire, 
options for stimulus presented (the descriptions of 
choice contexts and alternative routes) and response 
measurement (the way of expressing preferences to­
ward route alternatives) were varied methodically. 
In addition, the questionnaire asked subjects to 
rate the importance of the route choice factors di­
rectly and evaluate the survey in terms of ease of 
response and similarity to actual choice situations. 
The sample selected for this study consisted of 134 
employees of Delft University, who lived in Delft 
and commuted by bicycle at least twice a week. As a 
result of the selection, most members of the sample 
faced similar traffic conditions and comparable com­
muting distances and used similar cycling facilities 
for at least part of their journey. 

An at tempt was made, however, to achieve a wide 
cross section across characteristics such as age, 
sex, profession, other modes available, and cycling 
frequency (more than twice a week) for sake of seg­
mentation analysis and to explain variations in in­
dividuals' preferences. 

The basic definition of the term "route" had to 
match the experience of the respondents yet be sim­
ple enough to represent with a small set of attri­
butes. To this end a verbal description together 
with a pictorial form using a map were applied. A 
route was defined that consisted of a trip from home 
to work. Routes were further defined along a single 
set of attributes, each of which was assumed to be 
homogeneous along each alternative. People were 
asked to assess various routes as if they were sin­
gle links. Conceptually, if the utility of a route 
is assumed to be a linear sum of link utilities, 
then the relative preference between two routes can 
be modeled as a function of the important differ­
ences in noncommon links. This conceptual solution, 
however, does not preclude difficulties in perceiv­
ing routes as homogeneous. Various presentational 
approaches were used to confront this problem. 
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ROUTE ATTRIBUTES AND LEVELS OF THE EXPERIMENTS 

The set of route attributes was chosen after the 
results of previous research had been assessed 
(14,~). On the basis of such work and previous re­
search in Delft, travel time, surface quality, traf­
fic level, and cycle facility type were selected. 
Descriptions of the factors and levels for the sur­
vey are given in Table 1. Three levels were chosen 
for each attribute to allow the estimation of non­
linear (quadratic) effects. For the quantitative 
variable, time, a base value of 12 min was chosen, 
roughly the median of the respondents' reported one­
way travel times. The high and low levels were de­
fined as 15 and 9 min, a range equal to half the 
base level and encompassing the majority of self­
reported times. This range was considered large 
enough to be perceivable in actual choice situations 
but not so great as to overshadow the influence of 
changes in the qualitative attributes. 

The levels for facility type and surface quality 
were defined as commonly encountered types of cycle 
network construction. Though the definitions were 
made as mutually independent as possible, there is 
bound to be some correlation in the perception of 
these two attributes (i.e., separate bicycle paths 
are most likely to have an adequate surface). The 
traffic-level factor was the most difficult to de­
fine, as can be seen from Table 1 (a translation 
from the Dutch survey). 

Two variations were included in the survey to 
test the influence of factor and level presentation 
on the perception of the qualitative variables and 
on the ease of comparing hypothetical routes. One­
half of the sample was given photographs portraying 
each of the levels for these factors in addition to 
the normal verbal descriptions. An overlapping half 
of the sample was asked to classify their own home­
to-work route according to the factor levels that 
best characterized its major portions, using the 
given verbal and (in some cases) pictorial descrip­
tions. 

PRIMARY EXPERIMENTAL DESIGN 

In contrast to the trade-off matrices approach used 
by Morisugi et al. (1l_), which presents combinations 
of pairs of attributes, all others held constant, 
full profiles were used here; that is, choice sets 
were presented with alternatives varying across all 
attributes. The full-profile approach has proven 
more understandable in practice and more stable if 
there are significant interactions between variables 
(15). 

To allow the estimation of the independent effect 
of each attribute, the factors and levels in the 
route-choice scenarios were arranged in an orthog­
onal design. To estimate all main effects and all 
interactions, evaluations of all 3• = 81 possible 
route configurations (treatments) would be required. 
To limit the size and difficulty of the experiment, 
the analysis of the trade-offs between route factors 
was performed at two levels of aggregation. At the 
individual level a simple piecewise linear main­
effects model was assumed where the unobserved error 
term has the same distribution across all routes: 

ui (x) 

wher e 

K mk 
l l ('1 ikj 0 Xkj) + E 

k=l j=l 
(1) 

overall utility or preference measure 
given to an alternative by individual i, 
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TABLE 1 Descriptions of Factors and Levels Given 

FACTOR 

Facility 
Type 

Surface 
Quality 

Traffic 
Level 

Travel 
Time 

LEVEL 

Physically 
Separated 

Reserved 
On-Street 

Non-
Existent 

Smooth 

Moderate 

Rough 

Light 

Moderate 

Heavy 

Short 
Medium 
Long 

GIVEN VERBAL DESCRIPTION 

This portion of the roadway is meant only for 
bicycles and mopeds, and is totally separated 
from other t.rnff1 c hy c1.1rhi ng or p 1 !Inti ngf'l. 
Pedestrians~so provided with a separate walkway. 

This is a full lane of the roadway, reserved for 
bicyclists and marked with a white stripe on the 
surface. Now and then there are autos parked on 
this lane. 

There is no separate space for bicyclists on the 
street. They must ride in the same lanes as other 
traffic. 

The surface over the whole route is good asphalt 
with no large cracks. 

In this case, about half of the route is asphalt 
and the other half brick. There are occasional 
bumps and cracks. 

This route has a brick surface from beginning to end 
with bumps and cracks which one must try to avoid. 

A car or bicycle comes along this route from time to 
time. There are few crossing pedestrians. Cyclists 
can easily ride next to each other . You ~ 
have to stop for others. 

Quite a few care use this route, but this is not a 
hinderance to cyclists. You can still ride along with 
other cyclists when it does not present~ problem. 

Many cyclists and autos ride along this route. It is 
very busy here. It is often difficult to enter or 
cross. You must also wait for other traffic and 
crossing pedestrians. ""lt"is not possible to ride 
next to other cyclists. 

This time that you are travelling, 
including all of the delays encountered on the route. 
The average travel times used in this survey are: 
- 9 minutes, 
-12 minutes, or 
-15 minutes. 

number of attributes of the alternative, 
number of levels of attribute k, 

At the aggregate level, therefore, 
specified consisting of main effects 
two-way interaction terms: the partworth contribution of level j of 

attribute k to individual i, 
presence or absence of level j of attri­
bute k, and 
error term. 

U (x) 
K mk 
I I [ ~ k j • xk j l 

k=l j=l 

K-1 mk 

models were 
and selected 

With this type of model only a one-ninth fractional 
factorial design (nine orthogonal alternatives) must 
be included in each survey to estimate the main ef­
fects for each individual. Because individual-level 
estimates were desired mainly for market segmenta­
tion rather than for strict tests of functional 
form, the simple design was deemed adequate. 

+ I I <a h , k j • xk j • xh 1) l + E 

h=l l=l 

for specified kj and hl. 

(2) 

In order to minimize the loss of variation 
through aggregation, sample segments analyzed with 
aggregate models were kept as homogeneous as pos­
sible in terms of preferences. The individual models 
were used to guide segmentation, particularly where 
the aggregate model included only the same main ef­
fects. With respect to the statistical specification 
of the aggregate model, it should be noted that in 
contrast to the individual model, the error terms 
presumably will not be identically and independently 
distributed across all observations. Especially be­
cause of the repeated-measurement type of observa­
tions, the error terms will tend to be more highly 
correlated for repeated ob~ervations within individ­
uals than for observations across individuals. As­
suming independence within individuals will not bias 

Because certain interactions were thought to be 
potentially important for the qualitative factors, a 
more extensive block design was used to allow their 
estimation. To this end, three blocks of nine routes 
were designed, each block being internally orthog­
onal. The blocks were distributed evenly across the 
sample and 
the three 
fractional 

across other survey variations. Together, 
main-effects designs form a one-third 

design [see Master Plan 8 by Kocur (10)] , 
allowing aggregate estimation of the two-way inter­
action between each pair of qualitative variables 
(although certain interactions may not be separable 
from other two-way and higher-order terms). 
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the estimates but may lead to an underestimate of 
their standard errors, as discussed later. 

RESPONSE MEASUREMENT SCALES 

In the survey, three response scales were attempted: 

• A verbally defined seven-point scale assign­
ing a value to the strength of preference (e.g., 
"always choose option A," "slightly prefer option 
B," "no preference"), 

• An extension of this scale to a continuous 
one on which the percentage probability of choosing 
each option can be indicated, and 

• Ranking of the options in order of preference. 

For the presentation of the rating scale and per­
centage score methods, the set of alternatives was 
transformed into sets of route pairs with every al­
ternative placed against a common base route. This 
base route was chosen to have the middle level of 
all four factors. Use of this pairwise format rests 
on an assumption that responses from partial choice 
sets are transitive across the remaining choice 
pairs. 

Each respondent was asked to complete each of the 
three response tasks, which, for sake of comparison, 
were offered in a fixed order. The first nine routes 
to be rated were presented one at a time, all 
against a common base route. The second set of 
routes, presented on separate cards, had to be 
ranked. This method uses the full choice set of nine 
alternatives. The final set was presented in the 
same pairwise manner as the first set, but now the 
respondent had to indicate the percentage of times 
he would choose each alternative route. 

To ensure that the three blocks of routes would 
be well distributed across all three response 
methods and that subjects would not simply transfer 
preferences from one scoring method to another, each 
subject was given all three blocks of nine routes, 
randomly assigned to one of the six possible permu­
tations of the three sets. 

GRAPHICAL ANALYSIS OF AVERAGE SCORES 

An overall picture of the relative importance of the 
choice factors and factor levels and of nonlineari­
ties and interactions can be gained from a graphical 
plot of the average responses. In Figure 1, the av­
erage (utility) scores for the rating scale are 
plotted according to the attributes of the routes 
they represent. Because the chosen design accounted 
for interactions between facility type and the other 
factors, three separate plots are presented for each 
of these combinations of two factors against the 
average scores. If these interactions were not pres­
ent, each plot would show parallel lines for the 
three facility types. The relative importance of 
each of the factors is shown by the slopes of the 
lines connecting the factor levels or can be approx­
imated from the range of the average scores of the 
extreme levels. Changes in travel time in the chosen 
range appear to have the greatest linear effects, 
directly followed by surface quality, which appears 
slightly less important. Changes in traffic level 
and facility type clearly have less influence on the 
average score values. All the main effects have the 
expected direction (sign) and are more or less lin­
ear, with the exception of traffic level. Certain 
interact.ion terms appear to be present: a smooth 
surface has the least effect when a separate bicycle 
path is concerned and a rough surface has the small­
est effect when no cycling facility is present. 
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These results suggest that the facility type itself 
has implications regarding surface quality. The same 
type of interaction is suggested by the reduced in­
fluence of light traffic when combined with physi­
cally separated bikeways. It is probable that these 
are not true interactions in the behavioral sense 
but are due to an interaction in the perception of 
these attributes from the survey presentation. At 
this level of average scores, roughly the same rela­
tionships were discovered with both of the other 
response methods (ranks and percentages) • 

ESTIMATION OF PREFERENCE FUNCTIONS 

Estimation Approaches 

The metrically scaled data were analyzed by using 
ordinary (dummy) least-squares regression. To esti-

mate the partworth utilities in Model 1 only l~=1(mk 
- 1) linearly independent variables are needed to 
completely specify the preference model. Therefore, 
each attribute with mk-levels is converted into 
(mk - 1) dummy variables, where the omitted level 
serves as a reference (l§.J. In this case, the base 
route in the paired comparisons, which combines the 
middle levels of all four factors, was taken for 
reference. The original Model 1 was then estimated 
as follows: 

u (x) 

where 

Bo 

K 

e o + L 
k=l 

mk-1 
l (B k j • xk j I + £ 

j=l 
(3) 

the utility for the choice alternative, 
which has been coded zero for all attributes 
(base route); 
the differential partworth utility of level 
j of attribute k, which is the difference in 
utility between each attribute and the ref­
erence; and 
1 if level j of the kth attribute is pres­
ent in a choice alternative; 0 otherwise. 

At the individual level the main-effects model could 
be estimated algebraically because there are nine 
orthogonal equations (observations) to determine the 
same number of unknown parameters. 

At the aggregate level ordinary least-squares re­
gression (OLS) was applied. For efficient regression 
estimates, the error terms £ must be assumed to be 
independent and identically distributed across route 
alternatives and individuals. Because all alterna­
tives represent the same generic choice (a route), 
this common assumption was considered reasonable for 
the application-oriented nature of the study. Yet it 
must be recognized that the error terms will tend to 
be more highly correlated for repeated observations 
within individuals than for observations across in­
dividuals and that each individual's taste for cer­
tain types of routes may vary along factors not con­
trolled for in the design. As mentioned previously, 
this will cause the standard errors given by the OLS 
procedure to be biased downward. A conservative 
adjustment is to assume that the error terms are 
completely correlated within individuals, adjust the 
standard errors, and check for significance. If 
doubt remains, one can use more complex generalized 
linear regression (GLS) methods. 

The ranked data were exploited for estimation by 
using a so-called "exploded" logit analysis (17). 
This is a procedure for exploiting the information 
of ranked choice sets to estimate the parameters of 
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FIGURE 1 Graphical analysis of average rating scores. 

the utility function in the multinominal logit 
model. The "explosion" means the decomposition of a 
single ranked choice set into a series of unranked 
and statistically independent choice sets. Each sep­
arate ranking can be treated as being chosen over 
all alternatives that rank equally below it. The 
choice model to be estimated thus has the following 
form: 

N 

Pi { nl n < NCMI exp { U~ (x)} I 2 exp { U~ (x)} (4) 
n=l 

where Pi(n) is the probability that individual i 
ranks alternative n E N highest in subset M of the 
choice set L and U£ are the utility functions as, for 
example, in Equation 3. 

The parameters are estimated by using maximum­
likelihood techniques. This exploded logi t approach 
requires that two important assumptions be made: 
first, the validity of the I.I.A. property, which 
means that the utility of an alternative is not in­
fluenced by whatever other alternatives are in the 
choice set, and second, as with the metrically 

scaled data regression analysis, the independence 
and identical distribution across all alternatives 
and individuals of the error terms. The logit ap­
proach was used as a comparison to the OLS approach, 
though only as a first step toward a more appropri­
ate but more complicated procedure, including tests 
of the I.I.A. property. 

Estimation Results with Different Approaches 

Table 2 contains the results of the most aggregate 
main-effects model estimated for the entire sample 
by using each type of response data and the maximum 
number of observations possible (only the top six 
ranks were chosen for the logit model, however). To 
facilitate comparison of the parameter values of the 
different models as well as for better assessment of 
the trade-offs, all parameters are also expressed 
relative to the travel-time values as minute equiva­
lents. Overall, the estimation results look plau­
sible and consistent. For the regression models, the 
constant terms (grand mean) were not significant and 
were very small, and they are not reported. All 
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TABLE 2 Aggregate Models for Each Response Data Type 

response method scores pe rcent ranked 
e 1-7) eo-100) (l-6) 

individuals 119 114 121 
observations 1071 1026 741 
R- s q uared .56 .56 e .23) 
e RHO- squared) 

OLS OLS LOG IT 
coeffi cien ts coefficients coef f icients 

raw minutes8 raw m1nutes8 raw mi nutes2 

e T-sta t) be range) e T- s t a t) be range) er-statlberange) 

l. no -0.96 - 2 .0 12.1 -1.5 -0.65 -1.8 
facility ( 7. 9) e 6. 2) (6.0) 

e .51 ) e. 35) e. 5 2) 
2 . separate 0.48 5.0 0.53 

path (4 .0) 1.0 (2.5) 0.6 ( 5. 2) 1.4 

3 . rough -1.44 -3.l - 2 1.4 -2.7 -1. 2 2 -3.3 
surf ace (11. 8) (10.7) (10. 5) 

(. 92) ( .8 7) ( .90) 
4. smooth 1. 15 20.6 0 . 80 

surface (9. 5) 2.4 (10. 3) 2.6 ( 7 . 9) 2 . 2 

s. heavy -1. 23 -2. 6 -16. l -2.0 -0.95 -2.6 
traffic ( l O. 1) ( 7. 9) (8.2) 

(. 62) (. 49) (. 51) 
6. light 0 . 52 7. 8 0 . 20 

traffic (!1 . 2) l. l ( 3 . 8) 1.0 ( 1 . 9) 0.6 

7 . lortger -1.66 -25. 7 -t. 42 
time ( 13. 4) 6.0 (1 2 . 5) 6.0 (I I . 8) 6 .0 

e 1.0) e 1.0) ( 1.0) 
8 . shorter l. 15 22.6 0.82 

time (9 .3) (l t. l) (8 .0) 

a) Coefficients rer i:1inute travel time are normalized using the design 
range of 6 minutes between the time levels, and the estimated time 
coefficients . ·rhc range is the difference hctwecn th'. coefficients for 
the extrer.ie levels of each factor, norr.lalized to the range of the 
tr <lve 1 t ir:1e f MC tor. 

b) t-values has"d on inJepen<lcnce across all obse rvatlons. Very 
COflSt!:rVative ~S l ir.tates resu l t by dividing with n , 9 balng the number 
of designed responses per subjects (see also (~). 

other estimates appear statistically significant; 
longer travel time shows the most precise and sep­
arate facility the least precise coefficients. [Even 
when complete dependence between observations within 
subjects is assumed, by dividing t-values with 
(9)1/2 , most parameter estima tes remain significant.] 
All models indicate, by the range between the nor­
malized effects of the extreme levels, that travel 
time is most important (in the given time ranges), 
directly followed by surface type. From the models 
it can be observed, for example, that for an average 
trip length of 9 min, an improvement from "no facil­
ity" to "separate path" will compensate for a travel 
time loss of about 3 min. An improvement from a 
rough to a middle-quality surface also can compen­
sate for a travel time detour of 3 min. These trade­
off values suggest a fairly high sensitivity of 
bicycle travelers toward changes in qualitative 
route factors. 

The three data types yield similar models in 
terms of the explained variation and the relative 
importance of the factors. Models that included the 
interactions identified in Figure 1 showed them to 
be marginally significant [for details see report by 
Bovy et al. (19) J. 

Estimation Results wi th Various Segmentations 

Various segmentations were attempted to improve the 
explanatory and predictive power of the models. 

First, the respondents were grouped according to 
their individual coefficients for time, as estimated 
from their scores on the rating scale. Table 3 pro­
vides evidence that this type of clustering is ef­
fective, because the rho-squared values for internal 
segmentation increase noticeably. The coefficients 
for both time levels are significantly higher for 
the time-sensitive group. The other group shows sig­
nificantly higher disincentives from rough surface, 
heavy traffic, and no facility. This appears to be 
the comfort-sensitive segment. Whereas the time­
sensitive bicyclists are willing to spend only 1.5 
min of extra time to use a route that has a separate 
bicycle path instead of no facility, the comfort­
sensitive segment appears willing to accept a detour 
in such a case of more than 6 min (on an average 
trip length of 9 min). 

A second segmentation was done compositionally, 
according to age. The travel time coefficients for 
the respondents under 40 are higher than those of 
the over-40 segment, whereas the coefficients of the 
other variables are not significantly different be­
tween both segments. 

'fhe corresponding time-valued figures show that 
the older cyclists are willing to sacrifice much 
more travel time for better route quality than the 
younger riders. Although this particular external 
segmentation is less effective in improving the 
model, groupings of this type are more useful in 
application, and the composition of the internal 
segments can help to define more effective groupings. 
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TABLE 3 Estimated Coefficients and Validation Results for Segmentations (Logit Model, Top Three Ranks) 

TYPE OF NONE INTERNAL EXTERNAL 

SEGMENT- HIGH WEIGHT LOW WEIGHT UNDER OVER 

N;'ION ON TIME ON TIME 40 YEARS 40 YEARS 

OBSERVATIONS 374 208 166 179 195 

RHO-SQUARED ,29 . 40 . 34 , 34 . 27 

RAW NORMa RAW NORM a RAW NORMa RAW NORMa RAW NORM a 

(T-STAT)b (RANGE) (T-STAT)b (RANGE) (T-STAT)b (RANGE) (T-STAT)b (RANGE) (T-STAT)b (RANGE) 

1. NO -o.64 - 1.27 -0. 36 -0.44 

FACILITY ( 4.o) ( 1. 5) 
(0. 49) (0.24) 

2 . SEPARATE o.83 1.64 0.82 1.00 

PATH ( 5.6) (3.2) 

3. ROUGH -1 .72 -3.41 -1.02 -1.65 

SURFACE ( 6.6) (2. 2 ) 
(0.85) (0.52) 

4. SMOOTH 0.94 1.86 1.54 1.89 

SURFACE (6.6) ( 4 .6) 

5, HEAVY -1. 15 - 2.28 -0.87 -1.07 

TRAFFIC ( 6. 1) (2.6) 
(0.55) (0.20) 

(, !.Tl.HT 0 . 5? J. o:i 0. 1?. 0. l.5 

TR/\F'F'IC ( 2 . 9) ( 0 , 11) 

7. LONGER -1. 30 - -2. 01 -

TIMI·: (6.o) 6.o ( 4 .6) 6.o 
( 1. 0 ) (1. 0) 

8. SHORTER 1 .73 - 2.87 -

TIME ( 9 .8) (Cl .0) 

V l\LIDATION RESU LTS 

ORIGINAL S/\MPLE ; 1107 RA I/KINGS (123 SUBJECTS) 

SPEARMAN Hl\NK 

CORRF:LATION : . 74 5 ,778 

HOLD BACK SAMPLE: 99 RANKTNGS ( J 1 SUBJECTS) 

SPEARMAN RANK 

I CORRELATION : . 746 . 768 

The predictive improvement from the segmentations 
can be checked by examining the correlation between 
the actual and predicted rankings. Table 3 shows a 
small increase in the Spearman correlation from the 
clustering segmentation but only a marginal improve­
ment from segmentation by age. Most of this improve­
ment is likely in the top few rankings, on which the 
models are based and which are most important for 
forecasting. 

Validity and Reliability Tests 

The true validity of these models in explaining be­
havior can be judged only with respect to indepen­
dent data on observed choices. There were, however, 
several steps taken to increase confidence in the 
results. In the preceding sections the robustness of 
the results to differences in composition of choice 
sets, response method, and type of estimation has 

-1 .07 -3.07 -0.52 -0. 77 -0.79 -1.87 

( 4 . 2) (2 .1 ) (3.6) 
(1.09) (0.32) (0 .66) 

1 .21 3.48 0.19 1.17 o.89 2.11 

( 5. 7) ( 3. 4) (4.6) 

-<'.31 -6.61 - I .67 -2.48 -1 .Bo -4.27 

( 6.0) ( 3. 5) ( 5 . 5) 
(1.71) (0.66) ( 1. 08) 

1 .27 3.65 0 . 99 1. 47 0.93 2 . 20 

( 5 .1) ( 3. 3) ( 4 .6) 

-1. 57 -4.51 -1 .23 -1.83 -1. 13 - 2.68 

( 5 .8) ( 3.8) ( 4 .1) 
(1.11) (0 . 43) (0 .67) 

O.'TG 2.18 0, l1 9 0.73 0.56 1 .. ~3 

( 3.2) ( 1.6) ( 2 .5) 

-1 . 25 - -1 ,96 - -1 .04 -
( 4 .6) 6.o ( 4 .4) 6.o ( 4 .0) 6.o 

( 1. 0) (1. 0) (1. O) 

o.84 - 2.08 - 1.49 -

( 3. 5) (6.8) ( 6 .6) 

. 750 

,753 

been shown. On the other hand, the modeling results 
appeared to be clearly sensitive to segmentation of 
the subjects. 

The internal validity of the models was tested by 
using the unsegmented and segmented models to pre­
dict rankings for a small hold-back sample of 11 
individuals. Even with this limited sample, the re­
covered rankings are at a level almost identical to 
that for the original sample (bottom of Table 3). 
The external validity of the model can only be 
tested with an independent source of data. Unfortu­
nately, limited data exist for bicycle route choice. 

External validity can be judged somewhat through 
comparison with the results of similar studies. In a 
concurrent stated-preference analysis in Wisconsin, 
Axhausen (~) identified similar trade-offs among the 
same four attributes (by using distance instead of 
time). He also found slope, land use, and cycling 
experience to be influential. These factors, how­
ever, exhibit much less variation in the Netherlands 
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and were assumed not to affect the route choice of 
most cyclists. In another stated-preference experi­
ment (9), also in Wisconsin but this time for auto­
mobile - versus bicycle choice, time, surface, traf­
fic, and facility were shown to have roughly the 
same relative influence as that reported in the pre­
ceding discussion. 

A further test dealt with the method of present­
ing the qualitative factor levels, an aspect that 
appears of crucial importance in the context of 
route choice. Four different methods of presentation 
were included in the experimental design and were 
randomly distributed among the subjects: a purely 
verbal description of each factor level, the same 
verbal description illustrated with photographs, the 
verbal description including an exercise to use this 
for a categorization of the actual home-to-work 
route, and all three elements combined. Table 4 
shows the relative factor utilities normalized with 
respect to time. 

The breakdown indicates that because the qualita­
tive factors were portrayed more clearly, they were 
generally given more importance relative to travel 
time and that the inclusion of photographs appears 
to have helped clarify these factors to a greater 
extent than asking subjects to categorize their 
actual route. 

The results also indicate that using all presen­
tation approaches in combination was generally no 
more effective than using either one separately. If 
the "all methods" category can be assumed to contain 
the most informed responses, it appears that the use 
of photographs (column 2) without some relation to 
the actual routes (columns 3 and 4) may make quali­
tative factors appear more homogeneous and more im­
portant than in actual choice contexts. 

Finally, after the scenario comparisons, each 
respondent was asked to assess the importance of the 
four attributes in his daily route choice, the clar­
ity of these attributes in the survey presentation, 
and the overall difficulty of relating the scenarios 
to his own choice situations. A preliminary analysis 
of these evaluations showed that the choice factors 
were generally well understood and considered im­
portant in choosing a route. This information also 
supported the relative importance of the factors 
found in the analysis. 

Over three-fourths of the subjects reported lit­
tle or no difficulty in comparing hypothetical 
choices. Of the individual factors, only traffic 
level appeared to present some difficulty in compre­
hension. This is the factor that encompasses the 
widest variety of physical attributes and is likely 
to be quite variable over an actual route. Interest-
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ingly, those who were asked to classify their own 
route in these terms reported a less clear under­
standing of this factor. Perhaps the task brought 
out the inconsistency between simplified and actual 
routes. Those who were given photographs, on the 
other hand, reported less trouble understanding the 
attributes. 

As for the different scoring methods, the re­
spondents found the ranking of routes with cards to 
be easiest and the verbal scale slightly more diffi­
cult. The percentage scale was reported as decidedly 
the most difficult. 

SUMMARY AND CONCLUSIONS 

By itself, the stated-preference approach appears to 
give stable estimates of the trade-offs among spe­
cific choice factors in a specific context at a cost 
usually much lower than that of alternative methods. 
The information on trade-offs within different 
market segments is useful in ranking alternative 
policies and in identifying advantaged and disad­
vantaged groups of users affected by those policies. 
The differential weights placed by bicyclists on 
various route factors can help planners in designing 
bicycle facilities. The outcomes also suggest that 
extending current minimum-time traffic assignment 
models with other route factors should be seriously 
considered for applications in bicycle traffic. 

The magnitude of the estimated coefficients sug­
gests a fairly high sensitivity of bicyclists toward 
the chosen route factors, a result that might be 
partly due to the specific nature of a stated­
preference survey. By showing that the differences 
in attributes between alternatives vary explicitly, 
the subject's responses presumably are far more dif­
ferential than when he is confronted with changes in 
real alternatives. For more detailed policy analyses 
it is suggested therefore that the stated-preference 
models be validated (and probably scaled down) by 
calibrating them with actual choice data as far as 
possible. The findings also indicate that the method 
of presenting the choice context and attributes can 
have a significant effect on estimates of individ­
uals' trade-offs. This difficulty is essentially 
what distinguishes this analysis from most other 
contexts in which scenario-based analyses have been 
performed successfully. The use of photographs and 
maps appears to be a useful aid in understanding the 
experiment, but further research into methods of 
defining and presenting qualitative route factors 
should have priority in extending these techniques 
to a wider range of route choice contexts. 

TABLE 4 Relative Linear Utilities of the Qualitative Factors Normalized 
to Time by Presentation Subgroup• 

Factor verbal verbal + verbal + all average 

alone photo's own route method '\ 

n=22 n-35 n=37 n=34 n=l28 

2 3 4 5 

Facility type 2,8 7 '1 3,2 3,5 4,5 

Surf ace type 4,0 8,5 6,4 6,8 6,6 

Traffic level 3,5 6,4 5,9 3,5 5,0 

aThese utilitie s are based on averages from the individual-level 
models using the rating scale data 
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In terms of measuring preferences, ranking of the 
routes appears to be easiest for the respondents and 
most comparable to revealed-preference data. Metric 
scales, on the other hand, allow simpler regression 
analysis and provide more information at an indi­
vidual level. Before such scales are used exten-
sively in mail-out experiments, however, it appears 
that improvement and simplification of the scale 
presentation and grouping of alternatives are neces­
sary. The percentage scale is not recommended: it is 
the most difficult for the subjects and can easily 
lead to response errors. The estimation of the 
models appears robust with both regression and dis­
crete choice methods. Apart from these methodologi­
cal issues, further work should be done to study 
additional route choice factors. For example, qual­
itative route factors such as safety, variability, 
and signposting are important for many policy areas 
and could be incorporated into a stated-preference 
analysis. 
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Tests of the Scaling Approach to Transferring 

Disaggregate Travel Demand Models 

HUGH F. GUNN, MOSHE E. BEN-AKIVA, and MARK A. BRADLEY 

ABSTRACT 

The transferability of disaggregate travel demand models is viewed as a problem 
of predicting the values of model parameters in a new context by using the 
estimated values from an existing model. The approach tested in this paper is 
to use survey data from the new context to estimate transfer-scale parameters 
that correct for context-specific effects. The empirical tests investigate a 
variety of transfer models with different numbers of transfer-scale parameters 
ranging from complete reestimation of the entire model specification to none at 
all. The results support the partial transfer model in which scale parameters 
are estimated for a limited number of functional subgroups of variables such as 
alternative specific constants, level-of-service attributes, and personal char­
acteristics. 

During the past decade a substantial body of liter­
ature has emerged with empirical evidence on the 
variability of the estimated parameters of disaggre­
gate travel demand models between urbanized areas 
and over time. [See, for example, the studies by 
Watson and Westin (l,pp.227-249), Atherton and Ben­
Akiva (~), Parody (~), Talvitie and Kirshner C!l, 
Train (5), McCarthy (6), Silman (7), Koppelman and 
Wilmot(~), McCoomb (~), Tzieropoulos (10), Rose and 
Koppelman (ll,pp.471-491), and Supernak (12,pp.533-
559) .] Evid~e of stable values of estimated param­
eters provides a direct indication of the range of 
validity of a model. A model that is not stable over 
time is likely to produce inaccurate predictions and 
a "transferable model" would permit more cost-effec­
tive analyses of transportation plans and policies. 
Therefore, many of the transferability studies have 
tended to focus their attention on statistical tests 
that reject or accept equality of parameter values 
between populations from different areas and time 
periods. The conclusions of these studies are mixed. 
Tests of entire sets of parameters have usually 
shown significant differences between urban areas 
(_!) , whereas comparisons of subsets of parameters, 
in particular coefficients of travel times and cost 
variables, have found some similar values in models 
estimated for very different populations. [See, for 
example, the review by Ben-Akiva (13) .] 

Because it is unrealistic to expect an oper­
ational travel demand model to be perfectly speci­
fied, an estimated model is in principle context 
dependent. This means that it would not be useful to 
define transferability in terms of equality of pa­
rameter values in different contexts. The proper 
role of statistical transferability tests is to help 
identify those aspects of a model that need to be 
further investigated and potentially respecified to 
obtain an improved model (13) • 

Thus, a constructive definition of transferabil­
ity must be based on pragmatic considerations. It is 
assumed a priori that model parameters have dif­
ferent values in different contexts and consider­
ation is given to the more general issue of whether 
an existing model provides information that can be 
used in some way to improve forecasting in a new 
context. 

The value of transferring an existing model de-

pends on the magnitude of the differences in param­
eter values between the two contexts. This is the 
transfer bias, which is generally unknown. In addi­
tion, the value of a transfer would depend on the 
accuracy of the estimated model in the base context 
and on the level of the available information in the 
transfer context (e.g., the size of the new survey). 

A variety of methods to update an existing model 
with information from a new context were suggested 
by Atherton and Ben-Akiva (~). For example, if it is 
believed that the transfer bias is negligible and a 
travel survey is available in the new context, then 
a Bayesian model-updating approach can be used. How­
ever, the available evidence suggests that transfer 
biases do play an important role for at least some 
subgroups of model parameters. 

In the following section of this paper, the 
transfer-scaling approach designed to correct trans­
fer biases is presented, followed by a description 
of the tests that were performed to find the most 
appropriate approximation for the transferred model. 
The empirical evidence does not support complete 
equivalence of parameter values. It suggests that a 
partial transfer by using the scaling approach is an 
effective method of transferring disaggregate travel 
demand models. Additional practical aspects and data 
requirements for implementing this approach are dis­
cussed by Gunn and Pol (!!). 

THE SCALING APPROACH TO MODEL TRANSFER 

In the previous section transferability was charac­
terized in the context of predictive models as being 
a property of general similarity between members of 
a family of models. It was argued that, to be a use­
ful property, this similarity need not be a complete 
equivalence. 

First, for practical purposes there will be a 
range of parameter values within which the response 
characteristics of the model are effectively equiva­
lent. Models within this range are, to the practi­
tioner, transferable regardless of the statistical 
evidence for the nonequivalence of the parameters. 

More generally, there may exist simple transfor­
mations of one model that will bring it within such 
a range of another. Thus the transfer process may 
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itself involve estimating parameters from data col­
lected in the area to which the transfer is being 
made. Such a property will be of practical value if 
it is easier (cheaper) to estimate the transfer 
coefficients than to estimate the model coefficients 
in the new context. 

Some empirical evidence will be presented here 
about a family of simple transformations that could 
provide such a link. The basic idea is not new; it 
has been proposed by Atherton and Ben-Akiva (~) and 
by Ben-Akiva (13) and has also been used by other 
researchers in this area [Rose and Koppelman (11), 
Supernak (12), and Koppelman et al. (paper in this 
Record)]. The family of transformations consists of 
a set of transfer-scaling factors for each of a num­
ber of subgroups of explanatory variables; the vari­
ables in each subgroup have already been scaled by 
their respective coefficients in the base model. 

Thus a completely reestimated model is included 
as the special case when each subgroup contains only 
one member, and the "naive" transfer is also in­
cluded, which is the case in which all variables are 
contained in one group and the transfer-scaling fac­
tor is set at unity. 

The behavioral rationale behind the approach 
rests on the hypothesis that the (measurable) vari­
ables in the models can be collected into subgroups 
on the basis of the function they serve and that 
that function may be more or less important in dif­
ferent contexts. 

For example, it may be expected that the level­
of-service variables will be jointly influenced by 
real income levels and individually influenced by 
the specific character is tics of each travel mode in 
that context. Thus traffic conditions, service reli­
ability, the standard of comfort of transit vehi­
cles, and the quality of pedestrian and cycle facil­
ities specific to the context will also affect the 
relative importance of the level-of-service vari-
ables and hence the scale cf the coefficients in the 
models. 

Other variables entering travel demand models are 
mostly concerned with effects that can be broadly 
categorized as personal character is tics, household 
character is tics, time of day, area type, and local 
effects. 

Personal character is tics affect the absolute 
levels of modal attractiveness in mode-split models, 
and they are the main explanatory variables in 
travel frequency models. In mode-split models, these 
variables primarily reflect the availability of the 
alternative travel modes. However, they also account 
for contextual variations in reliability, safety, 
and other effects not proportional to travel time 
and the differing importance of these variations to 
different types of individuals. Once again, their 
absolute scale is potentially context-related. 

The most important household variables are income 
levels and the level of competition for household 
automobiles. The former might be expected to be re­
lated to price levels (potentially context-specific) 
and the latter to patterns of automobile use and 
specifically to the use of the automobile for the 
journey to work (also potentially context-related 
through the availability of parking space and the 
competitive position of the other modes). 

Time-of-day effects may be influenced in certain 
cases by local work practices (e.g., flex time for 
work, opening hours for shopping). Inasmuch as de­
mand varies between hours of darkness and light, 
these effects will also be dependent on the time of 
year of the survey. 

Area-type variables are probably the most obvi­
ously context-specific, even when the measured vari­
able can be defined quite rigorously. For example, 
zones may have exactly the same population density 
but entirely different land use patterns. 
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Local-effects variables are included in destina­
tion choice models to allow for perceived differ­
ences in the attractiveness of near and distant 
destinations due to differences in knowledge or 
familiarity. Measured distance has been included in 
some models to represent this effect; intrazonal 
dummy variables are also used. once again, these 
effects could be expected to vary with context and 
the choice of zoning system. 

Finally, there is the question of the variables 
and effects that are not specifically included in 
the model specification. The means and variances of 
these residual effects determine both the levels of 
the alternative-specific constants and the absolute 
scale of the representative utility function. Here 
too the size of these effects may be context­
specific. 

In conclusion, the inclusion of transfer-scale 
parameters in the manner that has been outlined 
allows the empirical investigation of a variety of 
possible context-specific effects ranging from one 
per variable (complete reestimation) through one per 
functional subgroup (partial transfer) and only for 
omitted effects (complete transfer) to none at all 
(naive transfer). 

CONTEXT OF THE EXPERIMENT 

The transferability experiment was based on two ad­
jacent regions of the Netherlands, one centered at 
Rotterdam and The Hague and the other at the city of 
Utrecht, each having respective populations of ap­
proximately 3 million and 1 million inhabitants. The 
data collection exercises took place 5 years apart 
and at different times of the year. In this section 
some statistics are presented to identify those 
variations in travel patterns and in major back­
ground variables that should be attributed to the 
differences in geographical area, year, and time of 
year of the survey. These statistics are derived 
from a nationwide travel survey conducted annually 
by the Netherlands Central Bureau of Statistics, 
which includes some 10 ,000 households a year. This 
survey has been used throughout the transferability 
experiment to provide a control data set against 
which to judge both base and transfer surveys. 

Average levels of household size, income, dr iv­
ing-license possess ion, and automobile owner ship in 
the base and transfer areas for the control data set 
are as follows: 

Variable 
Household size 
Income (guilders) 
Driving licenses per 

household 
Automobiles per 

household 
Average no. of trips 

per day 
Mean trip distance (km) 
No. of households in 

sample 
No. of trips in sample 

Base Area 
2.68 
28,300 

1.17 

0.83 

1.29 
16.7 

5,439 
24,461 

Transfer Area 
3.00 
30,300 

1.22 

0.89 

1.34 
17.9 

1,680 
8,283 

It can be seen that the two areas are very similar 
in all these respects; the transfer area has some­
what larger households, higher income per household, 
higher average license possession, and higher auto­
mobile ownership per household. 

In terms of travel characteristics, the levels 
displayed in Table 1 for the control data set indi­
cate once again that there is very little difference 
between the two areas. There is a general tendency 
for more trips to be made in the transfer area, 



Gunn et al. 

TABLE I Average Level of Trips 

Base Area Transfer Area 

Percentage of Percentage of 
Population in Trips per Population in Trips per 

Age Group Age Group Day Age Group Day 

12-17 II 1.47 14 I.SO 
18-26 15 1.38 15 1.45 
27-46 36 1.47 37 1.47 
46-65 25 1.15 23 1.26 
Over 65 14 0.84 II 0.88 

regardless of age group. However, the effect is 
small; around 5 percent more trips were reported. 

When the tables were compiled from the control 
data set, surveys conducted on weekends were ex­
cluded, as were surveys on public holidays or days 
adjacent to public holidays. This was done to maxi­
mize the correspondence of the control data with the 
experimental data. 

Trip lengths are also slightly higher in the 
transfer area; self-reported distances suggest an 
increase of around 7 percent in the transfer area 
from the level in the base. These figures have been 
corrected to adjust for a systematic reporting bias 
established by Moning (15) • 

Overall mode use differs little between the 
areas, despite the absence in the transfer area of 
the tram and metro modes that are available in the 
base: 

Percentage of All 
Tri12s Re12orted 
Base Transfer 

Mode Area Area 
Automobile 

Driver 28 28 
Passenger 12 8 

Transit 3 3 
Walk 31 26 
Two-wheeled vehicle 24 33 
Other 2 2 

A feature of travel in the Netherlands is the inten­
sive use of bicycles and mopeds. The absence of gra­
dients and the high density of population and ser­
vices typically combine to make the slow modes 
(walk, cycle, or moped) account for in excess of 50 
percent of all trips. The only noticeable difference 
between the areas is the more intensive use made of 
two-wheeled vehicles in the transfer area, which 
draws travel from both the walk and the automobile 
(passenger) modes. 

In conclusion, in all major aspects the two areas 
are very similar and appear to be ideal candidates 
for a model transfer. 

Because the experimental surveys were conducted 
at different times of the year, further analysis was 
performed to establish the significance of vari­
ations in trip rates and mode use over the different 
months of the year. The results are given in Table 
2, which suggests that there are no extreme vari­
ations for which allowance need be made. Note that 
this data set excludes holiday travel, work-based 
business travel, and travel by commercial travelers, 
truck drivers, and other professional travelers. 
Thus, to some extent, the factors that cause sea­
sonal fluctuations have been deliberately suppressed. 

Last, some analysis was performed to establish 
the changes that had taken place over time during 
the 6 years between the base and the transfer survey 
periods. The statistics are not presented here, but 
the conclusions were that household incomes had 
grown initially and then leveled off or even de­
clined somewhat during the period of general eco-
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TABLE 2 Seasonality in Travel by Mode: 
Netherlands 1982 

Avg No. of Trips per Person 

Month Automobile Transit Slow Total 

January 0.53 0.09 0.75 1.37 
February 0.54 0.08 0.69 1.31 
March 0.57 0.10 0.72 1.39 

April 0.49 0.07 0.67 1.23 
May 0.51 0.08 0.68 1.27 
June 0.49 0.06 0.86 1.41 

July 0.55 0.06 0.71 1.32 
August 0.58 0.07 0.75 1.40 
September 0.52 0.09 0.84 1.45 

October 0.53 0.09 0.72 1.34 
November 0.57 0.09 0.76 1.42 
December 0.60 0.10 0.68 1.38 

nomic stagnation in the early 1980s. License owner­
ship had continued to increase and so too had 
automobile ownership, although to a lesser extent 
and with some suggestion of a decline in the year of 
the transfer survey, 1982. More information about 
these trends has been given by Daly (16,17). 

COMPARISON OF THE BASE AND TRANSFER SURVEYS 

The base sample consisted of data from some 3,000 
households collected in the last months of 1977 for 
a regional transportation study in the Netherlands 
(the Zuidvleugel study), an overview of which is 

given by Daly et al. (18). The transfer sample was 
collected in the late spring of 1982 and consisted 
of some 1,000 household interviews. In this later 
survey, it was ensured that the content of the ques­
tionnaire and the definitions of mode and purpose 
that were used were entirely consistent with those 
in the earlier study. In terms of questionnaire lay­
out and presentation, however, no attempt was made 
to replicate the earlier study. Rather, every effort 
was made to improve the clarity of the questionnaire 
and generally to minimize the difficulty of comple­
tion in an attempt to maximize response. 

The household interview was later augmented with 
several thousand interviews with travelers. However, 
only the analysis of the household survey data will 
be reported in this paper. 

In terms of character is tics of households and 
persons (number of members, workers, automobiles, 
income levels, etc.), after expansion both base and 
transfer surveys compared well with the control 
data. In keeping with the trends over time and the 
area-to-area differences apparent from the control 
data, automobile ownership by household was nearly 
40 percent higher in the transfer data, and driving 
licenses by household were around 50 percent higher. 
Although the transfer area is generally a more pros­
perous area, the overall economic decline has left 
it only some 2 percent better off in terms of real 
household income than was the base area 6 years 
earlier. 

In Table 3 trip rates per person by travel mode 
are compared for the base and transfer surveys. As 
might be expected, the large increase in automobile 
availability has resulted in a comparable increase 
(50 to 60 percent) in automobile trips. What is more 
surprising is the large increase in the slow modes, 
walking and two-wheeled vehicles (bicycle and moped). 

Table 4 shows the same comparison by person type 
and trip purpose, and it is clear that the increased 
trip rate in the transfer area reflects general in­
creases in travel irrespective of person type or 
travel purpose. By far the largest increases are in 
travel for discretionary activities; this is also 
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TABLE 3 Frequency of Trips per Person: 
Experimental Data 

Transfer Percent 
Mode Base Survey Survey Change 

Au.tOP1Qbik 
Driver 0.28 0.44 +57 
Passenger 0. 11 0.17 +55 

Transit 0.08 0.09 +12 
Walking 0.42 0.62 +48 
Two-wheeled vehicle 0.40 0.73 +82 
Other 0.02 0.05 

Total 1.31 2.10 +60 

TABLE 4 Trip Rates: Experimental Data 

Base Transfer Percent 
Survey Survey Difference 

Person type 
Worker 1.38 2.01 +46 
Unemployed 1.09 1.88 +72 
Housewife 1.25 2.14 +71 
Student 1.39 2.39 +72 
Other 0.98 1.79 +83 

Trip purpose 
Work 0.28 0.44 +57 
Shopping 0.23 0.32 +39 
Education 0.32 0.39 +22 
Social and recreational 0.26 0.53 +100 
Other 0.21 0.40 +90 

reflected in the differences in mobility increases 
for workers and nonworkers. 

A detailed comparison of the transfer survey with 
data from the same area in the same year extracted 
from the control data set suggests that the transfer 
survey recorded some 25 percent more trips of less 
than 15 min than would be expected on an average 
day. This result, peculiar to the survey instrument 
or to the days of the survey, would go some way to 
explaining the large differences shown in Tables 3 
and 4 but would not of itself account for the entire 
effect. 

Another result that should be noted is that in 
the base survey some 23 percent of the interviewees 
reported no travel at all on the survey day. This 
proportion of nontravelers is nearly four times as 
high as was found in the transfer survey, where only 
6 percent of interviewees reported no travel at all. 
The levels in the control surveys were around 12 
percent in all years, and levels of 10 percent for 
nontravelers have been found in large British travel 
surveys (19,pp.49-64). It appears that the large in­
crease in-;;;obility can be explained only by a combi­
nation of an increased number of trips per traveler 
and an increasing proportion of the population re­
porting travel. 

A variety of factors could have contributed to 
produce this effect. The questionnaire layout and 
administration of the transfer survey may well have 
been significantly improved over the base survey. 
Another factor concerns the definition of the survey 
day i the base survey used an arbitrary 24-hr period 
and a portion of travel was "lost" when trips were 
started but not completed in that period. In the 
transfer survey, the interviewees were requested to 
complete travel diaries for a 24-hr period commenc­
ing at the time that they first left their home on 
the survey day, a measure specifically introduced to 
minimize lost travel. There is also the observation 
that the population in the transfer area appears to 
travel more than their counterparts in the base 
area, albeit by only a small amount. However, the 
weather probably did play a part, despite the evi-
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dence of Table 2 that travel patterns change little 
over the months of the year. The base survey was 
conducted during a particularly unpleasant period of 
winter weather, the transfer survey in an unusually 
hot early summer. 

In summary, the principal differences between 
base and transfer data sets are ones of automobile 
and transit availability, the apparent generation of 
an extra number of short, slow-mode trips, and gen­
erally higher mobility rates. 

Overall, the experimental populations are similar 
in all respects but private vehicle ownership and 
driver's license possession. However, their patterns 
of travel demand are substantially different, at 
least before the influences of the range of back­
ground variables incorporated in the models are ac­
counted for. It appears that the two surveys offer 
quite a stern test of the transferability of the 
base system of travel demand models. 

OUTLINE OF THE MODEL SYSTEM UNDER INVESTIGATION 

A full description of the structure and component 
models in the Zuidvleugel model system may be ob­
tained from the series of project reports, and an 
overview is presented by Daly et al. (!.!!_). In brief, 
the system is an application of discrete choice 
theory to the range of aspects of travel demand from 
license possession, automobile ownership, and per­
sonal travel frequency by the household to travel 
mode and choice of destination. It has been esti­
mated by using disaggregate data. 

The standard simplifications are made to reduce 
the number of alternatives to an analytically tract­
able leveli potential elemental destinations are 
grouped into zones, and trips are assigned to one of 
a small number of categories of travel mode and des­
tination activity purpose. 

Perhaps the most significant simplification is 
the reduction of complex trips involving visits to 
multiple out-of-home destinations to a categori­
zation according to the activity carried out at a 
single selected primary destination. The advantages 
of this simplification are primarily to ensure con­
sistency in mode use throughout the trip and to 
allow network conditions on both outward and return 
trips to influence the overall choice of mode. The 
principal disadvantage is that for the 16 percent or 
so of trips that involve more than one destination 
there is some systematic underestimation of the 
travel generated. These points are discussed more 
fully in the reports of the Zuidvleugel study. 

Given these approximations, travel demand is 
characterized as a choice of the mode, destination, 
and freauencv of trios for each distinct purpose. 
The stru~tur~ of the ~odels is hierarchical, allow­
ing for the possibility of unmodeled similarities 
between clusters of alternatives. 

A distinctive feature of the models is their in­
terconnection into a linked system. This linkage is 
extended to the longer-term decisions about house­
hold automobile ownership, inasmuch as the represen­
tation of private vehicle accessibility gains is 
through an expected utility (logsum) term from the 
travel models. 

This system of models has been used intensively 
for the last 4 years to appraise both short-term and 
long-term policy proposals. Its response character­
istics have been examined in detail and have been 
found to be reliable, at least in applications in 
the region from which the data were drawn. 

TRANSFERABILITY TESTS 

Given a thoroughly tested and apparently suitable 
model system and data specifically collected for the 
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purpose, the broad aim of this experiment was to 
assess the practical worth of the transfer-scaling 
method. This approach to transferability offers the 
possibility of trading off model precision against 
the number of parameters that must be estimated; the 
question to be tackled was whether an advantageous 
trade could be made. 

The experimental approach taken here is aimed at 
casting light on the manner in which model precision 
deteriorates in the progression from the complete 
reestimation of each parameter toward the naive 
transfer of the entire base model specification. 
Essentially, the performance of transfers involving 
different subsets of variables has been examined by 
estimating the corresponding transfer-scale param­
eters from the transfer survey data. 

A crucial question concerns the way in which 
model performance is to be assessed. The usual con­
siderations of model fitting apply here; the two 
most important might be characterized as validity 
and adequacy. In the context of the transfer, a 
third consideration could be broadly defined as rel­
evance. 

For the purpose of this investigation, the valid­
ity of the various models that have been fitted has 
been judged in terms of their performance in pre­
dicting response over a series of predefined predic­
tion tables for various market segmentation schemes. 
The model predictions of the probabilities with 
which certain options are selected are summed over 
groups of individuals and compared with the propor­
tion of times that the option actually was selected 
in the data base. A second consideration here is 
that the signs of all subgroups of variables should 
be in accord with common-sense a priori reasoning. 

The assessment of the adequacy of the model here 
has been formed primarily on the evidence that a 
more detailed model could be supported by the data; 
that is, a much better model could be achieved by 
estimating more coefficients. 

The relevance of the transfer of a particular 
subgroup of parameters is perhaps the simplest of 
all to characterize; it was deemed that if the 
transfer-scale parameter was estimated with reason­
able precision but was insignificantly different 
from zero, that subgroup of variables was irrelevant 
in the transfer context. 

Formal statistical tests can be associated with 
each of these three basic checks on model perfor­
mance. For the prediction tables, a range of tests 
has been proposed by Horowitz (20) to assess the 
likelihood that the distribution of observations 
across each table is consistent with a well-fitting 
model. For the assessment of the support that the 
data provided for more complex model specifications, 
the familiar likelihood ratio test is available, 
providing that it is ensured that the successive 
specifications are nested. Last, the t-ratio of the 
transfer-scale factor, taken together with the esti­
mated standard error, can indicate both the accuracy 
of measurement and the evidence for a significant 
difference from zero for that factor. 

Not all of these and other possible statistical 
summaries will be presented here, quite simply be­
cause the authors do not wish to investigate the 
hypothesis that a transferred model is "well­
fitting" in the sense of being identically equiva­
lent to a best local model. Rather, accepting that 
it will be an approximation, they would like to know 
the extent to which it differs from the "best avail­
able" model and eventually to be able to form a 
judgment as to whether the decrease in model pre­
cision could be acceptable given the savings that 
could be made in model estimation. 

Accordingly, rather than summarizing the predic­
tion tables by a single statistic, an attempt has 
been made to preserve more information to indicate 
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the overall performance of the model. In the follow­
ing section, each table is reduced to three numbers. 
These are constructed as follows; first, for each 
cell in the table and conditional on the fitted 
model, an estimate is formed of the variability to 
be expected, for the given sample size, for the data 
points falling in that cell. For each data item con­
tributing an element of probability, say p, to the 
prediction of the number of times that a particular 
cell is chosen, an approximate variance of that con­
tribution is estimated as p(l - p), assuming the 
model to be given and correct. The variance of the 
overall prediction is then given as the sum of the 
variances of the constituent elements. The cell is 
then categorized into one of three groups according 
to whether the model prediction is (a) less than 
one, (b) between one and two, or (c) more than two 
standard errors from the observed data. In an in­
formal sense, the more cells that can be assigned to 
category (a) rather than (b) and the more that can 
be assigned to (b) rather than (c), the better the 
model. In principle, if the model were well-fitting, 
the distribution of cells among these categories 
should tend to that expected for a standard normal 
distribution (i.e., approximately 70, 25, and 5 per­
cent, respectively, in each of the categories). In 
this case correlations between the model and the 
data, together with misspecification in the model, 
will lead to departures from that pattern. Despite 
this, the three numbers are a simple and useful sum­
mary of the prediction tables in which the discrep­
ancies between predictions and observations are 
viewed in relation to the expected accuracy of the 
observed data. 

In practice, a number of relevant background 
variables were selected and for each variable, two 
prediction tables were formed that stratified alter­
natively by mode and destination area chosen. The 
triplet of numbers summarizing model performance was 
then accumulated over both tables. 

SOME EMPIRICAL RESULTS 

The data collected for the transfer study area have 
now been used to reestimate the model system fitted 
to the base survey. For most of the models, trans­
fer-factor models have also been estimated. In this 
section, results will be presented for only four of 
the models in the system, although these will be 
discussed in the wider context of the larger number 
of exploratory estimations that have been performed. 
The models that will be presented address, respec­
tively, the joint choice of mode and destination for 
shopping trips and for personal business trips and 
the frequency of trips for the same two purposes. 

In Table 5 a sequence of transfer-factor tests 
fot the personal business joint mode and destination 
model is given. This trip-purpose category contained 
business travel for private reasons, for example, 
visits to banks and insurance offices. 

The explanatory variables that enter the model 
are listed in the first column. These have been 
organized into groups. The first group contains 
mode-specific constants. Three modes are distin­
guished--automobile (driver or passenger), transit 
(bus or train), and slow (walking or two-wheeled 
vehicle). The second overall group has been labeled 
"overall utility" and is composed of the three sub­
groups "level of service," "other variables," and 
"size variables." Within the subgroups are the ele­
mentary explanatory variables that constitute the 
base model. Most of these are self-explanatory; the 
variables "cars/license" and "female driver" are 
probably the least transparent. They refer respec­
tively to a constructed variable proxying automobile 
competition by means of the number of 1 icenses and 
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TABLE 5 Transfer of the Personal Business Joint Mode-Destination Model 

Transfer Model 

Base Model Reestimated Model Partial Complete 

Variable Coefficient T(O) Coefficient T(O) Coefficient T(O) Coefficient T(O) 

Constants 
Car -4.79 -5.07 -4.74 -4.39 
Transit -1.09 -0.37 -0.72 -0.67 

Overall utility 0.83 28.7 
Level of service3 0.82 26.3 

In-vehicle time -.046 3.9 0.59 2.5 
Walk access time -.067 2.8 0.96 2.7 
Waiting time -.024 2.0 2.02 2.3 
Travel cost -1.02 8.6 0.87 9.7 
Slow-mode distance -.539 10.9 0.83 14.2 

Other variables• 0.93 10.0 
Cars/license 2.00 4.9 1.24 5.5 
Female driver 1.52 3.6 0.14 0.8 
CBD destination 0.55 2.7 2.42 4.1 
lntrazonal dummy 0.58 3.5 1.33 4.4 
Logsum car .793 7 .2 0.97 7.6 

Size variables o.oob o.oob 
Population -3.39 .45 -2.56 .42 
Service employment -2.23 .74 -1.45 .50 
Retail employment 0.00 - b 0.00 b 

No. of observations 352 405 405 405 
Likelihood at zero -1424 -1883 -1883 -1883 
Final likelihood -770 -784 -804 -804 
Rho-squared (0) .459 .584 .573 .573 

8 See text; transfer results given as :i;tnie factors on base survey estimates. 
bThe coefficient of the last size varl .. hle (or group of size variables) is constrained to be exp(O), i.e., 1.0. 

automobiles in the household and a dummy variable 
identifying trips made by women who possess driver's 
licenses and are members of automobile-owning house­
holds. 

The second column sets out the fitted coeffi­
cients and t-statistics for the base survey. The 
third, fourth, and fifth columns contain results 
from the transfer-scale experiment. Column 3 sets 
out the completely reestimated model, in which vari­
ables are entered already scaled by their coeffi­
cients in the base model. Thus, for example, the 
factor 0.59 for in-vehicle time should be inter­
preted as a coefficient of (0.59 x -0.046) on the 
same variable; that is, the transfer value is just 
some 59 percent of the base value for that variable. 
There are two exceptions to this rule; both the size 
variables and the alternative specific constants are 
given as unscaled values. 

Looking through the level-of-service variables 
first, it may be seen that the transfer scales are 
generally less than unity, with the exception of 
waiting time, for which the transfer survey value 
actually appears rather more plausible than the base 
value. Among the other variables, levels are gener­
ally around 1. 0, with the exceptions of the central 
business district (CBD) dummy (twice as highly 
weighted in the transfer survey) and the "female 
driver" effect, which appears to be absent in the 
transfer data. 

Size variables are within one standard error or 
so of each other, and levels of explanation provided 
by the model are apparently rather higher than those 
in the base survey. 

Overall, then, the variables that appear in the 
base model specification have proved, with a single 
exception, to have a statistically significant role 
in the transfer model. Transfer-scale factors are 
generally around unity; the highest is 2.42 and the 
lowest, 0.59. All signs are correct. 

It should be noted that the specification of the 
base model contained a number of other variables 
that were not included in the transfer model; these 
were variables specific to the base region, such as 

Coefficients are unscaled. 

constants for destination zones in specific cities 
in the base area. Nationally these variables may be 
deemed to be included in the specification, but to 
take zero values in the data. Their absence does not 
affect the other results. 

A transfer-scale model is given in column 4; it 
involves the three major subgroups of variables in 
addition to the mode-specific constants. The size 
variable subgroup is constrained in this estimation 
[the use of size variables in the estimation of des­
tination choice models has been discussed by Daly 
(_!2) l. 

The compound scale factors for the subgroups re­
flect the trends within subgroups seen in the previ­
ous model. Overall the level-of-service subgroup 
acquires a scale factor of 0.82, extremely well de­
termined in statistical terms, and the "other vari­
ables" subgroup acquires a factor of 0.93, also very 
well determined. 

There is a small decrease in the explanatory 
power of the model, as measured by the rho-square 
index (calculated with respect to zero here), but 
the model still appears to provide a relatively high 
degree of explanation. In the tables given here, the 
statistic rho-squared (0) is the commonly used mea­
sure of model fit computed by calculating the dif­
ference between the log-likelihoods of the fitted 
model and of a "null" model in which all coeffi­
cients are set to zero and dividing this by the log­
likelihood of the null model. Rho-squared (C) de­
notes a similar statistic, but with the null model 
replaced by a model in which alternative specific 
constants are estimated from the data set, all other 
coefficients being set at zero. Note that the last 
size variable is retained with a coefficient set at 
1.0 in all of these models. 

Comparison of the log-likelihood values of this 
model with those of the fully specified model shows 
that a reduction of 10 scale parameters has resulted 
in a decrease of 20 uni ts of log-likelihood. The 
chi-square 95 percent probability value with 10 de­
grees of freedom is 18.3. Given that (-2 x log-like­
lihood decrease) = 40, there is clear statistical 
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TABLE 6 Personal Business Joint Mode-Destination Model: Prediction Table 

No. of Standard Deviations 

Reestimated Model Partial Transfer Complete Transfer 

Category 0-1 1-2 

Distance to destination 32 9 
Arrival time 49 14 
Age group S4 14 
Car competition 42 6 
Education level 49 13 
Sex and license 36 6 
Occupation 47 14 
Population density at destination 26 9 

Total 33S 8S 

evidence that the more detailed model can indeed be 
justified on these data. 

However, looking at the accompanying prediction 
table (Table 6) and the summarized results from the 
validation tests puts the decrease in model pre­
cision into perspective. Although every single pre­
diction table has been made worse, the broad picture 
has not been changed greatly. 

Finally, the complete transfer is given in column 
5 in which all variables other than the mode-spe­
c ific constants and the size variable are grouped 
into a single compound and given a single transfer­
scale factor. Because the levels of the two separate 
transfer-scale factors were so similar in the pre­
vious model, this factor also turns out to be around 
0.8, and to be extremely well determined in statis­
tical terms. 

Log-likelihood values and prediction tables con­
firm that the partial and the complete transfer 
models are virtually identical. 

In Table 7 the same results are given for the 
model of joint mode and destination choice for shop­
ping trips. The broad conclusions are similar to 
those drawn for the previous table. 

First, looking at the completely reestimated 
model in column 3 where the transfer-scale factors 

2+ 0-1 1-2 2+ 0-1 1-2 2+ 

13 30 10 14 31 9 14 
1 46 14 4 46 14 4 
3 S6 9 6 SS 10 6 
2 40 s s 40 s s 
1 46 lS 2 47 lS 1 
0 30 8 4 31 7 4 
2 46 10 7 46 10 7 
s 2S 9 6 2S 9 6 

27 319 80 48 321 79 47 

are statistically significant 
2.0), they vary around unity 
being 3.5 and the lowest value 

(t-ratios more than 
with highest values 
being 0.93. There is 

much more scatter in these 
than in the corresponding 
business model. 

transfer-scale factors 
ones for the personal 

There are 5 statistically insignificant factors 
out of 11, which in this case suggests that some of 
the effects are absent or not well measured in the 
transfer context. However, comparison with column 2 
shows that two of these five were also statistically 
insignificant in the base model, and none of the 
others was particularly well measured. The distance 
variable was included in the base specification 
primarily to proxy prejudices toward local facili­
ties unconnected with relative level-of-service at­
tributes; in the transfer survey, the effect appears 
to be in the opposite direction, although the evi­
dence is not statistically significant. 

The log-likelihood decrease on moving from the 
fully specified model to the partial transfer is 19 
units, in exchange for 10 parameters as in the pre­
vious table, so that once again there is clear sta­
tistical evidence that the full specification can be 
justified on these data. 

TABLE 7 Transfer of the Daily Shopping Trip Joint Mode-Destination Model 

Transfer Model 

Base Model Reestimated Model Partial Complete 

Variable Coefficient T(O) Coefficient T(O) Coefficient T(O) Coefficient T(O) 

Constants 
Car -6.49 -6.07 -S.36 -S.80 
Transit -3.66 -3.23 -3.03 -3.08 

Overall utility 1.09 27.0 
Level of service3 1.11 26.0 

In-vehicle time -.OSS 3.7 0.93 2.S 
Walk access time -.033 2.0 0.S9 0.7 
Waiting time -.013 1.4 3.06 1.0 
Travel cost -.26S 1.3 3 .so s.s 
Slow-mode distance -.700 11.S 1.37 14.S 
Slow distance ( 8 km) .3S2 2.2 2.19 9.4 

Other variables" 0.94 8.4 
Cars/license 1.34 4.0 1.69 S.2 
Female driver 0.77 2.9 0.47 1.4 
CBD destination 0.3S 1.7 2.01 0.4 
Distance -.103 3.0 -S.13 1.6 
Logsum car .7Sl 6.S 0.98 6.7 

o.oob Size variables o.oob 
Population -3.08 .43 -2.74 .29 
Retail employment 0.00 b 0.00 b 

No. of observations 441 S66 S66 S66 
Likelihood at zero -1806 -2403 -2403 -2403 
Final likelihood -896 -80S -824 -82S 
Rho-squared ( 0) .S04 .66S .6S7 .6S7 

a See text; trnrn.fer results given as sca1e factors on base survey estimates. 
bThe coefficlcut of the last size variable (or group of size variables) is constrained to be exp(O), i.e., 1.0. Coefficients are unscaled. 
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TABLE 8 Daily Shopping Trip Mode-Destination Model: Prediction Table 

No. of Standard Deviations 

Reestimated Model Partial Transfer Complete Transfer 

Ca tegory 0-1 1·2 

Distance to destination 29 4 
Arriva l lime 36 9 
Age group 48 8 
Car completion 39 2 
Education level 45 6 
Sex and license 30 4 
Occupation 42 7 
Population density at destinat ion 29 3 

Total 298 43 

The evidence of the validation tables (Table 8) 
is that the approximation introduced by the partial 
transfer does not overly distort the predictions 
within the various groupings of the data i only the 
distance segmentation shows a serious deterioration, 
as might be expected from the discovery that the 
effect in the base model is wrongly signed in the 
transfer. The car competition effect, proxied by the 
"cars/license" variable, is also somewhat distorted 
by the overall scale in the partial transfer, but 
the worsening is less serious. Other than these two 
effects, the reduction of the specification to the 
partial transfer system shows only slight deteriora­
tions in the predictions over the different tables. 

The values of the transfer-scale parameters, as 
in the personal business model, are both around 1.0 
and highly statistically significant. 

Another similarity with the personal business 
model is that the complete transfer in column 5 is 
virtually indistinguishable from the partial 
transfer. 

Tables 9-12 set out the same form of models for 

2+ 0-1 1-2 2+ "' ' ~ '" ·-L 
6 23 5 11 24 5 IO 
I 35 IO 1 35 IO I 
3 49 6 4 5 1 4 4 
3 35 6 3 36 5 3 
3 44 7 3 44 6 4 
2 29 4 3 30 3 3 
3 4 1 8 3 4 1 9 2 
7 29 3 7 29 3 7 

28 285 49 35 290 45 34 

the prediction of trip frequencies. Rather fewer 
variables are involved, and only one comparison is 
made--full reestimation against complete transfer. 

One difference is that logsum variables were 
poorly identified in the base models and have been 
estimated separately in the transfer models to avoid 
distortion. 

Table 9 gives the results for the personal busi­
ness trip frequency model. The full set of transfer­
scale factors is given in column 3 i only the in­
fluence of sex on trip frequency failed to attract a 
statistically significant transfer-scale parameter, 
al though the log sum variable was also statistically 
insignificant. 

The full transfer in column 4 has exchanged three 
fitted coefficients for four units of log-likelihood. 
The 95 percent value of chi-square with 3 degrees of 
freedom is 7.8, so that the more elaborate model can 
probably be justified. However, the prediction tables 
indicate that there is very little difference in the 
model precHctluns. The overall scale factor, at 0 .68, 
is quite well measured in a statistical sense. 

TABLE 9 Transfer of the Personal Business Trip Generation Model 

Base Model 

Variable Coefficient T(O) 

Trip -2.25 10.6 
Joint logsum .064 1.6 
Overall utility 

Age 16 and under -1.42 7.8 
Age 65 and over -0.23 1.6 
Non worker 0.75 5.1 
Female 0.28 2.2 

No. of observations 3817 
Likelihood at zero - 2646 
Final likelihood -1 290 
Rho-squared (0) .51 2 
Rho-squared (C) .044 

Reestimated Model 

Coefficient T(O) 

-2.29 5.8 
.030 0.7 

0.74 5.9 
1.64 1.8 
1.16 5.5 

-0.4 1 0_8 

2439 
-169 1 
- 974 
.424 
.027 

Complete Transfer 

Coefficient T(O) 

-2.22 6.5 
.025 0.6 

0.69 6.6 

2439 
-1691 
-974 
.421 
.023 

TABLE 10 Personal Business Trip Generation Model: Prediction Table 

No. of Standard Deviations 

Base Model Reestimated Model Complete Transfer 

Category 0-1 1-2 2+ 0-1 1-2 2+ 0-1 1-2 2+ 

Age of person 7 1 1 7 1 I 7 I 1 
Sex/cu available 4 0 0 4 1 0 3 2 0 
Education level 8 0 0 5 4 0 5 4 0 
Occupation/profession 6 3 0 6 3 0 5 4 0 
Household size 5 3 0 4 4 0 4 4 0 
Household income 5 3 0 7 2 0 8 1 0 
Household cars/license 3 1 0 6 1 0 6 I 0 

Total 38 11 39 16 40 15 
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TABLE 11 Transfer of the Daily Shopping Trip Generation Model 

Base Model 

Variable Coefficient T(O) 

Trip constant -2.12 7.4 
Joint logsum .005 0.3 
Overall utility 

Age 16 and under -1.85 12.1 
Age 65 and over -0.40 3.0 
Nonworker 1.56 11.7 
Female 0.75 6.6 
No. of adults -0.17 2.1 
Primary education -0.46 4.3 

No. of observations 3817 
Likelihood at zero -2646 
Final likelihood -1525 
Rho-squared (0) .424 
Rho-squared (C) .148 

Reestimated Model 

Coefficient T(O) 

-2.61 6.9 
.089 2.2 

0.81 8.4 
0.97 2.0 
0.97 10.2 
0.82 4.8 
1.22 2.5 
0.58 1.8 

2439 
-1691 
-1084 
.359 
.122 

Complete Transfer 

Coefficient T(O) 

-2.41 8.7 
.066 1.8 

0.86 16.l 

2439 
-1691 
-1086 
.358 
.120 

TABLE 12 Daily Shopping Trip Generation Model: Prediction Table 

No. of Standard Deviations 

Basic Model 

Category 0-1 1-2 2+ 

Age of person 8 1 0 
Sex/car available 2 0 2 
Education level 5 3 0 
Occupation/profession 4 2 3 
Household size 6 2 0 
Household income 5 3 0 
Household cars/license _1_ 2 0 

Total 32 13 

Table 11 presents the same comparisons for the 
shopping-trip frequency model. All the variables in­
cluded attract statistically significant coeffi­
cients, with the exception of the "primary educa­
tion" variable (a dummy identifying those whose 
highest completed education was at the primary 
level). The simplification of the specification to 
the complete transfer exchanged only two units of 
log-likelihood for five parameters; in this case the 
simplest model appears quite adequate to explain the 
variation in the data. The single transfer-scale 
parameter, 0.86, is once again very well measured in 
a statistical sense. 

SUMMARY OF RESULTS FOR MODE-DESTINATION CHOICE 

In the previous section attention has been re­
stricted to the various models associated with shop­
ping and personal business trips. Table 13 presents 
a summary of results for the models of joint choice 
of mode and destination for seven activity purposes, 
listing the various log-likelihood values associated 
with the following models: 

1. Zero coefficient, 
2. Naive transfer (all coefficients including 

the constants set at the base values), 
3. Complete transfer (updating of scale and con­

stants) , 
4. Partial transfer (involving two or three dif­

ferent functional subgroups) , and 
5. Final, in which all coefficients have been 

reestimated and the model specification has been ex­
tended to include area-specific effects. 

TWO points should be made about these models. 

Reestimated Model Complete Transfer 

0-1 1-2 2+ 0-1 1-2 2+ 

4 3 2 3 3 3 
4 1 0 5 0 0 
7 2 0 5 4 0 
6 3 0 6 3 0 
4 3 1 4 3 1 
6 2 1 6 2 1 
4 3 Q. 4 3 Q. 

35 17 4 33 18 

TABLE 13 Log- Likelihood Values for Various 
Mode-Destination Models 

Model 

Trip Zero Naive Complete Partial Final 

Work -3381 -2408 -2226 -2221 -2169 
Social -3092 -1523 -1499 -1482 -1354 
Recreation -2376 -949 -919 -910 -765 
Shopping -2403 -858 -824 -824 -782 
Personal business -1883 -828 -804 -803 -770 
Education -4667 -1717 -1504 -1483 -1398 
Other -3476 -1566 -1413 -1392 -1336 

First, the likelihood associated with the zero­
coefficient model is somewhat approximate, having 
been calculated over a different sample of destina­
tions than that used for the other models 1 it also 
differs from the null model of Tables 5, 7, and 9 in 
that the size variables have been excluded alto­
gether. Second, the final model has been developed 
on a data base enriched with observations of trav­
elers crossing screen lines; however, the likelihood 
reported in the table is calculated only for the 
household interview data and is comparable with the 
other entries. 

The move from the naive transfer to the complete 
transfer involves the estimation of 3 parameters, 
from complete to partial generally involves an extra 
1 (2 for work and education), and from the partial 
to the final an extra 20 or so. Each successive re­
finement of the specification is clearly justified 
in terms of statistical fit (as judged by the like­
lihood ratio test), although there is an obvious 
trend of diminishing returns in terms of likelihood 
gain per extra parameter fitted. 
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CONCLUSIONS 

The conclusions based on the empirical evidence can 
be summarized under the same broad headings identi­
fied for the transferability tests. 

First, in terms of the adequacy of the transfer­
factor models, it was found that the performance of 
the model can usually be improved by reestimating on 
the local data, that is, by using more variables and 
more parameters. The transfer-factor model should be 
regarded as an approximation, although the nature of 
the two data sets (and in particular the scarcity of 
transit trips in the transfer survey) may actually 
make this model more reliable than the completely 
reestimated model for some variables. 

Second, in terms of validity, the transfer-factor 
models perform worse in the prediction tests applied 
here, but the deterioration in performance over the 
reestimated model is not dramatic. For most purposes, 
the predictions of the transfer-factor models are 
quite similar to those of the most detailed specifi­
cations. 

Last, in terms of relevance, all the transfer 
factors here were very well estimated and statisti­
cally different from zero (when compared with stan­
dard errors returned by the maximum-likelihood 
estimation routine). Interestingly, they were not 
very different from unity in most cases. 

Overall, then, this experiment has provided some 
evidence of a stability in model specification and 
coefficient levels between the base and transfer 
surveys. This stability falls short of complete 
equivalence, and it would be unwise to rely too 
heavily on such a transfer without some corrobora­
tion or updating from local data sources. The trans­
fer-factor approach allows variables to be scaled in 
blocks and appears to be a constructive way in which 
to adapt models to different environments. 
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Implementation of Service-Area Concepts in Single-Route 
Ridership Forecasting 
ALAN J. HOROWITZ and DAVID N. METZGER 

ABSTRACT 

Transit service area is the basis of several direct-demand models of single­
route ridership. This service-area concept has not been integrated into the 
more recent single-route models that have evolved from the Urban Transportation 
Planning System and similar four-step simulation procedures. How the service­
area concept was incorporated into the Transit Ridership Forecasting Model is 
explained and the application of the concept on routes selected from the Mil­
waukee urban area is illustrated. It is shown that use of the service-area 
concept removes a serious tendency for four-step models to underestimate rider­
ship on marginal routes. It is also shown that proper application of the ser­
vice-area concept can reduce both computation time and data requirements. 

Extensive work has been done on modeling ridership 
for entire transit systems. Those models, notably 
those of the Urban Transportation Planning System 
(UTPS), have been in use for nearly a decade and are 
particularly good for long-range forecasts where 
there are major system changes. Parallel, but much 
less recognized work has been done on estimating 
ridership for single routes. These models are de­
signed for short-term and mid-term planning where 
changes to the system are confined to only a few 
routes. 

Early single-route ridership models were basi­
cally of two types: direct demand and special-pur­
pose simulation. The direct-demand models (1-5) were 
essentially statistical or elasticity equatTo-;s that 
estimated total route ridership on the basis of 
service area, dwelling-unit density, .and aggregated 
service characteristics. They had the advantages of 
simplicity and explicit consideration of the exist­
ing state of the system and service areas of routes. 
Simulations (6) applied the same four-step approach 
(i.e., trip -generation, trip distribution, mode 
split, and trip assignment) as found in the full­
system models to special single-route cases, such as 
many-to-one and park-and-ride routes. It appeared 
that the four-step approach had particular advan­
tages in terms of flexibility and accuracy across a 
variety of route types, so development of a new 
single-route model proceeded in that direction. The 
Transit Ridership Forecasting Model (TRFM) (].-~) , 
the model that forms the basis of the research de­
scribed here, illustrates one way of applying the 
four-step approach. 

TRFM, like the direct-demand models, maintains 
consistency with service areas used for other route­
planning activities. Implementation of the service­
area concept permitted significant simplifications 
in the four-step approach. The program size is 
smaller than that of the Transit Operations Planning 
(TOP) Model (10), which is a highly sophisticated 
direct-demand ~del, yet through the windowing and 
focusing concept (11), it can handle routes in sys­
tems of nearly anY-size--even on a small microcom­
puter. The windowing and focusing concept was imple­
mented with two simplifying assumptions: (a) the 
possibility of multiple transfer trips can be 
ignored and (b) small travel zones are required only 
on the route of interest. These assumptions were 

subjected to sensitivity tests (_~) and were not 
found to introduce significant error. Implementation 
of the windowing and focusing concept has accuracy 
advantages as well. It is possible to represent the 
route of interest in far more detail than would be 
practical with full system models. Earlier tests of 
TRFM showed that once the model has been calibrated 
on a single route in a radial network, it can ac­
curately (within 5 percent) forecast ridership on 
other existing routes in the same network. A de­
tailed description of TRFM may be found in the ref­
erences cited earlier. 

The standard definition of a service area is the 
region within 0.25 mi of the route or set of routes 
in a system. Furthermore, the service-area concept 
has frequently been extended to account for natural 
and man-made barriers to travel (such as school 
district boundaries) and temporal constraints on 
service (such as service only during rush hours). 
Any such service area is arbitrary in that some of 
those who live outside the service areas still use 
transit and others refuse to walk even a short dis­
tance to a route. Nonetheless, the service-area 
concept persists as one of the most useful and used 
tools for transit route planning. 

Implementation of the service-area concept is 
relatively easy in radial systems with little cir­
cuity. In these systems, almost all possible transit 
trips can be satisfied with at most one transfer. 
Thus it is only necessary to first determine which 
trips occur exclusively within the service area of 
the route of interest and then determine which trips 
go between that route's service area and the service 
areas of immediately connecting routes. All other 
possible transit trips can be ignored. 

Serious problems with the service-area concept 
develop when there is substantial circuity in the 
network. Then it becomes difficult to allocate some 
land parcels exclusively to service areas of single 
routes, especially parcels near transfer points. In 
gridded networks, where there is substantial cir­
cuity, even single-transfer trips have alternative 
paths through the transit network. The foregoing 
simple procedure for handling service areas in 
radial systems fails to adequately describe transit 
trip making in gridded systems. 

TRFM was not originally designed for large, grid­
ded transit systems. When the model was upgraded for 
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this type of system, it was deemed necessary to 
retain TRFM's simplicity of operation, to not in­
crease the amount of data preparation, and to main­
tain its implementation on a small microcomputer. 
Much of this was accomplished by exploiting to the 
maximum extent the interactive qraphics features of 
the program (2._). 

OVERVIEW OF THE SERVICE-AREA ALLOCATION PROCEDURE 

To properly allocate land to service areas in grid­
ded networks it was found necessary to implement a 
version of multiple-path trip assignment. It is 
interesting to note that multiple-path trip assign­
ment has not been implemented on UTPS. Such an 
implementation would be difficult without placing 
severe restrictions on the manner in which zones can 
be defined, because transit riders' choice of routes 
depends heavily on walking distance. So that the 
highway and transit networks can be consistent, UTPS 
permits zones of arbitrary shape, that is, having 
parts both inside and outside service areas of 
routes. But for a multiple-path assignment to work 
well the algorithm must know where service areas of 
connecting routes overlap, that is, where people 
have a true choice between routes. This would not be 
possible unless zonal boundaries closely corre­
sponded to service-area boundaries. Consequently, 
UTPS does not check for overlapped service areas but 
instead permits planners to adjust walking times to 
maintain a reasonable split between routes. As will 
be seen later in this paper, such ad hoc methods of 
handling multiple paths have serious consequences 
when ridership on routes with poor service charac­
teristics is estimated. 

On the other hand, TRFM forces planners to con­
struct zones by following service-area boundaries 
and to construct networks according to a rigid set 
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of rules. The rules are so specific that the eventual 
location of nodes and links in a TRFM network, as 
displayed on a CRT screen, contains all the informa­
tion necessary to completely regenerate the underly­
ing zone structure. If necessary, the computer can 
be directed to find every overlapped service area 
without explicitly knowing the zonal boundaries. The 
following example helps illustrate how TRFM networks 
are constructed and how the program interprets them. 

Figure 1 shows a hypothetical gridded transit 
network with 13 routes and 42 transfer points. Route 
B is the route of interest, that is, the route for 
which ridership is estimated. A TRFM network focuses 
on the route of interest; immediately connecting 
routes are shown in far less detail. If it is as­
sumed that riders do not make multiple transfers, 
the TRFM network and zone system look like those in 
Figure 2. The routes that do not immediately connect 
to the route of interest are shown as dashed lines. 
All trips that use the route of interest must be on 
this network. 

There is a possibility of two paths between a 
point on a connecting route and a point near a 
transfer node along the route of interest. For exam­
ple, a trip from x to y could be satisfied by fol­
lowing Route I and then Route B or by following 
Route F and then Route K. This latter path does not 
use the route of interest. The same is true for the 
reverse trip. The only people who have these two 
potential paths are persons traveling between the 
overlapped service areas of Routes B and K and the 
overlapped service areas of Routes F and I. This 
choice between two paths should be presented to only 
these few riders, not all persons traveling to or 
from zone x. 

Multiple-path procedures for highway traffic 
assignment have been available for some time, rising 
from heuristic procedures of the 1960s to efficient, 
precise stochastic assignment procedures in the 
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FIGURE 2 TRFM network and zone system for the hypothetical network. 

1970s (12,13). But, contrary to conventional wisdom, 
trip assignment on transit routes is not the same 
problem as traffic assignment. In highway networks, 
the number of possible paths is huge and many of the 
paths have nearly identical disutilities. For tran­
sit trips, the reluctance to transfer between routes 
is so strong that optional paths are few. In well­
laid-out transit systems, where overlaps between 
service areas of different routes have been mini­
mized, the optional paths are obvious to most riders 
and should be obvious to a properly constructed 
assignment algorithm. For example, most bus trips 
are made without transferring, and these riders 
simply do not consider possible paths that involve 
transfers, even in rare cases where there may be 
small travel time savings (_!i-16) • Many of the re­
maining riders find that only one path can satisfy 
their trip within one transfer. Very few transit 
riders have a choice of more than two paths. All 
that is really needed is a bipath algorithm. Thus, 
multiple-path trip assignment for transit networks 
must be handled differently from that for highway 
networks. Not only are there fewer path choices, but 
as will be seen, the way in which zone boundaries 
are defined and used becomes critical. 

The bipath algorithm, in theory, is quite 
straightforward. It has to determine where multiple 
paths exist, compute the overlapped service areas, 
determine the fraction of trips that have a choice 
of two paths, and assign the trips on the basis of 
relative service characteristics of the two paths. 
However, in practice such an algorithm can become 
complex while dealing with all the possible shapes 
of zones and overlaps of service areas. 

In order to easily discuss the various aspects of 
how the service-area concept is implemented with a 
bipath algorithm, it is necessary to first define a 

few terms. The route of interest is here called the 
primary network (Route B in Figure 2). The immedi­
ately connecting routes and the primary network 
together form the secondary network (Routes B, H, I, 
J, K, L, and Min Figure 2). The secondary network 
must be a tree; that is, it must not contain cir­
cuits. Routes that intersect the secondary network 
but not the primary network are called tertiary 
networks (any of Routes A, C, D, E, F, and G). Each 
tertiary network is also a tree. There may be sev­
eral tertiary networks associated with a single 
secondary network. If all tertiary networks were to 
be overlaid on the secondary network and all inter­
sections between them were to be explicitly desig­
nated as nodes, the combined network would look very 
much like those created for UTPS and other full-sys­
tem models. However, intersections between tertiary 
networks and the secondary network are not explicitly 
indicated, so they are called virtual nodes. Sec­
tions of routes between adjacent virtual nodes on 
tertiary networks are called virtual links. 

Tertiary networks are drawn on the CRT display in 
the same manner as secondary networks. Explicit 
nodes are drawn first and then explicit links are 
connected to pairs of explicit nodes. A sample CRT 
display with both secondary and tertiary networks is 
shown in Figure 3. Only the explicit links are 
important to the bipath algorithm. They are of three 
types: (a) links that always form virtual nodes at 
intersections with the secondary network, (b) links 
with a one-way characteristic that form virtual nodes 
but only allow these nodes to be used by trips going 
in one particular direction, and (c) links that do 
not form virtual nodes at intersections with the 
secondary network. Most tertiary networks are com­
posed of links of the first type, and many of these 
networks have only a single explicit link. However, 
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FIGURE 3 CRT display of the hypothetical 
network. 

the latter two types of links can be used where it 
is clear that certain paths should be excluded from 
choice sets of riders. 

TRFM requires that its various networks be trees 
for four reasons. First, a more general network 
configuration adds little or nothing to the accuracy 
of forecasts and requires substantially more data 
preparation time. Second, trees can be much more 
compactly stored in the computer's memory. Third, 
algorithms for analyzing trees are far faster than 
those for general networks. And fourth, it is much 
easier to regenerate the underlying zone structure 
of a tree. 

The decomposition of general networks into trees 
is not an unusual practice, given that it is a stan­
dard technique of computerized network analysis. 
TRFM, however, makes planners aware of this process, 
giving them complete control over how the decomposi­
tion is to be accomplished and allowing them to 
optimize their data requirements around it. Because 
of the tree representation, TRFM is able to dispense 
(without sacrificing generality of network represen­
tation) with most zonal centroids, walking links, 
transfer links, and other artificial network ele­
ments that are required by full-system models. 
Equivalent network elements are generated inter­
nally; the planner need not be aware of their exis­
tence. 

TRFM's capacity gives an idea of the compactness 
of network representation that can be achieved when 
networks are created by superimposing trees and 
exploiting service areas. TRFM runs on a 64 K micro­
computer (an Apple II+/IIe), which is small by cur­
rent standards. It can easily handle networks with 
160 explicit nodes, 320 explicit one-way links, 800 
virtual nodes, and 1,600 virtual links without memory 
swapping. Because TRFM requires few artificial net­
work elements, its effective size is even larger. It 
can handle single-route (and even some multiple­
route) problems that previously could only be 
analyzed on main-frame computers or large minicom­
puters. An implementation of TRFM on a slightly 
larger microcomputer would permit analysis of 
systems in the largest of cities. 

The bipath algorithm is not applied to the roughly 
two-thirds of trips that occur exclusively on the 
primary network (i.e., within the service area of 
the route of interest). Of the remaining third or 
so, considerably less than half will be assigned to 
the tertiary networks and thus discarded from rider­
ship estimates on the route of interest. This is 
done by (a) determining which trips can feasibly use 
tertiary networks by looking for overlapped service 
areas and (b) splitting them between the secondary 
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and tertiary networks on the basis of service char­
acter is tics. The mathematical aspects of the algo­
rithm will not be described in detail. Rather, the 
remaining portions of this paper will concentrate on 
discussing how well the concept works and how it may 
be applied to full-system simulation. 

TRFM'S IMPLEMENTATION OF THE BIPATH ALGORITHM 

In TRFM's specific implementation of the bipath 
algorithm the following six assumptions are made: 

1. Boundaries of service areas along routes 
parallel those routes at a fixed distance, typically 
0.25 mi. 

2. The CRT drawing of the network is to scale. 
3. Bus running time between two points following 

a tertiary network is identical to the bus running 
time between the same points on the secondary net­
work. Consequently, the only difference between the 
level of service on these two paths relates to out­
of-vehicle time. Of course, paths along tertiary 
networks that are obviously poor choices can be 
selectively deleted by the planner. 

4, Transfer coordination does not exist at 
virtual nodes. The transfer time is taken to be the 
mean waiting time of the appropriate intersecting 
route. 

5. Choices between paths exist only where the 
service areas of two paths overlap. 

6. The probability of choosing a particular path 
is provided by a logi t model as suggested by Dial 
(12). 

The second through sixth assumptions were made to 
save data preparation time, and they could easily be 
made more rigorous if it were found necessary. The 
analysis described later in this paper suggests that 
more rigor is not necessary. 1n fact, a good argu­
ment can be made for further simplifications to the 
bipath algorithm in the single-route case. 

In order to perform the bipath algorithm, the 
program must go through the following steps: 

1. Identify link segments associated with each 
zone (the program must generate its own links not~ 

explicitly designated by the planner at the ends of 
routes); 

2. Find the areas of zones; 
3. Identify the tertiary networks; 
4. For each virtual node, determine its loca­

tion, intersecting links, directionality of inter­
secting links, and the closest transfer node on the 
primary network; 

5. For each origin-destination pair, determine 
by using overlapped service areas the fraction of 
trips that can possibly use a tertiary network; 

6. Split these trips between secondary and 
tertiary networks by comparing the various com­
ponents of out-of-vehicle time, thereby determining 
the fraction that does not use the secondary network; 

7. Compute the number of trips that use the 
secondary network from the fractions determined in 
the previous two steps and the number of trips for 
each origin-destination pair; 

8. Resolve any double counting of trips due to 
multiple overlaps of service areas; and 

9. Assign the trips to the secondary network and 
count them in total ridership. 

Because of the underlying tree structure of the 
networks, this algorithm can be efficiently executed. 
Steps 1 to 8 take about 140 sec on a typical network 
with 200 virtual nodes. 

An earlier version of the algorithm further 
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subdivided overlapped service areas into 400 smaller 
parcels in order to better account for differences 
in walking distances to the intersecting routes. It 
was found that provision of this level of detail 
added almost nothing to model accuracy but much to 
computation time, so the step was abandoned. 

COMPARISON WITH OTHER AVAILABLE MODELS 

A direct comparison with UTPS is not possible, be­
cause multiple-path assignment has not been imple­
mented on it. At best it can be discussed why an 
all-or-nothing trip assignment, which ignores ser­
vice-area considerations, is inadequate for projec­
tions of ridership on individual routes. This will 
be done by example. 

In 1981 the Milwaukee County Transit System, in 
cooperation with the Southeastern Wisconsin Regional 
Planning Commission, ran several projections of 
system ridership by using UTPS. They had originally 
hoped to use the projections for route-level plan­
ning but backed off when, in spite of all best ef­
forts, it was found that the current year projec­
tions failed to consistently match actual passenger 
loads. The root-mean-square (RMS) error in route 
ridership was 43 percent of the average ridership, 
even though projected total ridership for the system 
was in good agreement with actual figures. 

It stands to reason that multiple-path trip as­
signment would have somewhat improved the route-level 
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results had such an algorithm been available. But 
any multiple-path trip assignment algorithm would 
have been greatly handicapped by a zone structure 
that was originally designed for highway planning. 
Zones were based on quarter sections and many zones 
were as large as full sections (i.e., 1 mi2 ). 

Major arterials, and consequently bus routes, follow 
quarter-section boundaries. Thus, zonal centroids 
were as much as 0. 50 mi from transit routes. Under 
these conditions it would be nearly impossible for 
an algorithm to determine which portions of zones 
are within the service areas of connecting routes. 

Figure 4 shows a portion of the UTPS network in 
Milwaukee. The origin zone is a quarter section and 
is bounded by three routes: Route 60 running east 
and west and Routes 27 and 35 running north and 
south. Those who wish to reach Area E on Morgan 
Avenue (Route 50) have an apparent choice of three 
paths, even though at most two choices are available 
to anyone. Route 50, as will be discussed later, 
provides poor service, so an all-or-nothing assign­
ment would throw all trips onto Path I. However, it 
is highly unlikely that persons in the hatched areas 
would use this path. Rather, those at A will use 
Path II, those at B will use Path III, and those at 
C and D will choose their path on the basis of rela­
tive service characteristics. Similar mistakes in 
allocating trips to paths are repeated at hundreds 
of other zones. For a route like Route 50, the mis­
takes are cumulative, leading to a systematic under-
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counting of ridership and a redistribution of link 
loads. This tendency for all-or-nothing assignment 
to be particularly unkind to routes with relatively 
poor service characteristics was repeatedly seen in 
the Milwaukee case study. The 14 routes with the 
lowest actual volumes had an RMS error of 75 percent 
of average ridership. Most of this error was due to 
underprediction. Specifically, UTPS allocated to 
Route 50 only 9 percent of its actual ridership and 
to Route 15 (a considerably larger route to be dis­
cussed later) 59 percent of its actual ridership. 
The magnitude of this error is such that a comparison 
of predicted link loads to actual link loads would 
be meaningless. 

From the viewpoint of total system ridership 
these problems are of little importance. In this 
case the planner would only be interested in the 
fraction of all trips that use transit, and a misal­
location of transl t trips away from poorer routes 
would affect total ridership only if levels of ser­
vice varied greatly among alternative paths. How­
ever, at the route level these misallocations are 
costly. For the previously cited example, because it 
has lower headways, Path I is allocated all of the 
trips, although it should be allocated at most 50 
percent of possible trips. 

These problems could be mitigated by a much finer 
division of zones, but the issue persists of what to 
do about overlapping service areas. An improper 
placement of an important trip generator could have 
major implications for predicted riderships on near­
by routes. It is desirable that multiple-path trip 
assignment be implemented in full-system models, but 
the algorithm will not be effective unless the zone 
system closely matches service areas of routes. This 
is not as easy as it sounds because a minor realign­
ment of a single route could necessitate a complete 
reconstruction of the entire zone system. TRFM 
nvni ds these problems by requiring a custom zone 
system for each route that is analyzed. Such a pro­
cedure would be impractical when a full-system model 
was used in a large city. 

A more practical, multiple-path algorithm for a 
full-system model could be implemented by following 
essentially the same steps as those of TRFM. First, 
there would necessarily be a hierarchy of three zone 
systems: very fine, coarse, and medium. The very 
fine zone system would be used for organizing demo­
graphic data and perhaps for calculating trip gener­
ation. The coarse zone system would be needed for 
trip distribution and mode split and would be neces­
sarily consistent with the highway network. The 
medium zone system would be used for trip assign­
ment. The size of the medium zones would be small by 
current standards, because each zone has to be un­
ambiguously assignable to the service area of a 
single route or assignable to the overlapped service 
areas of intersecting routes. On the basis of expe­
rience with TRFM, the zone would be approximately 
0.25 mi2 and would be centered on routes. 

Second, trips would be assigned by order of the 
number of transfers required. Trips that can be 
satisfied without transferring would be assigned 
first. Almost all these trips (e.g., those with both 
ends exclusively within the service area of a single 
route) have only one possible path. The few remain­
ing zero-transfer trips can then be split among the 
routes that share the two trip ends. Trips that can 
be satisfied with a single transfer, having at least 
one end exclusively within the service area of a 
single path, would be assigned to that path. The 
remaining single-transfer trips can be split among 
the small number (usually two) of alternative 
single-transfer paths. Trips that can only be satis­
fied with more than one transfer can be assigned to 
the shortest pa th, because there are so few multi­
ple-tr ansfer trips. 
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ILLUSTRATION OF THE SERVICE-AREA CONCEPT 

The first transit system analyzed by using TRFM was 
that located in Racine, Wisconsin (8). The bus sys­
tem in this small community was of the radial type, 
with little consequential overlapping of service 
areas. All but one route met in the downtown at a 
common transfer point. Because of the structure of 
the Racine system, all-or-nothing trip assignment 
was more than adequate. Calibration of the model was 
accomplished by varying a single parameter in the 
logit mode-split equation. This single parameter is 
a coefficient on total trip disutility that has been 
converted to units of in-vehicle time. It would have 
the same value as the coefficient on the in-vehicle 
time variable in a more traditionally calibrated 
logit equation. All other parameters were taken from 
other published studies that were conducted in or 
around southeastern Wisconsin. Once this minimal 
calibration exercise was performed, TRFM produced 
consistently good estimates of actual ridership in 
all the test networks. Details of the Racine tests 
may be found elsewhere (~) • 

The Racine networks could only serve as a partial 
test of the service-area concept. Ridership on all 
the routes was of roughly the same magnitude and 
there was too little circuity. A far more complex 
test for the concept, to be reported here, was 
judged necessary. The Milwaukee County Transit Sys­
tem (MCTS) provided such a test. MCTS is a gridded 
system with a few radial routes, emanating from the 
central business district (CBD). It serves a large, 
heterogeneous metropolitan area, with performance of 
its various regular routes ranging from excellent 
(30,000 riders per day) to poor (less than 500 
riders per day). The MCTS network is as difficult a 
test as could be devised for a ridership forecasting 
model. 

Two routes on opposite sides of the performance 
spectrum were randomly selected from the Milwaukee 
system. The first, Route 50 along Morgan Avenue, is 
at the fringe of the urban area and largely serves 
residences, a large high school, and a subregional 
shopping center. Its total ridership is low (about 
1,200 riders per day), barely meeting MCTS's minimum 
performance standard of 22 passengers per bus hour. 
As might be expected, Route 50 operates on long 
headways, typically 30 min. The second route, Route 
15, is a larger-than-average route (12 ,ODO riders 
per day). It serves the heart of the CBD, the Uni­
versity of Wisconsin--Milwaukee, a regional shopping 
mall, major industrial areas, strip commercial 
areas, and residences. Route 15 has 19 connecting 
routes. Being able to estimate ridership on both 
Routes 15 and 50 by using exactly the same set of 
parameters and with a minimum of recalibration would 
lend strong support to the service-area concept. 

To the extent possible, data were prepared ac­
cording to the procedures established in the Racine 
case study. Only once was it necessary to deviate 
from those procedures--in handling trips arriving at 
the high school on Route 50. Milwaukee has court­
ordered busing to implement desegregation in its 
public schools. As a result, many of Route 50' s 
patrons are captive riders, whose distribution of 
origins is dictated by artificially contrived bound­
aries. To accommodate this situation in TRFM, a 
separate subnetwork was created to specifically 
carry these riders. The appropriate number of captive 
riders was forced onto this subnetwork, yielding an 
estimate of the number of captive riders on each 
link of Route 50. Consequently, the trip generation, 
trip distribution, and mode-split steps of the model 
were overridden for these riders. 

Ridership was estimated for both routes by using 
the original Racine parameters, producing results 
that were approximately 35 percent too low in both 
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cases. This underestimation was expected, having 
been seen in other tests on the Milwaukee system. 
Racine is a much smaller city, has relatively fewer 
individuals of the type that normally patronize 
transit, places less dependence on its transit sys­
tems for busing students, and has a newer transit 
system with a lower overall level of service. In 
short, people in Racine have less of a predisposi­
tion to travel by transit. Nonetheless, this com­
pletely hands-off application of TRFM to Milwaukee 
by using another city's parameters did significantly 
better on the sample routes than did UTPS, which was 
specifically calibrated for Milwaukee. 

In order to provide a better fit to the actual 
data in Milwaukee, the single mode-split parameter 
was adjusted until the percentage error in total 
ridership on both routes was minimized. The other 29 
parameters in the model were left alone. Because of 
this adjustment, there is less interest in how well 
TRFM predicts total ridership than in seeing how 
well the model represents link loads and in observ­
ing consistencies between the two routes. A good 
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match between actual and estimated link loads can 
only be achieved when boardings and alightings are 
accurately predicted everywhere along the route. 

The actual and estimated load profiles for Routes 
50 and 15 are shown in Figures 5 and 6, respectively. 
These link loads are the average of the two direc­
tions of travel. Overall, the model matched the load 
profiles well. The peak load points are properly 
located, and the peak link loads are accurate. The 
RMS error in link load for Route 50 was 21 percenti 
the RMS error in link loads for Route 15 was 9 per­
cent. These are small errors, considering the low 
level of data aggregation represented by link loads. 
The largest errors in link loads occur near the ends 
of Route 50. These errors can be attributed to the 
peculiar behavior of riders on routes with very long 
headways in cities with cold weather. Many riders 
who arrive at their stop early catch their bus going 
in the opposite direction and ride through the lay­
over. Available on-off counts revealed the number of 
riders behaving in this fashion, so the double 
counting of these riders could be eliminated from 
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FIGURE 5 Ridership comparisons for Route 50 (Morgan Avenue). 
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total rider ship, but it was impossible to determine 
where these riders actually boarded the buses. Con­
sequently, it was not possible to properly simulate 
their behavior. 

Of particular importance is the good fit to data 
on both routes by using an identical set of param­
eters. The model is unbiased with respect to the 
performance of route, demonstrating that ·the ser­
vice-area concept is working well. Although only two 
routes were rigorously tested, these routes were so 
dis similar that any such bias should have been ob­
vious. As expected, the model is free from the mis­
allocations that were so evident with all-or-nothing 
assignment in UTPS. 

Much of the complexity in implementing the ser­
vice-area concept stemmod from tho need for multi­
ple-path trip assignment. It is only logical, then, 
to question the importance of having this type of 
assignment. One way to do this is to eliminate 
tertiary routes from the networks and recalibrate 
the model by again adjusting the mode-split param­
eter. When this was done, the mode-split parameter 
increased by only 9 percent, far less than the 
change of 3S percent necessary to recalibrate the 
Racine model for Milwaukee. The load profiles (Fig­
ures S and 6) were virtually unchanged. On the basis 
of this exercise, two observations can be made. 
First, only about 20 percent of trips are affected 
by the bipath algorithm, so eliminating it does not 
obviously distort the results. Second, the bipath 
algorithm affects results in nearly the same way as 
an important parameter in the logit equation of the 
mode-split step. Thus, it would be difficult to 
determine the need for the bipath algorithm simply 
by observing how well it reproduces total ridership 
and link loads. The strongest arguments for the 
bipath algorithm are that (a) it is a logical exten­
sion of the service-area concept, (b) it is con­
sistent with the way riders behave on transit net­
works, and (c) there is little extra data preparation 
required. The bipath assignment could be eliminated 
or downgraded, but at the expense of a bias in an 
important parameter, which could later have an un­
favorable effect on forecast validity. 

Routes SO and lS provided one additional test of 
the service-area concept: ease of data preparation. 
Both networks contained nearly every route in the 
Milwaukee system. Route SO had 120 explicit nodes 
and 208 explicit links; Route lS had 149 explicit 
nodes and 266 explicit links. Total data preparation 
time was approximately 2 person months. However, 
almost all of this time was spent reducing socio­
economic and demographic data for the entire Mil­
waukee urban area to a compatible level of spatial 
aggregation. Of course, the data previously prepared 
for the UTPS runs were totally useless. Each route 
took only about 3 days to complete once this initial 
preparation had been done. The portion of data 
specifically needed for the bipath algorithm re­
quired only about 2 hr of preparation time. This 
amount of data preparation is considerably less than 
that needed for a UTPS run, but TRFM certainly does 
not qualify as a quick-response technique. Data 
preparation time is more on the level of what would 
be needed for careful application of a direct-demand 
model. 

DISCUSSION AND CONCLUSION 

There has long been an inconsistency between the way 
in which transit planners designed service and the 
way in which the more sophisticated simulation 
models predicted ridership. This inconsistency can 
be attributed largely to historical accident; the 
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simulation models were pioneered by highway engi­
neers who found little use for the concepts of ser­
vice area or transferring. In highway networks, 
either access existed or it did not. Where highway 
access did exist, highways were ubiquitous. Motor­
ists had little impediment to switching streets in 
order to reach destinations as quickly as possible. 
The simulation models represented this situation 
rather well. Zones of nearly any size could be 
created at nearly any location and collapsed into a 
single point. Nodes could be placed at all arterial 
intersections to permit turning. And highly effi­
cient traffic assignment algorithms could be written 
to find alternative paths through the network and 
estimate link volumes. However, transit networks 
behave iu dll ""Lh.,ly ulrr.,r.,nt wo.y. They are 
neither ubiquitous nor encourage switching between 
routes, facts fully appreciated by transit planners. 

The large number of attempts to forecast transit 
ridership with direct-demand models stands as a 
testament to transit planners' dissatisfaction with 
models developed for highway planning. The research 
reported in this paper demonstrates that there is a 
middle ground, at least for the single-route case. 
It is possible to retain the sophistication of the 
four-step models while giving full respect to the 
peculiarities of transit networks. In addition, it 
appears that this middle ground can exist for full­
system models, too. 

Unfortunately, the specific test of the bipath 
algorithm was inconclusive. Because of the small 
fraction of trips affected by the bipath algorithm 
in the single-route case, the algorithm would be 
extremely difficult to validate unambiguously in any 
system, including those with extensive origin- desti ­
nation data. Even though an algorithm at this level 
of sophistication may not be essential to ridership 
forecasts on single routes, it is hard to imagine 
how a less sophisticated multiple-path algorithm 
could be successfully implemented in the full-system 
case. An accurate full-system model must at least be 
capable of determining which land parcels are in the 
service area of any given route, which land parcels 
are shared by routes, and what alternative paths 
exist for trips between parcels that are shared. 
This determination is made in the single-route case 
largely through the decomposition of the system into 
a hierarchy of trees; the bipath algorithm plays 
only a minor role in that determination. 

The authors' experience in forecasting ridership 
by employing the service area concept confirms its 
utility and flexibility. Not only is it useful for 
simulating conventional fixed-route service, it can 
be extended to handle park-and-ride service, skip­
s top service, downtown shuttles, and, as seen 
earlier, forced busing. However, implementing the 
concept may require a complete restructuring of 
existing data bases, as well as major enhancements 
to existing simulation models. 
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The Usefulness of Prediction Success Tables for 

Discriminating Among Random Utility 

Travel Demand Models 

JOEL L. HOROWITZ 

ABSTRACT 

The development of an empirical random utility travel demand model, like the 
development of most other statistically based models, typically includes test­
ing and comparing several different functional specifications of the model to 
determine which specification best explains the available data. This paper is 
concerned with comparisons based on prediction success tables and indices. It 
is shown by example that prediction success tables and indices can lead to 
selection of the incorrect model when a correctly specified model is compared 
with an incorrectly specified one. This can happen even with data sets suffi­
ciently large to make the effects of random sampling errors negligibly small. 
Accordingly, it is concluded that prediction success tables and indices should 
not be used for model selection. Alternative selection procedures that are both 
reliable and easy to use are described. 

The development of an empirical random utility 
travel demand model (e.g., a logit or probit model), 
like the development of most other statistically 
based models, typically includes testing and compar­
ing several different functional specifications of 
the model to determine which specification best 
explains the available data. For example, in devel­
oping a logit mode choice model, a specification in 
which the utility function is linear in the travel 
time might be compared with a specification in which 
the utility function is linear in the logarithm of 
the travel time. A variety of formal statistical 
procedures for testing and comparing alternative 
specifications of models is available (!_-!) • The 
discussion in this paper is concerned with compari­
son procedures based on prediction success tables 
and indices (]_) • These procedures have no formal 
justification, but they have greater intuitive 
appeal than do many of the formal procedures and 
therefore are attractive in practice. 

A prediction success table for a model of choice 
among J alternatives contains J rows and J columns 
The entry in the ( i, j) cell of the table is the 
number (or proportion) of individuals in the avail­
able data set who are observed to choose alternative 
i and predicted by the model under consideration to 
choose alternative j. Intuition suggests that a 
model with relatively large diagonal elements in its 
prediction success table is likely to provide a 
better explanation of the available data than is a 
model with relatively small diagonal elements be­
cause the former model gives a higher proportion of 
correct predictions of choice than does the latter. 
A single indicator of a model's prediction success 
can be obtained by forming a suitable average of the 
diagonal elements of its prediction success table. 
The resulting prediction success index provides an 
unambiguous criterion for discriminating among sev­
eral models when no model dominates the others in 
terms of all of the diagonal elements of the models' 
prediction success tables. 

The purpose of this paper is to show by means of 
examples that an erroneously specified model can 

have larger diagonal elements in its prediction 
success table and a larger prediction success i ndex 
than does a correctly specified model. This can 
happen even with data sets sufficiently large to 
make the effects of random sampling errors negligibly 
small. Thus, contrary to intuition, prediction suc­
cess tables and indices do not provide reliable 
means for comparing models with different specifica­
tions. Alternative comparison techniques tha t a re 
both reliable and easy to use are described in the 
final section of the paper. 

DEFINITIONS OF PREDICTION SUCCESS TABLES AND INDICES 

Prediction success tables and indices were proposed 
originally by McFadden (3) as goodness-of-fit indi­
cators for random utility models. A prediction suc­
cess table for a model can be developed as follows. 
Let the available data consist of observations of N 
individuals who choose among J alternatives. Let 
Pjn denote the probability that ind ividual n in 
the data set (n = 1, ••• , N) chooses alternative j 
(j = 1, •.• , J) according to the model under con­
sideration. Let Sjn equal 1 if individual n is 
observed to choose alternative j and 0 otherwise. 
For each pair of alternatives (i,j) (i,j = 1, •.• , J) 
define Nij as 

N 
Nij r SinPjn (1) 

n=l 

and define 'IT ij by 

11 ij = Nij/N (2) 

Then Nij and 11 ij respectively represent the number 
and proportion of individuals in the data set who are 
observed to choose alternative i and predicted by the 

model to choose alternative j. Nii and 11 ii respec­
tively represent the number and proportion of indivi-
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duals who are correctly predicted to choose alterna­
tive i. A prediction success table for the model is 
theA J x J array whose (i,j) element is either Nij 

or 11 ij• Eithe r form of the table contains the same 
diagnostic informa tion, and it is a mat ter of con­
venience which is used. In this paper, it will be 

convenient to use the form based on ;ij· 
The total proportion of choices successfully pre­

dicted by the model under consideration is 

J 

11 ., I 11 j j 
j=l 

(3) 

This constitutes a goodness-of-fit index for the 
model. However, a better index can be achieved by 
averaging the differences between the proportions of 
correct predictions for each alternative obtained 
from the model and the proportions of correct pre­
dictions that would be obtained if each alternative 
were assumed to be chosen by each individual with a 
probability equal to the alternative's observed ag­
gregate share. The resulting prediction success 
index is 

where 

11. J. 

J 

I 11 jk 
k=l 

(4) 

(5) 

[Equation 4 corrects a typographical error in a pre­
vious study (1_) that has the effect of exchanging the 
order of the subscripts on the right-hand side of 

Equation 5.) When.; (or;) is ~sed t~ compare models, 

the model with the largest 11 (or a) value is pre­
ferred to the others because this model yields the 
largest proportion of correct predictions in the 

case of; or, in the case of;, the largest increase 
in the proportion of correct predictions relative to 
the proportion implied by the observed aggregate 
shares. 

CRITERION FOR EVALUATING USEFULNESS OF PREDICTION 
SUCCESS TABLES AND INDICES 

In this paper, prediction success tables and indices 
will be evaluated according to their abilities to 
distinguish between correctly and incorrectly speci­
fied models. Before this can be done, it is necessar y 
to consider the effects of random sampling errors on 
the ability of any statistical procedure to distin­
guish between correct and incorrect models and to 
identify a method for dealing with these effects. 
Random sampling error arises because different indi­
viduals with the same observable characteristics 
(i.e., the same values of a model's explanatory 
variables) and the same sets of alternatives may 
make different choices because of the effects of 
unobserved factors. As a result, the estimated pa­
rameter values, choice probabilities, and goodness­
of-fit statistics for a model tend to have different 
values in different finite samples of individuals. 
These random fluctuations in estimation results can 
cause a goodness-of-fit statistic for an incorrectly 
specified model to be more favorable than that for a 
correctly specified model on occasion, even if the 
statistic usually or on the average favors the cor­
rect model. Random sampling error therefore consti­
tutes a "noise factor" that impairs the ability of 
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test statistics to distinguish correct models from 
incorrect ones. 

Random sampling error always can be made negligi­
bly small by making the sample used for estimating 
and testing models sufficiently large. Moreover, if 
the sample is large enough to make the effects of 
sampling error negligible, then it always is possi­
ble to determine unambiguously whether a model is 
correct by comparing the values of its choice prob­
abilities for each set of values of the explanatory 
variables with the observed choices of individuals 
with the same values of the explanatory variables. A 
model whose choice probabilities for the available 
alternatives differ from the observed proportions of 
individuals choosing these alternatives is incor­
rect. Accordingly, it is reasonable to demand for 
comparison statistics, such as prediction success 
tables and indices, that they be capable of distin­
guishing without error between correct and incorrect 
models in the absence of random sampling error. In 
formal statistical terms, this property of a test is 
called consistency. Statistical test procedures that 
are not consistent usually are considered to be 
unacceptable. 

In the next section, it will be shown by example 
that prediction success tables and indices are not 
consistent when used to discriminate among models. 
In other words, prediction success tables and indices 
can result in the selection of an incorrect model in 
a comparison with a correct one, even if the sample 
used for estimating and testing the models is large 
enough to make random sampling errors negligibly 
small. To show this, it is necessary to be able to 
evaluate the limits ~f theA entries in a prediction 

success table and of 11 and a as the sample size ap­
proaches infinity (large-sample limits). It follows 
from the strong law of large numbers that as the 

sample size N approaches infinity, the entries 11 ij in 
a prediction success table approach 

11 ij = E [Qi (X) pj (X) I (6) 

where Qi(X) denotes the true probability that a 
randomly selected individual for whom the values of 
the explanatory variables are X chooses alternative 
i (i.e., the probability according to the correctly 
specified model and the true parameter values), Pj(X) 
denotes the large-sample limit of the probability ac­
cording to the model under consideration that a ran­
domly selected individual for whom the values of the 
explanatory variables are X chooses alternative j, 
and E denotes the expectation over the distribution 
of explanatory variables X in the population being 

sampled. The large-sample limits of; and; are ob­
tained by substituting Equation 6 into Equations 3 
and 4. These limits will be denoted by 11 and a , 
respectively. 

TWO EXAMPLES OF INCONSISTENCY 

Suppose that a model of choice among two alterna­
tives (e.g., mode choice between automobile and 
transit) is being developed. Then J = 2, and 

(7) 

(8) 

where the argument X of P1 and Q1 has been suppressed 
to simplify the notation. If P1(X) = Q1 (X) for all X 
(i.e., the model under consideration is correctly 
specified) , Equations 7 and 8 become 

(9) 
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(10) 

By subtracting Equation 9 from Equation 7 and Equa­
tion 10 from Equation 8, one obtains the large-sample 
limits of the differences between the diagonal ele­
ments of the prediction success tables of an arbi­
trary model P and the correctly specified model Q. 
Denote the limits of these differences by 611jj(j = 
1,2). Then 

(11) 

(12) 

Now suppose that models P and Q yield the same pre­
dictions of the aggregate shares of alternatives 1 
and 2. Then E (P1 - Q1) and 

611 11=611 22 (13) 

Equivalently, 

Finally, suppose that in addition to satisfying 
E(P1 - Q1) = O, P1 has the property that 

(15) 
0 otherwise 

In other words, model P assigns individuals deter­
ministically to alternative 1 if Q1 (X) > E (Q1l and 
deterministically to alternative 2 otherwise. Model P 
is misspecified because P1(X) t Q1(X) whenever Q1(X) 
differs from 1 or O. However, it can be seen from 
Equation 14 that 61111 > 0 and trn 22 > 0. Therefore, if 
the sample size is large enough to make random sam­
pling errors negligibly small, the diagonal elements 
of the prediction success table of the erroneous 
monPl P will exceed the correspondin<J elements of 
the prediction success table of the correct model Q. 
Similarly, the goodness-of-fit indices; and ; will 
be larger for model P than for model Q when the sam­
ple size is sufficiently large. Thus, the prediction 
success tables and indices will lead to selection of 
the wrong model in large samples and are inconsis­
tent. The following example illustrates this result 
numerically. 

Example 1 

Tn il mndel of mode choice between automobile and 
transit let mode 1 be automobile and mode 2 be tran­
sit. Let the correctly specified model be 

1/(1 + exp(-0.lT)] (16) 

where T denotes transit travel time minus automobile 
travel time in minutes. Let the distribution of T in 
the sampled population be uniform on the interval 
(-10,101. Thep E(Q 1)

2
= E(Q 2) = o.s in this popula­

tion, and E(Q1) = E(Q2) = 0.27. It follows from set­
ting Pi Qi in Equation 6 that the large-sample 
limit of model Q's prediction success table is 

Table (Q) 
fo.21 
lo.23 

0.231 

0.27 

The values of 11 and a for model Q are 11 (Q) 
a (Q) = 0.04. 

Now define the misspecified model P by 

(17) 

0.54 and 
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if T > 0 
(18) 

otherwise 

Then E (P1) = E (Q1), and E (P1Q1l = 0.31. It follows 
from Equation 6 that the large-sample limit of model 
P's prediction success table is 

Table (P) 
[

0.31 

0.19 
(19) 0.19] 

0.31 

The values of 11 and a for model P are 11 (P) = 0. 62 and 
a (P) = 0.12. Thus, if the sample size is sufficiently 
laz:gt! and models Q and P are compared by using their 
prediction success tables or their 11 - or a -values, 
the erroneous model P will be accepted and the cor­
rect model Q rejected. This is true despite the fact 
that model P yields predictions that can be both un­
reasonable and highly erroneous. For example, sup­
pose that T = 1 for a certain population group (i.e., 
transit travel time exceeds automobile travel time by 
1 min). Then model Q yields the result that 48 per­
cent of the members of this group use transit, where­
as model P yields the unreasonable and erroneous re­
sult that no members of the group use transit. 

Example 1 shows that the use of prediction suc­
cess tables and indices for model selection can lead 
to selection of an erroneously specified model and 
rejection of a correctly specified one. However, the 
erroneous model P used in this example cannot be 
obtained through maximum-likelihood estimation, 
which is the standard method for estimating empirical 
choice models. This suggests the possibility that 
prediction success tables and indices may discrimi­
nate correctly among models when the sample size is 
large if consideration is restricted to models that 
can be obtained through maximum-likelihood estima­
tion. The next example shows that even when this 
restriction is imposed, prediction success tables 
and indices can select the wrong model. 

Example 2 

As in Example 1, let individuals choose between the 
modes automobile (mode 1) and transit (mode 2). Let 
the correctly specified model be given by Equation 
16. Assume that the values of T in the sampled popu­
lation are restricted to those shown in Table 1 
(e.g., because the sample is stratified) and that 
each of these values occurs with probability 1/9. 
Let the erroneous model be specified as 

P1 = 1/(1 + exp(-nC)] (20) 

where a is a positive constant and C is the cost 
of transit travel minus the cost of automobile travel 
in dollars. Assume that in the sampled population / 
there is a unique value of C associated with each 
value of T (e.g., because of the stratification 
procedure that is used) and that the c-values cor­
responding to the T-values are as shown in Table 1. 

TABLE 1 Values of Explanatory 
Variables for Example 2 

T(min) c ($) 

-80.0 -1.00 
-60.0 -0.97 
-20.0 -0.52 
-10.0 -0.29 

0.0 0.0 

T(min) 

10.0 
20.0 
60.0 
80.0 

c ($) 

0.29 
0.52 
0.97 
1.00 
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The large-sample limit of the prediction success 
table of the correct model Q i s 

Toblo (Q) • [:: :::: : : ::::] (21) 

The TT - and a -values of model Q are TT (Q) = 0. 8092 and 
a (Q) = 0.3092. The large-sample limit of the maximum­
likelihood estimate of <>, which can be computed by 
using methods described elsewhere (4), is 4.2877. 
The large-sample limit of the prediction success 
table of the erroneous model P can be obtained from 
Equation 6 by using Equation 16 to evaluate the Q 

probabilities and Equation 20 with ci O. 2332 to 
evaluate the P probabilities. The result is 

Table (P) 
[

0.4060 

0.0940 

0.0940] 

0.4060 
(22) 

The TT - and a -values of model P are TT (P) = O. 8120 and 
a (P) = 0. 3120. It can be seen that the prediction 
success tables and TT - and a-values all favor the 
erroneous model P. Although the differences between 
the prediction success tables and TT - and a-values of 
the two models are small, a comparison of the models 
based on any of these criteria will lead to accep­
tance of the erroneous model and rejection of the 
correct one if the sample size is large enough to 
make random sampling errors negligible. As an exam­
ple of the prediction errors that can result from 
selection of the incorrect model, suppose that tran­
sit improvements cause T to decrease from 20. 0 to 
10.0 for a certain population group while C remains 
unchanged. Then model Q yields the result that tran­
sit ridership in this group increases by 126 per­
cent, whereas model P yields the result that there 
is no change in transit ridership. 

DISCUSSION 

The examples presented here show that prediction 
success tables and indices are unreliable means for 
discriminating among models. They can result in 
acceptance of an incorrect model and rejection of a 
correct one, even when the sample used for estima­
tion and testing is large enough to make random 
sampling errors negligible. Because, as will now be 
discussed, comparison procedures that do not have 
this deficiency are readily available, prediction 
success tables and indices should not be used for 
model selection. 

The appropriate procedure to use for comparing 
two models depends on whether the models are nested 
or nonnested. TWo models are nested if one model can 
be obtained from the other by assigning appropriate 
values to the latter model's parameters. In nonnested 
models, this cannot be done; given the values of 
either model's parameters, it is not possible to 
choose values of the other model's parameters so 
that the two models become identical. Models P and Q 
in Example 1 are nested because P can be obtained 
from Q by setting the coefficient of T in Q equal to 
_,. Models P and Q in Example 2 are nonnested. See 
the discussion by Horowitz (1) for further examples 
of nested and nonnested models. 
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Comparisons of nested models can best be carried 
out by using likelihood ratio or t-tests (3). In a 
comparison of a correctly specified model-with an 
incorrectly specified one, these tests always select 
the correct model in the absence of random sampling 
error (i.e., they are consistent). When random sam­
pling error is present (as it always is in practice), 
likelihood ratio and t-tests have high probabilities 
of selecting the correct model when a correctly 
specified model is compared with one that is se­
riously erroneous (_!). Likelihood ratio and t-tests 
are easily implemented because they rely on informa­
tion that is virtually always included in the out­
puts of computer programs used for estimating random 
utility travel demand models. 

Nonnested models can be compare d easily by using 
the likelihood ratio index statistic modified to 
account for the effects of any differences in the 
numbers of estimated parameters in the models being 
compared (1,2). Like the likelihood ratio and t-tests 
for nested-models, comparisons based on the modified 
likelihood ratio index are consistent and with sam­
ples of practical size, where random sampling error 
is present, have high probabilities of selecting the 
correct model when a correctly specified model is 
compared with a seriously erroneous one (1,2). Com­
parisons based on the modified likelihood ratio index 
can be implemented by using information that is in­
cluded in the outputs of existing computer programs 
for estimating random utility travel demand models. 
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Travel Demand Forecasting with the Quick-Response 

Microcomputer System: 

Application and Evaluation of Use 

G. SCOTT RUTHERFORD and NORMA T. PENNOCK 

ARSTRACT 

A description, application, and evaluation of the quick-response microcomputer 
system (QRS) are presented. QRS is found to be a well-programmed computer ver­
sion of the manual techniques presented in NCHRP Report 187. The system is, 
with few exceptions, easy to understand and operate. Observations about QRS 
operation include the following: (a) Some data files must be laboriously re­
entered every time the model is run; (b) screen prompts and written documenta­
tion sometimes fail to give sufficient guidance; (c) the gravity model output 
is never transformed into an origin-destination matrix, although it is labeled 
as such; (d) the mode-choice model has several undesirable features, the most 
troublesome being the lack of an explicit transit penalty, making calibration 
difficult; (e) the software may be so easy to apply that it can be used without 
much thought; and (f) the best application of QRS might be for local traffic 
analysis and not for corridor or regional studies. 

In 1978 a two-phase research effort of NCHRP culmi­
nated with publication of two volumes in the NCHRP 
Report series. Phase I consisted of identifying 
travel-related urban policy issues and assessing 
existing methods and procedures that could be used 
to respond to these issues quickly. The rei:iultoi of 
Phase I were presented in NCHRP Report 186 (!_) • 

Phase II included developing a User's Guide "to de­
scribe transferable parameters, factors, manual 
techniques, and the 1 ike, to enable the user to 
carry out a simplified [travel demand) analysis 
without the necessity of reference to other sources" 
(~). Phase II results were published in NCHRP Report 
187 (2). These reports will henceforth be referred 
to as°'NCHRP Reports 186 and 187. 

In the years following its publication, NCHRP 
Report 187 has become a popular reference and plan­
ning tool (l_) along with such standards as Charac­
tcriotioo of Urban TrQnsportation Demand <!l, Char­
acteristics of Urban Transportation Systems (~), and 
the Institute of Transportation Engineers' trip gen­
eration manual (6). 

Some years after publication of NCHRP Report 187, 
FHWA established funds for the creation of microcom­
puter software that would incorporate the report's 
quick-response techniques for travel demand fore­
casting. The resulting software, called the quick­
response microcomputer system (QRS) , was released 
into the public domain in February 1984. 

The following description of QRS is not intended 
as a substitute for the user's manual; rather, it is 
meant to be a supplement. This paper provides a sum­
mary of QRS format and application; however, readers 
who wish to use QRS should begin with the study of 
NCHRP Report 187 (~) and the QRS user's manual <2>· 

HARDWARE AND SOFTWARE REQUIREMENTS 

QRS has been written and compiled in two versions, 
one for the Apple microcomputer and the other for 

the IBM PC. In either case, the computer must be 
configured with a minimum of 64K random access mem­
ory (RAM), two disk drives (for 5 1/4-in. floppy 
disks), and a video monitor capable of displaying 24 
lines and 80 columns. A printer is optional because 
users can copy output from the monitor. However, 
copying is a tiresome procedure, so a printer is 
strongly recommended. Users of the Apple II+ or 
Apple Ile also need a language card. 

QRS is written in UCSD PASCAL, and its programs 
run within the UCSD p-system. Users must purchase 
the UCSD p-system and use the file management facil­
ities of the p-system to run QRS. Purchase of the 
full p-system represents a substantial software in­
vestment; a "run-time" version may be purchased more 
cheaply, and it has all the capabilities required to 
operate QRS. However, users of the run-time version 
will not be able to modify files or programs. 

All the modules within QHS are menu-driven; that 
is, a list of possible responses is presented for 
the user's choice. The following paragraph is ex­
cerpted from the user's manual <2>: 

The QRS has been designed to be user 
friendly. Users direct the system by selec­
tion of functions from a menu. Ease of data 
entry has been incorporated in the system's 
basic design. After review of this manual 
and NCHRP Report 167, the system should pro­
vide sufficient prompting information at the 
screen to allow operation with minimal ref­
erence to printed material. 

In its present form, application of QRS is sub­
ject to upper bounds on certain parameters. These 
include 

• Maximum number of zones, 50; 
• Maximum number of assignment links, 800; and 
• Maximum travel time, 40 min. 
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GENERAL DESCRIPTION 

Trip Generatie>n 

QRS calculates trip productions based on the number 
of dwelling uni ts in each zone. Users are free to 
use their own trip rates or to use QRS default 
values. Attractions are calculated for each zone 
according to default equations or user-specified 
values. 

After users have established production and at­
traction rates, they must provide zonal data. For 
each zone, the following data are required: 

• Average income or average automobile owner-
ship per household, 

• Retail employment, 
• Nonretail employment, and 
• Total dwelling units. 

Trip Distribution 

The gravity model in QRS is the traditional formula­
tion. Required input for each of the three trip pur­
poses includes the following: 

• Productions and attractions for each zone, 
• Travel time/friction factor relationship, 

Intrazonal travel times, and 
• Interzonal travel times for each ij inter­

change. 

Users may input productions and attractions directly 
or may recall the file saved after trip generation. 
Travel times may be entered directly for each inter­
change. Alternatively, QRS will calculate interzonal 
travel times, given the following data: 

• Zone type for each zone [central business 
district (CBD) or suburb), 

• X and Y coordinates for each zone centroid 
(measured in inches) , 

• Map scale (miles per inch) , 
• Circuity factor to convert airline distance 

to over-the-road distance, and 
• For each interchange, the following percent­

ages: (a) distance in CBD, (b) distance (a) on arte­
rials, (c) distance in central city, (d) distance 
(c) on arterials, (e) distance in suburbs, and (f) 
distance (e) on arterials. 

Users may elect to use default values for fric­
tion factors, which are available for each of the 
four population groups. If users have area-specific 
factors, these may be directly entered into the 
gravity model. In either case, the program forces 
users to begin with a travel time of 1 min and to 
increase by 1-min increments up to a maximum of 40 
min. Corresponding friction factors are needed for 
each of three trip purposes. 

Mode Choice 

QRS calculates mode split based on previously saved 
files of person trips and travel times and new data 
required for calculation of impedances. 

QRS employs travel times calculated for trip dis­
tribution as in-vehicle times for automobile imped­
ance. In-vehicle time for transit, excess time for 
both modes, and travel cost for both modes are cal­
culated based on the following new data: 

• For each origin zone the following: automo­
bile occupancy, income, automobile access time, and 
walk or drive time for transit access; 
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• For each destination zone the following: 
parking cost and time to walk to destination after 
leaving automobile or transit; and 

• For each origin-destination (OD) interchange 
the following: transit speed, circuity, headway, 
fare, and transfer time. 

These values may be held constant for all inter­
changes, may be unique for each interchange, or may 
be constant for all but a selected group of inter­
changes. The user should know that travel times cal­
culated for trip distribution include OD terminal 
times. If the travel time file is used without mod­
ification for mode choice, special care must be 
given to definition of automobile access times. 

Traffic Assignment 

The QRS traffic assignment model is basically a 
bookkeeping function. Users supply trip tables that 
were created in the trip-distribution or mode-choice 
models. Any number of trip tables may be combined so 
long as the tables are all of equal size. Normally 
users combine the tables for the three trip purposes 
and make a single assignment of total daily traffic. 

Summary 

Figure 1 shows the required data for and output from 
the four basic modules: trip generation, trip dis­
tribution, mode choice, and traffic assignment. 

APPLICATION OF QRS 

The authors used QRS to forecast the demand for 
light rail transit (LRT) in Spokane, a medium-sized 
city in Washington State. Figure 2 shows the study 
corridor. In keeping with the time and budget con­
straints of the feasibility study, and in view of 
the fact that the study was one of only feasibility 
versus a complete-alternatives analysis, the authors 
decided that the LRT forecast could best be accom­
plished with QRS. 

The Study Area 

The maximum number of zones that QRS will accommo­
date is 50; therefore it was necessary to aggregate 
the region's 286 zones into new groupings. The re­
sults of aggregation are shown in Figure 3. Forty­
six districts were formed; the four extra ones were 
intended to be used as external zones. 

Trip Generation Results 

QRS default trip rates and default trip purpose 
shares were used as a starting point for calculation 
of productions and attractions. The results were 
compared with local totals for the three trip pur­
poses in each of the 46 zones. An iterative process 
was then used to adjust the production rates for 
each income category until the resulting production 
and attraction zonal totals were acceptably close to 
the local totals. 

Trip Distribution 

One major input to the gravity model was a travel 
time matrix, representing minutes of in-vehicle and 
out-of-vehicle time for every automobile interchange 
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in the 46-zone region. Centroids were assigned to 
each zone on the basis of demographic density; a 
land use map was used to estimate the most likely 
center of activity for each zone. Each centroid was 
assigned x-Y coordinates (in inches) so that QRS 
could use centroid coordinates and a user-supplied 
circuity factor to convert airline distance to over­
the-road distance. Actual driving distances for sev­
eral interchanges were compared with the distances 
that resulted with a circuity factor of 1.22 (the 
QRS default factor) , and the comparison indicated 
that the default factor was acceptable. 

In addition, each zone was assigned to one of 
three zone-type categories: CBD, central city, or 
suburban. Zones 1 and 2 were CBD, zones 3 through 16 
were central city, and the remaining zones were sub­
urban. 

In a region of 46 zones, there are 2,116 possible 
interchanges. This number can be reduced to 1,058 
because travel time in one direction is assumed 
equal to travel time in the opposite direction. The 
number can be further reduced to 1,012, because QRS 
calculates the 46 intrazonal travel times on the 
basis of interzonal times. For each of the 1,012 
interchanges remaining, it was necessary to estimate 
both the portion of the trip in the CBD, central 
city, and suburbs and the portion of the trip on 
arterials and freeways. 

These estimates were made by using Spokane street 
maps. Consideration was given to Spokane's unique 
topography in which there is a limited number of 
river crossings. Consideration was also given to the 
location of freeway interchanges. 

Friction factors for the gravity model were 
adapted from factors used by local agencies. Plots 
of travel time versus friction factors were made for 
each of three trip purposes, and smooth curves were 
drawn through the data points. The factors used for 
the LRT study were taken from the curves. 

Trip length distributions for 1980 were not lo­
cally available, but 1980 census data included work 
trip information. Census records indicated that the 
1980 home-to-work trip in the Spokane region aver­
aged 18.4 min, whereas the QRS average home-to-work 
trip was 18.0 min. This was considered to be an ac­
ceptable match, given the difference in calculation 
methods. 

Mode Choice 

Three major data sets had to be prepared as input to 
the mode-choice model. The first data set was OD 
data for each of the 46 zones. The format of the 
resulting file is given in Table 1. A similar file 
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TABLE I Format of QRS Mode-Choice OD Data File 

Origin Zone Data 
Destination Zone Data 

Transit Time 
Automobile (min) 

Automobile Income Walk Time 
Zone Occupancy ($000s) (min) Walk 

I 1.3 3.0 10 
2 1.3 3.0 IO 
3 1.3 4.0 7 
4 1.3 5.0 10 
5 1.3 7 .0 7 
6 1.3 8.0 7 
7 1.3 7 .0 7 
8 1.3 6.0 10 
9 1.3 3.0 IO 

IO 1.3 5.0 IO 

had to be created for each of the three trip pur-
poses. 

Transit walk times were estimated by measuring 
over-the-road distances on a base map, and the dis­
tances measured were from zone centroids to the 
nearest bus line. In very large zones, these transit 
walk times were increased to allow for the fact that 
a small portion of the zone's residents actually 
1 ived within practical walking distance of a bus 
line. 

The second major data set required was a matrix 
of automobile travel times. The travel time matrix 
used in trip distribution was created based on cer­
tain assumed trip end conditions, including automo­
bile access times. 

The third major data set was one that described 
transit parameters for each interchange. Bus sched­
ules and a route map from the Spokane Transit Au­
thority (STA) were used to establish transit speed, 
transit circuity, transit fare ($0.50 for all inter­
changes), transit headway, and transfer time for 
each interchange in the 46-zone region. 

Transit speeds were calculated for individual 
routes by measuring distances between time points on 
a transit route map and using route schedules to de­
termine time between the points. These calculations 
showed an average system speed of 14 mph, which 
agreed with average speeds reported by STA (8). In 
the QRS application, routes with higher speeds were 
thus credited. 

Transit headways were examined for individual 
routes during the morning peak period [for home­
based work (HBW) trips] and during midday [for home­
based nonwork (HBO) and non-home-based (NHB) trips]. 
It was determined that a 3U-min headway was typical 
of the system as a whole. 

A file of centroid coordinates was required as 
mode-choice input. Unfortunately, the coordinate 
file used in trip distribution could not be used for 
mode choice because mode-choice coordinates must be 
expressed in miles rather than in inches. 

The final input to mode choice is a set of param­
eters used by QRS to convert time and cost to imped­
ance units. These parameters, and the values used in 
the Spokane forecast, include the following: 

• Weight for excess time, 2.50: 
• Income to value-of-time factor, O. 33: 
• Automobile operating cost, $0 .08 per mile 

(which represents a behavioral cost) : 
• Model exponent for HBW trips, 1.55; 
• Model exponent for HBO trips, 2. 40; and 
• Model exponent for NHB trips, 2.15. 

Calibration of the mode-choice model was achieved 
through successive iterations. Adjustments were made 
to the model exponents, transfer penalties, and 

Automobile 
Parking Cost Walk Time Transit Walk 

Drive (cents) (min) Time (min) 

0 100 3 10 
0 IOO 3 10 
0 0 I 7 
0 0 I 10 
0 0 1 7 
0 0 t 7 
0 0 l 7 
0 0 I 10 
0 0 J 10 
0 0 t IO 

transit access times until the results were accept­
ably close to 1980 STA ridership figures. Two rider­
ship measures were used to judge the QRS results: 

• Total STA weekday ridership in 1980, which 
was 24, 360; and 

• Average 1980 weekday ridership on Valley 
routes, which was 3,450 (estimated as 97 percent of 
1982 ridership, because 1980 daily ridership was 97 
percent of that in 1982) (_!!). 

The QRS mode-choice model was considered to be 
calibrated when the following results were achieved: 

• Region weekday ridership equalled 24,400 
(desired total, 24,360), and 

• Valley route weekday ridership equalled 3 ,49 O 
(desired total, 3,450). 

Forecast 

Future-year demographic forecasts were made avail­
able by local agencies. Year 2000 was the target for 
the LRT feasibility study: for each of the 286 
zones, data on total households, total employment, 
and total group quarters population were available 
for the year 2000. These data were aggregated to 
correspond to the 46 zones used in the LRT study, 
just as had been done with 1980 data. 

For the year 2000, total employment was split be­
tween retail and nonretail categories in the same 
proportion as had been observed in 1980. Exceptions 
were made for zones where total employment was fore­
cast to change significantly. The zonal data were 
used in the calibrated trip generation model, and 
the output productions and attractions were entered 
into the calibrated gravity model. 

Mode choice for the forecast year involved creat­
ing a rough design of the proposed LRT line with an 
attendant feeder bus service. A base map was pre­
pared that included the LRT route as approved by the 
feasibility study steering committee. North-south 
bus routes in conceptual form were added in the Val­
ley, but Valley bus routes with east-west orienta­
tion were assumed defunct except for one express 
route. Bus routes outside the Valley were assumed to 
be unchanged, both in coverage and in scheduling. 

The same data files that had been prepared for 
mode-choice calibration had to be prepared for the 
2000 forecast. Each of 1,012 interchanges was ex­
amined separately to identify the operating charac­
teristics that were appropriate. Transit speed for 
each interchange was calculated by means of measur­
ing distances on a base map and assuming transit 
speed to be a function of the share of the trip made 
by LRT versus the share made by bus. Determination 
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of the interchanges that could fairly be assigned to 
LRT was necessarily a matter of judgment. 

In the final analysis, ridership forecast for the 
proposed LRT fell short of the minimum criterion of 
900 passengers per peak hour and peak direction es­
tablished by the feasibility study' s steering com­
mittee. The forecast resulted in a figure of 6,579 
daily LRT riders, which was converted to 610 peak­
hour peak-direction passengers according to local 
transit information (12.3 percent of daily total 
trips peak-hour totali 75 percent of peak-hour 
total = peak direction total) (§_). 

EVALUATION OF THE USE OF QRS 

QRS is not, and was not intended to be, a scaled­
down version of the Urban Transportation Planning 
System (UTPS). It was designed to be a computerized 
application of the techniques presented in NCHRP 
Report 187. Those techniques were established for 
manual travel demand forecastingi QRS has therefore 
inherited all the methodological shortcuts and 
shortcomings that were included in NCHRP Report 187. 
QRS was intended to allow the user to make a fore­
cast faster than manual procedures would permit, but 
it was not intended that the QRS forecast would be 
better than a manual one. Therefore, it is not the 
authors' intention to criticize the inherent method­
ological structure of QRS. Instead, this paper con­
centrates on the authors' opinions about the QRS goal 
to be a "user-friendly" system with "ease of data 
entry" (]_). However, some additional comments are 
provided. 

The following criteria were applied in evaluating 
QRS: 

Is QRS user friendly? 
• Does QRS incorporate ease of data entry? 
• Is QRS quick? 
• Is QRS responsive? 
• When is QRS appropriate? 

The User-Friendly System 

All the programs within QRS are menu-driven. That 
is, the user is always presented with a list of num­
bered alternatives from which to choose. A single 
keystroke corresponds to each alternative, and QRS 
instructs the user to press the appropriate key. 
When the program begins (i.e., when the disk is 
"booted"), the QRS insignia appears along with a re­
quest to hit the ENTER key to proceed. Next appears 
a menu of all the QRS forecast modules: trip gener­
ation, trip distribution, and so on. The user (with 
a single keystroke) chooses a module, and a menu for 
that module appears. This menu contains a numbered 
list of the steps within the program. 

Additional menus appear within each element of a 
program as data are required. The numbered options 
allow the user to recall previously saved files, to 
enter data directly, or to exit. 

Finally, when a data file is being viewed, a menu 
of file management options appears. This menu pro­
vides single-keystroke options for editing, print­
ing, saving, and scrolling. Many of the data files 
are structured so that a row of data corresponds to 
each analysis zone, and each row often has five or 
more entries. A convenient feature of QRS is the 
option to edit these files one entry at a time or a 
whole row at a time. Users may proceed more effi­
ciently than if the option were not available. 

A criticism of the QRS format relates to recall 
of previously saved files. The only ways that users 
can view a listing of files stored on the data disk 
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are to view them before booting QRS or to exit QRS 
and reenter the operating system. If users are un­
fortunate enough to forget the name of a file needed 
in the middle of a program run, the only way they 
can view the necessary file directory is to reboot 
the disk. This is annoying because booting with the 
UCSD p-system is incredibly slow. However, worse 
than losing time is the fact that any portions of 
the module already executed will be losti booting 
requires that the whole process begin anew. 

In general, QRS fulfills its promise to be user 
friendly. The only fault the authors find in this 
regard is the lack of a more convenient way to view 
file directories. In addition, although most of the 
QRS menus include HELP as an option, very few of the 
HELP message files can be found. Most requests for 
help remain unanswered. 

Ease of Data Entry 

In one sense, users will find data entry easy. At 
most points in the program where data must be sup­
plied a menu directs users to create a new file or 
to recall a previously saved file. Usually, on­
screen instructions are worded so that users will 
have no doubt about how to enter the required data. 
For example, within the mode-choice part of the pro­
gram users will be required to create a file of OD 
data. QRS prompts will be the following: 

• Enter zone number (enter 999 to exit) , 
• Input values for zone separated by spaces. 

In cases where on-screen prompts are not clear, 
the user's manual (7) usually provides the necessary 
information. However, there are exceptions worth 
noting. First, in the mode-choice model, destination 
parking cost must be provided. The user should know 
from NCHRP Report 187 that one-half a trip's parking 
cost should be charged to each half of the trip. The 
user probably will not know, because neither the on­
screen prompt nor the documentation explains, that 
the data will be divided by 2 when impedance is cal­
culated. 

Second, and also within the mode-choice module, a 
file on X-Y zonal centroid coordinates must be sup­
plied. The documentation and the prompts do not 
point out that these coordinate measurements must be 
in miles, not inches. Users will be tempted to reuse 
the file of coordinates created for the trip distri­
bution module, but that file is in inches and should 
not be used in mode choice (unless the base map's 
scale was 1 in. = 1 mi). 

Third, within the trip distribution module, the 
user must supply intrazonal travel times. The on­
screen prompt leads users to believe that these 
times must be directly entered each time the gravity 
model is run. If a file of travel times was created 
and saved during the first gravity model run, the 
intrazonal times were saved as a part of the same 
file. On subsequent gravity runs when users are 
asked to input intrazonal travel times, they should 
elect option 2 (direct input). QRS will retrieve and 
display the intrazonal times from the previously 
saved file. 

Fourth, the user is never told that circuity sup­
plied as a transit parameter within mode choice will 
also be applied to the X-Y zonal coordinates for 
calculation of automobile travel times. This means 
that alteration of transit circuity cannot be used 
as a means of testing improved transit service. 

Most of the required data files may be saved and 
recalled as needed for iterative applications of 
QRS. This is essential because calibration of the 
models will no doubt require several, if not many, 
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trials, especially with the gravity model and the 
mode-choice model. It is extremely unfortunate that 
certain data files must be directly input for each 
iteration. 

A minor example is the trip generation module, in 
which users must always enter the attraction equa­
tions, because QRS reverts to the default values 
when users exit the program. This does not consti­
tute a significant problem, but users should be 
careful to keep records of the equations. 

A more serious example is the mode-choice module, 
in which users must input for every interchange in 
the region five transit parameters: speed, circuity, 
headway, transfer time, and fare. If users are work­
ing with a region that has uniform transit coverage 
and performance, they may enter these parameters 
once and they will be held constant for all inter­
changes. However, most likely a truer representation 
of the transit system will be achieved only if some 
of these parameters are varied for some of the in­
terchanges. The designers o f QRS real ized that this 
would be the case and built in an option that allows 
the user to intervene in impedance calculations for 
any or all interchanges. 

To intervene, users must first enter a list of 
all OD pairs requiring intervention. If users are 
working with a sizable number of zones, the list of 
interchanges requiring intervention may be long. The 
problem is that users cannot save this list; it must 
be entered every time. Furthermore, not only must 
users enter it for every iteration of the model, but 
for every trip purpose (HBW, HBO, and NHB trip 
tables are analyzed separately for mode choice) • 

After users supply this list of interchanges, QRS 
wil l calculate impedances for each interchange. QRS 
progresses in typical OD matrix order, beginning 
with 1-1, 1-2, 1-3, ••• , 1-n and ending with 
• • • n-n-1, n-n. Whenever QRS comes to one of the 
interchanges requiring intervention, it pauses and 
prompts users to enter the five transit parameters. 
Theoe data also cannot be stored; users must enter 
them directly for each trip purpose and for each 
iteration. 

The inability to save these data represents a 
serious flaw because mode-choice calibration will no 
doubt require several iterations, and the time re­
quired to directly enter the list of interchanges 
and transit parameters can be extensive. For the 
Spokane LRT forecast, 41 zones were accessible to 
transit, creating 1,681 interchanges (41 x 41). Of 
these 1,681, intervention was necessary for several 
hundred. A single run of the mode-choice model took 
4 1/2 hr at the terminal (1 1/2 hr for each of three 
trip purposes). 

In summary, QRS provides ease of data entry in 
most cases. The exceptions to the rule are not nu­
merous, but they are significant. 

Speed and Responsiveness 

The QRS documentation states, "The basic approach to 
quick response does not rely on coded transportation 
networks • • • • Considerable time is saved by not 
coding networks" <ll. QRS does not use coded net­
works because NCHRP Report 187 did not use them and 
the QRS designers merely programmed the manual tech­
niques. This means that users will not necessarily 
save "considerable time." Assembling the necessary 
data for impedance and travel time calculation is an 
onerous burden requiring that each interchange be 
examined individually so that the parameters may be 
identified. 

A fair estimation of the time required to make a 
forecast with QRS under normal circumstances is dif­
ficult. The authors' best estimate is that a person 
already familiar with QRS and general forecasting 
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procedures and with ready access to the required 
data could accomplish a region9.l or corridor analy­
sis in 4 to 6 weeks. 

An evaluation of QRS responsiveness is related to 
the other criteria: user friendliness, ease of data 
entry, and speed. QRS is responsive to users' needs 
if it rapidly evaluates alternative scenarios, and 
indeed once the QRS models are calibrated, they 
fairly rapidly examine forecast results on the basis 
of varying data. For instance, transit assignment 
resulting from a fare decrease could be calculated 
in just a few hours. However, more compl ex sce­
narios, perhaps involving major alterations in tran­
sit network structures, would require more time; 
determining impedance parameters would take several 
person days. 

Appropriateness 

Given the burden of continued entry and reentry of 
data and the nature of models that may rely on de­
fault values, the authors believe that QRS is most 
appropriate for local traffic studies. For example, 
a regional shopping center traffic study or major 
residential development could easily be handled with 
QRS. However, for regional or corridor studies with 
greater than 25 zones, a network-based system would 
be preferred. 

The mode-choice model has no way to add a transit 
penalty separate from other parameters such as ac­
cess time. This capability is needed for the cali­
bration process. At last report, FHWA was developing 
a new mode-choice model, and until it is available 
the current one should not be used for transit pa­
tronage estimation because it is so difficult to 
calibrate • 

SUMMARY 

In general , the QRS designers have succeeded in pro­
ducing software that computerizes the techniques 
presented in NCHRP Report 187. The program's most 
serious deficiencies involve its inability to save 
extensive files of data, so that a great deal of 
time is required to enter them. These deficiencies 
could be easily remedied, and it would also be easy 
to add a protocol to total trips in the mode-choice 
output matrices. Other elements of QRS that are per­
haps undesirable concern the lengthy process of es­
tablishing parameters for transit impedance and 
travel time calculation. These elements cannot prop­
erly be conoidered flv.wo eiccluoive to QRS1 they were 
inherited from the NCHRP Report 187. 

QRS, in its present form, is a tool that can be 
useful for rapid calculation of zonal productions 
and attractions. If users already have access to ap­
propriate travel times, as would be the case in any 
regional planning conference, the gravity model 
could also be quickly applied. However, the authors 
believe that the mode-choice model, in its present 
form, is not a particularly useful tool. It is cum­
bersome and may require that input be less than 
ideally logical. Personnel at the Transportation 
Systems Center are reportedly planning to incorpo­
rate a different mode-choice model in the future. 

In summary, the authors established four criteria 
with which to judge application of QRS. The results 
of this evaluation are as follows: 

1. Is QRS user friendly? Yes. With few excep­
t ions, users will have no trouble understanding and 
applying the software. 

2. Does QRS incorporate ease of data entry? 
Sometimes. Users are generally well-informed about 



Rutherford and Pennock 

the actual procedures to follow during data entry, 
but the fact that some lengthy files cannot be saved 
and reused is a significant failing. 

3. Is QRS quick? Yes and no. The authors believe 
that users could complete a regionwide forecast in 
20 to 30 person days, given readily available data 
and prior knowledge of QRS. Hence, QRS is faster 
than a mainframe UTPS-type forecast. On the other 
hand, estimating some of the QRS input parameters 
requires days of person effort, and trip matrices 
must be manually summed. In general, QRS is quick, 
but not as quick as it should be. 

4. Is QRS responsive? Sometimes. A calibrated 
QRS can respond quickly (in hours) to some program 
or policy data changes. Examination of other alter­
natives might require days or weeks of effort. 

Potential users of QRS should be familiar with 
the techniques presented in NCHRP Report 187 before 
deciding to use QRS for a travel demand forecast. 
The short-cut methods contained therein--and in 
QRS--are not applicable to all situations. 
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Planning bus system operations has traditionally relied heavily on the acquired 
knowledge of bus system planners and has been one of the last areas of trans­
portation planning to be computerized. There are a number of programs available 
to design the allocation of drivers and vehicles to a bus system, but the plan­
ning process still lacks a detailed capability to determine the desired head­
ways and short lines based on the levels of demand for service. Conventional 
wisdom has held that the regional forecasting models, based on zonal-level 
analyses of trip generation, trip distribution, mode split, and assignment, are 
too aggregate and too coarse to permit them to be used to assist in such plan­
ning efforts. There is no question that these models are coarse and aggregate. 
However, this paper demonstrates that they are still sufficiently realistic and 
accurate to be used for bus route planning at a line-by-line level and that for 
large bus systems they may be much better suited to the planning issues in­
volved than any other available methodology. Some specific requirements that 
the models must meet to be used in this manner are described. A procedure is 
detailed for producing bus system statistics from the standard planning models 
of the Urban Transportation Planning System (UTPS) and it is shown how this 
procedure can be used in conjunction with the UTPS procedures to undertake 
detailed long-range planning of a bus system. The capability of the procedure 
to produce data that accurately reflect the base year is shown to be consider­
ably greater than that normally associated with aggregate travel-forecasting 
models. The capability of using the procedure to refine a long-range bus system 
is demonstrated in a case study from the Los Angeles area, and this shows that 
the procedure has the capability to provide clear indications of a variety of 
improvements to the efficiency of the planned bus network. 

Planning bus system operations has traditionally 
relied heavily on the acquired knowledge of bus 
system planners and has been one of the last areas 
of transportation planning to be computerized. In 
the present state of the art, there are a number of 
programs available to design the allocation of 
drivers and vehicles to a bus system [e.g., RUCUS 
and RASTUS <l-!ll, each of which works on a line-by­
line basis and is capable of determining an effi­
cient, although probably not optimal, allocation of 
both drivers and vehicles. These tools allow a sys­
tem to put into practice the service configuration 
that has been determined from other considerations, 
for example, changes in service levels to meet de­
mand and changes that may be indicated to reduce 
operating costs. 

This planning process still lacks a detailed 
capability to determine the desired headways and 
short lines based on the levels of demand for ser­
vice. Perhaps more important, bus system planning 
has been undertaken only on a short-range basis with 
any degree of detail. Long-range planning of bus 
system configurations has not been attempted to a 
large extent, even though part of the planning of 
future long-range capital investment in transit 
should consider the implications for fleet size and 
system operation. Conventional wisdom has held that 
the long-range regional forecasting models, based on 
zonal-level analyses of trip generation, trip dis-

tribution, mode split, and assignment, are too ag­
gregate and too coarse to permit them to be used to 
assist in such planning efforts. There is no question 
that these models are coarse and aggregate. However, 
the authors believe that it can be demonstrated that 
they are still sufficiently realistic and accurate 
to hP 1rned for blls route planning at a lim1-by-line 
level and that for long-range future planning they 
may be much better suited to the planning issues 
involved than any other available methodology. There 
are some specific requirements that the models must 
meet to be used in this manner, and there will re­
main a need for a significant level of professional 
judgment to be applied to the final results. Never­
theless the basic conclusion is that the models are 
capable of assisting the planning process at this 
level of detail and particularly for long-range 
planning applications. 

In the remainder of this paper the goals of this 
procedure, the steps required to develop models that 
are of sufficient accuracy to be used in this man­
ner, and a computer: program (URAP) that works with 
the Urban Transportation Planning System (UTPS) (5) 
models to produce the information needed for rout;­
level planning are described. A case study of the 
application of the procedures is given to demonstrate 
how the procedure can be used to refine service 
levels that would feed that next step of the pro­
cess--the development of run cuts and schedules. 
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GOALS OF THE PROCEDURE 

The primary goals of this procedure are to be able 
to develop changes in bus route service levels that 
are consistent with demand for bus service and known 
elasticities of demand and to provide a basis for 
estimating changes in service levels required for 
long-range planning purposes well beyond the time 
frame usually associated with detailed bus route 
planning. It is also intended to systematize the 
trial-and-error procedures that are more likely to 
be used in long-range planning for bus service 
changes and to provide a bus system design that 
repr::esents one possible system to meet demand at a 
reasonable level of efficiency and with prespecified 
policy requirements for service. 

DEVELOPMENT OF THE TRANSIT NETWORK 

Fundamentally, the route-analysis procedure consists 
of refining the transit network description in terms 
of both the transit lines themselves (deletion of 
transit lines and definition of short-line opera­
tions) and changes in headways. Therefore, it is 
important that the transit network be built to pro­
vide as realistic a simulation of the actual transit 
system as possible. If the transit network is not a 
careful, realistic simulation, planning of bus route 
revisions will necessarily be too inaccurate to be 
useful, and one would also need to question the 
degree of inherent accuracy in any individual line 
loadings. However, in case it should be construed 
that the levels of accuracy indicated here are re­
quired only to enable the route-analysis procedure 
described in this paper, it should be stressed that 
most transit networks are not built with adequate 
attention to detailed realism and are likely to 
provide misleading results for any long-range plan­
ning application. The level of accuracy described 
here is necessary to the route-analysis application, 
but it should be achieved in any case for realistic 
transit planning of any description. 

Ideally, two network definitions are needed--one 
for the morning or evening peak and one for the 
midday period. For each of these , the network 
description will show the appropriate average head­
ways for the period, the average speed or travel 
time on each link of the network in each period, and 
line descriptions over the network for each bus line 
and significant subline operation. A number of 
aspects of the development of the transit network 
are worth reviewing, because they have a marked 
effect on the accuracy and realism of the network 
and because they include a number of judgmental 
aspects of transferring actual bus lines into state­
of-the-art transit network methodology. 

A careful study of existing bus system operations 
is required initially, ideally focused on defining 
the headways. It is recommended that average head­
ways be developed by counting the actual numbers of 
trips made on a bus route during each of the peak 
periods and in the base (midday) period . Average 
headways are defined by dividing the length of the 
period (peak or base) by the number of trips in that 
period . Counts of trips should be made from published 
schedules or the schedules used to generate work 
pieces for driver assignments . In either case, a 
control point should be defined for each bus route 
and the count of trips made at that point . In the 
process, and by looking at the beginning and ending 
points of each bus trip, the analyst can gain a 
rapid definition of the alternative short-line oper­
ations that are scheduled. 'l'hese can then be aevel­
oped into a definition of the sublines. The authors 
have fou nd that it is preferable to define the count 
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in the direction for each peak for which the trip 
count is maximized and to define the subline opera­
tions that occur in that direction only. 

It is often suggested that the limitations in 
state-of-the-art networks make it best to define 
each bus route as two one-way routes. However, many 
problems are generated by such a definition, includ­
ing a lack of ability to build in layover required 
to maintain headways on round trips and overestima­
tion of the total number of vehicles required to 
provide the service. Because of this, the authors 
have found it preferable to define routes as two-way 
unless this makes it absolutely impossible to pro­
duce a reasonable simulation of a route. Even when a 
route traverses some segments of one-way streets, 
generally in the central business district (CBD), it 
is preferable to define the route as a two-way route 
and define a special two-way transit link on the 
one-way streets. Provided that care is taken in 
connecting walk links to nodes on such a two-way 
street segment, the resulting bus line will usually 
provide the most r·ealistic simulation. Of course, 
genuine one-way routes, such as express bus services 
that operate only in the peak direction, should be 
defined as one-way routes. These should generally be 
the only such routes in the network, however. 

Care is needed in defining the ends of bus lines 
that may make a loop, because state-of-the-art tran­
s it networks will generally prohibit a line from 
crossing itself. Coding to the midpoint of the loop, 
along one side of the loop, or around the loop to 
end at the division point are each possible strat­
egies that should depend on the size of the loop and 
the extent to which appropriate connections from 
zone centroids can be provided along the nodes on 
the loop. 

Subline operations often present serious coding 
problems, particularly when there are a large number 
of such operations on some lines. As a general rule, 
and bearing in mind that the goal of the network 
building is to provide a basis for demand f orecast­
ing, the sublines should be defined from the view­
point of the bus user rather than from the viewpoint 
of the operator . Thus , suppose that A, B, C, and D 
are four points along a bus line with A being the 
beginning of the line and D the end of the line. The 
bus operator may run the following operations: a bus 
starting at A, driving to C, returning to B, pro­
ceeding to D, and then returning to A. The mirror 
image of this operation may also be scheduled , be­
ginning initially at D with short runs to B, C, and 
finally A. This scheme may potentially define as 
many as eight distinct bus trips (A to C, A to D, B 
to C, and B to D and all the return trips). At a 
minimum, given the limitations of state-of-the-art 
transit networks, four two-way lines would need to 
be defined for this. However, most bus riders will 
perceive that the route offers three different head­
ways: one between A and B, one between B and c, and 
one between C and D. Because relativeJ.y few riders 
will ride from one end to the other of the line, 
most bus riders will be unaffected by the fact that 
some buses do not offer service on the entire length 
of the line. Therefore, the line may, if headways 
are identical along AB and CD, be defined as two 
lines: one from A to D and one from B to c. If all 
operations are of the form described earlier, the 
line from A to D will have the base (lowest) head­
way, and the line from B to C will have half the 
base headway, because all buses traverse this por­
tion of the line. Similar reductions in complexity 
of sublining need to be made for demand modeling to 
present an effective simulation of the bus system. 

The speeds and distances on the network must also 
be scrutinized carefully. For a number of reasons, 
it is rarely possible for an aggregate coded network 
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to produce line descriptions that exactly match the 
times and distances known to occur in reality. A 
more serious problem often arises because there is a 
lack of good information on the true times and 
distances on specific lines. In transit properties 
that have made a substantial number of recent route 
modifications, there may be fairly reliable informa­
tion on the actual running times from beginning to 
end of a line, but no reliable information on the 
length of the line. Nevertheless, replication of 
true distances and times in the network description 
is most important to use of aggregate network tools 
to assist in defining service needs. The authors 
suggest that the line-by-line distances and times be 
checked carefully and that any falling outside a 10 
percent error margin be rccm1mincd carefully. This 
reexamination should consist of checking the network 
output reports to see if there is any link in evi­
dence on which there is either a disproportionately 
long or short travel time compared with the length 
of the link. Second, careful examination is required 
of the line description to make sure that there are 
no "tunnels" or airline links that violate the 
geometry of the underlying street system. 

Once a sufficiently accurate network description 
has been achieved, it is important to examine the 
results of a base loading of the network. For this, 
the entire travel-forecasting procedure must be run 
with base-year data. In examining the results, there 
can be no substitute for the person in most transit 
properties who has an encyclopedic knowledge of the 
system and its current loadings. Maximum loadings on 
each line should approximate fairly well the known 
maximum load points, both in location and volume. 
Further, the pattern of loading along the line should 
be reasonably close to reality. A long initial or 
final segment of line that runs empty in the assign­
ment when buses are actually running with 20 to 40 
passengers per bus would be an obvious indication of 
problems in the line description or the connections 
from the zone centroids to the transit network. 
There is considerable potential for error in transit 
assignments resulting from a poor choice of walk and 
automobile connectors to the transit network, so 
these assignments must be considered prime candi­
dates for modification if loads are not found to 
match reality. In addition, it is most important 
that lines that share a common segment of street be 
described identically in terms of the network nodes 
traversed. In standard assignment procedures that 
share patronage on a common street segment among all 
the lines on that segment, a common street segment 
can be recognized only by absolute identity in seg­
ment descriptions. If the option to have loads split 
between common line segments in proportion to ser­
vice frequency is used and common segments are not 
found to have proportional loadings, the fault is 
almost certainly in the lack of identity in the 
coding. The same applies for any other proportioning 
of the loads. 

It cannot be overemphasized that a significant 
amount of time is needed to ensure that all such 
errors and problems are resolved and removed from 
the network. Any one of these errors will compromise 
the use of the network to assist in line planning. 
However, the accuracy achieved in this process is 
also necessary for many other aspects of long-range 
planning. 

THE UTPS-COMPATIBLE ROUTE-ANALYSIS PROGRAM 

In UTPS, there are two alternative transit network 
procedures. Although new applications are encouraged 
to use the newer INET procedure, which is built from 
the highway network and reflects existing highway 
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loadings in determining bus speeds on shared right­
of-way, many existing planning agencies use the 
older UNET procedure. UNET is based on an independent 
transit network, and congestion on the streets can 
be reflected only by a manual adjustment to the 
transit running speeds or times. The route-analysis 
program described in this section was developed 
principally to work with UNET networks. It can be 
used with !NET networks, but some of its features 
are unnecessary in that context, because INET con­
tains some capabilities that the route-analysis 
program was designed to add to UNET. 

The UTPS-compatible route-analysis program (URAP) 
provides four primary features: 

• A<lultlun or several elements ot line descrip­
tions that add to the realism of the descriptions, 

• Determination and reporting from the assign­
ment of a number of statistics that are not avail­
able from standard reports, 

• Computation of several alternative estimates 
of line-by-line service levels, and 

• A capability to impose some service modifica­
tions and determine their effect on the system re­
quirements. 

It is beyond the scope of this paper to provide a 
detailed description of each of these features, 
details of which may be found elsewhere (6). A list 
of the tables provided by URAP is provided in Table 
1. A brief description of the features is provided 
in this section. Computationally, URAP is extremely 

TABLE l URAP Outpui Reports 

Report 
No. Contents Optional? 

1 Input global parameters No 
2 Input annual parameters No 
3 Jupul pulley heatlway values No 
4 Line record information Yes 

Maximum load point summary Yes 
6 Operating statistics Yes 
7 Compressed operating statistics Yes 
8 Summary of total operating statistics Yes 
9 Annual statistics No 

10 Undefined headway values No 
11 Excess passenger demand summary Yes 
12 Operating cost model statistics Yes 

simple and involves primarily only the organization 
of data already available from the ULOAD assignment 
of trips to the transit network. In addition, there 
are no assumptions involved in the URAP program that 
are a function of size of the region, percentage of 
trips on transit, or size of the transit property or 
properties operating in the region. 

Primarily, URAP operates by taking certain user­
provided inputs and using these to modify ULOAD data 
or compute additional statistics from the ULOAD and 
user-provided information. ULOAD assigns transit 
trips to the transit network and generates loadings 
by line and by link for the transit network. If 
steps preceding the use of ULOAD split transit trips 
into peak and base average hourly loads and ULOAD is 
run for each of the time periods with relevant trip 
tables, the output information available to URAP 
consists of assignments of transit person trips by 
link and line for each of an average peak hour and 
an average base hour. 

URAP allows the user to specify vehicle capacities 
that can vary by up to 10 types and where each vehi­
cle type can have a different peak and base capacity 
(allowing for standees in the peak but not in the 
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base). Factors can be used that indicate the number 
of hours of peak and off-peak service in a weekday, 
a Saturday, and a Sunday and the number of weekdays, 
Saturdays, and Sundays operated in the year (thus 
allowing specification of Saturday or Sunday service 
on certain public holidays). Other factors can be 
used to apply to the trip tables loaded on the tran­
sit network to convert results to one peak hour and 
one midday hour. URAP also requests the user to 
specifi the layover at each end of the line, which 
can be input as a percentage of the one-way trip 
time or as an absolute number of minutes. In sub­
sequent computations, URAP adds to this the number 
of minutes required to increase the sum of the one­
way trip time and layover to an integer multiple of 
the headway (to allow the bus to return on the route 
at the same headway). Thus, if a line operates on a 
20-min headway and has a one-way trip time of 57.6 
min with layover specified as 10 percent, URAP re­
defines the one-way trip time as 63.4 min (57.6 + 
5. 8) and then requires the bus to lay over for a 
further 16. 6 min to reach a multiple of the 20-min 
headway. Circuity factors are also available. 

Among the special reports that URAP offers are 
the four highest links on each line listed by the 
node pair (in a directional sense) and provided for 
each of the selected peaks (a.m. or p.m.) and the 
midday. These are obtained by reading the loaded 
legs files from ULOAD and involve no computation. In 
addition, URAP reports the daily and annual vehicle 
miles and vehicle hours of travel for the transit 
system by company; this involves using the line 
miles and hours from ULOAD, circuity factors (if 
any) input by the user, the factors for expansion 
from input trip tables to annual data, and (for 
vehicle hours only) the amount of layover specified 
by the user. Because URAP has no information on 
deadhead time and distance, these are revenue vehi­
cle hours and miles. 

The most useful aspect of URAP is the set of 
service-level alternatives provided. Four scenarios 
are described: coded, loaded, nominal, and modified. 
The four scenarios are each accompanied by similar 
information. Under the coded scenario, the program 
lists the headways as coded into the network and 
shows the maximum load, the vehicle requirements for 
each of the peak and base periods, and the daily 
vehicle miles and vehicle hours implied by the head­
way and trip information. If the network was built 
in UNET, the trip time and distance information will 
necessarily vary from that produced by the network 
and the assignment, because of the addition of lay­
over, and any user-specified local circuity. If the 
network was built by using INET, there may be little 
or no difference. The numbers of vehicles are cal­
culated taking into account the length of each pe­
riod. Thus, if there is a bus route that takes 3 hr 
and 17 min in the peak for a round trip, including 
layover, and the peak is defined as 3 hr, the vehi­
cle requirements will be 3 hr divided by the headway 
(because no vehicles can run a second trip). On the 
other hand, if another route has a round-trip time 
in the peak of 2 hr and 43 min and a headway of less 
than 17 min, at least one bus can run a second trip. 
This is taken into account in determining vehicle 
requirements. On each line, the vehicle miles and 
vehicle hours are estimated for each of the two 
periods selected. The program also prints out the 
maximum load on the line and indicates whether this 
represents an overload. 

In the loaded scenario, URAP calculates the head­
ways needed to provide sufficient service to fill 
the buses by using capacities provided by the user 
for each vehicle type. In this case, five vehicle 
types can be used, corresponding to the five transit 
modes allowed in the coding of UTPS networks. Thus, 
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vehicle type 1 corresponds to mode 4, vehicle type 2 
to mode 5, and so on. If mode 4 is specified as 
local bus with a peak capacity (including standees) 
of 65 passengers , the maximum hourly peak load is 
divided by 65. The result of this calculation is the 
number of buses per hour required to service the 
peak demand. Dividing this number into 60 min pro­
vides the peak loaded headway, which is adjusted to 
the next lowest headway included in the input list 
by the user. Identical calculations can be performed 
for the base period or the user can specify that the 
peak-to-base ratio in the coded headways is to be 
maintained, irrespective of base loadings. Vehicle 
requirements and all other statistics are then cal­
culated by using these loaded headways as the basis. 

For example, suppose line 17 has a coded peak 
headway of 10 min, a coded base headway of 20 min, a 
peak hourly load of 492 passengers, and an off-peak 
hourly maximum load of 164 passengers, with peak 
capacity of 65 passengers and base of 48. The peak 
load requires 7.57 buses per hour, which is approxi­
mately an 8-min headway. In the base period, the need 
is for 3.42 buses per hour, which is an 18-min head­
way. Therefore, this line will be recomputed to an 
8-min peak and 18-min base headway, with all statis­
tics recomputed accordingly. If input headways were 
only 5, 7, 10, 12, 15, and 20 min, among others, 
then the 8 and 18 min would instead be replaced by 7 
and 15 min as the nearest headways that would pro­
vide sufficient capacity to meet the demand. If the 
maximum loads generate headways that are longer than 
those coded, the longer headways that are adequate 
for demand are listed. Suppose line 20 has a maximum 
peak load of 102 passengers and a maximum base load 
of 41 passengers, with coded headways of 20 min in 
the peak and 40 min in the base. URAP will determine 
that the demand service level is 38 min peak and 65 
min base. Assuming that these are the nearest input 
headways, the line would be recorded to 35 and 60 
min. 

The nominal scenario changes the vehicle require­
ments by imposing policy headways whenever a loaded 
headway is longer than a maximum headway for a line 
input by the user; the format shown in Table 2 is 
used. Thus, the user specifies each coded headway 
and a maximum policy peak headway and maximum and 
minimum base headways corresponding to each. Typical 
input information for this is shown in Table 2. 
Thus, for all lines on which the loaded headways do 
not violate the policy headways set out by the user, 
the nominal and loaded data are identical. However, 
if the loaded data represent a violation of policy 
constraints, the policy headway is substituted and 
line statistics are recomputed for the policy head­
ways. Thus, if the 20-min peak headway has a maximum 

TABLE 2 Typical Inputs of Policy Headways 

Policy Headways (min) 
Coded 
Headway Maximum Maximum Minimum 
(min) Peak Base Base 

2 10 10 2 
3 10 10 2 
4 12 12 2 
5 15 15 2 
6 15 15 2 
7 20 20 2 
8 20 20 3 

10 20 20 5 
12 25 25 5 
15 30 30 5 

60 60 90 20 
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base headway specified of 45 min, line 20 in the 
foregoing example would be reset to 35 min peak and 
45 min base, with vehicle requirements, vehicle 
hours, and vehicle miles recalculated accordingly. 

Last, the modified scenario represents changes 
that can be input by the user on a line-by-line 
basis. The parameters that the user may override 
include the vehicle capacity (allowing specification 
of special vehicle types, such as articulated buses, 
to serve one or more lines) , deadhead time, maximum 
passenger load, layover time, and circulation time. 
Also, the user can input short lines and new lines 
and obtain system statistics for such added lines 
without the necessity of returning through the simu­
lation process. This addition of new lines does 
require, however, that the user estimate the maximum 
passenger load that such a new line would carry 
without the benefit of a simulation to establish 
this. The primary benefits of this estimation are to 
determine the likely effects on fleet requirements 
of such changes as well as to override some of the 
automatic recalculations of URAP. For example, a few 
bus lines may exhibit a spuriously high load that 
cannot be corrected through a more realistic network 
description. The recomputation of vehicle require­
ments, headways, and so on can be overridden by 
specifying a maximum passenger load on the line that 
is more realistic and having URAP recompute headways 
based on this. Special layover times can also be 
input for short lines, where the percentage layover 
may result in violations of union rules because of 
the shortness of the trip time. 

URAP has also assembled the necessary data to run 
a UTPS-compatible operating cost model and is de­
signed to output a disk file that can be used as 
input to a cost model that uses variables such as 
vehicle miles, vehicle hours, and peak vehicles. 
These values are provided on a line-by-line basis, 
so that line-by-line cost estimates are possible. 

USING THE ROUTE-ANALYSIS PROGRAM 

The route-analysis program is not a model in the 
conventional sense, so there is no calibration step 
involved in its use. The underlying calibration is 
that of the transit network. The route-analysis 
program assists the process of network calibration 
by providing statistics such as peak and base vehi­
cle requirements, daily and annual vehicle miles and 
vehicle hours of travel, and specific line statistics 
such as round-trip time and distance, peak passenger 
load, and location of the peak load point, all of 
whir.h r.an be checked against actual system sta­
tistics. The detection of significant departures 
between the actual system and the route-analysis 
program outputs should lead to identification of 
problems in the transit network that require cor­
rection. 

Once the network has been calibrated satisfac­
torily, simulation runs can be made and URAP can be 
used to analyze the performance of the system. First, 
URAP can be used to generate system statistics for 
the simulation situation that provide a guide to the 
performance of the system. Loaded bus requirements 
that are significantly higher than the coded ones 
signify that the bus system is overloaded, a situa­
tion not easily determined from a single figure in 
standard network assignments. If nominal bus re­
quirements are significantly higher than loaded-bus 
requirements, this signifies that the policy head­
ways that override demand headways result in a need 
to provide an excessively high level of service 
compared with demand. Similarly, if loaded and 
nominal bus requirements are below those coded, it 
is indicative that too many buses are being provided 
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for the level of demand or to maintain policy ser­
vice levels. 

On a line-by-line basis, the statistic of peak 
load on a line is asterisked if the load exceeds 
capacity. An examination of the table of line sta­
tistics reveals quickly on which lines there is an 
overload, and when the accompanying headways and 
vehicle requirements for the loaded condition are 
compared with the coded line, the order of magnitude 
of the overload is also revealed. 

Interpretation of these statistics should, how­
ever, be made in conjunction with the transit as­
signment outputs of line loadings (Report 2 in ULOAD) 
or in conjunction with URAP Report 5 giving the four 
maximum load links. Because of the aggregate nature 
of transit networks and the incidence of connections 
from zone centroids, it is possible for the loaded 
network to generate a one-link extraordinary peak 
load. This load is probably not a real peak and 
represents rather the result of the aggregation 
process. Therefore, the loads on the line around the 
peak-load point should be investigated to determine 
whether there is a sustained overload (indicating a 
genuine need to increase capacity) or only a one- or 
two-link overload that drops off rapidly on either 
side of the peak-load point. A further use of Report 
2 from ULOAD is to investigate the incidence of 
heavy loadings on the line with a view to defining 
sublines to take care of the overload situations or 
to make an underloaded line more efficient without 
reducing service as drastically as might appear 
necessary otherwise. These sublines can be tested 
initially in URAP alone; the proportion of the peak 
load on the new subline can be defined by using the 
relative headways of the subline and its parent line 
to split the load. This will provide some informa­
tion on the likely savings to be achieved by the 
short lining, although it will not reveal new trans­
fer patterns and other potential path changes. Sub­
sequently, the sublines can be coded into the net­
work and the entire simulation of transit ridership 
reiterated. This analysis provides the basis for 
refining the bus network to provide a more efficient 
service pattern. 

There is a pitfall in the process, however. As in 
highway-network, capacity-constrained iterations, 
changes in the service levels to provide more ap­
propriate service will generate changes in the demand 
levels. Specifically, if URAP indicates that a bus 
line is overloaded and requires more frequent ser­
vice, coding of the loaded or nominal headways will 
result in reduced waiting times for the network 
paths served by the route. This, in turn, will lead 
to on increosed patronage on the line and will gener­
ate a further increase in the peak load. Hence, the 
loaded or nominal headway will be insufficient to 
carry the enhanced demand. In the reverse case, a 
line that is underloaded will have a longer loaded 
or nominal headway than the coded one. Replacing the 
coded headway with this demand headway will lengthen 
the waiting time and reduce demand still further. 
Stable convergence is unlikely if the path building 
used in the network is all or nothing, because the 
subsequent path building will drop paths out of the 
long-headway lines and add paths that use short­
headway lines. Thus, if one continually adjusted 
headways to match demand levels, all lines that were 
under capacity to start would theoretically end with 
the maximum policy headways on them, and all lines 
that started with overloads would end with high 
frequencies, probably on the order of 1-min headways 
or less. Clearly, this is neither logical nor desir­
able. Use of URAP outputs to adjust the headways is 
more appropriately to apply about half of the change 
indicated by the loaded scenario and continue to 
readjust in smaller increments from this. Such a 
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procedure produces a relatively rapid convergence to 
an acceptable service level on each line. 

CASE STUDY APPLICATION 

First, a base-year transit network was constructed 
to cover all bus service in the six-county Los 
Angeles metropolitan area. Of necessity, the network 
was constructed by using the UNET program in UTPS, 
because when this project began, there was no suit­
able regional highway network available from which 
to construct an INET network. The network involved 
using practically the limiting values of nodes and 
links in the network and necessitated development of 
several FORTRAN programs to seek out errors in a 
systematic fashion and to find and delete unused 
links and nodes in the network. The final base-year 
network involved use of over 7,500 nodes and 30,000 
links and described a bus network with nearly 2,500 
peak-period buses. Over 470 individual bus lines and 
sublines were needed to describe the network. De­
tailed statistics were available only from the 
largest operator in the region the Southern Cali­
fornia Rapid Transit District (SCRTD). Therefore, 
all calibration was performed against the SCRTD 
portion of the regional network, which consists of 
305 of the lines and 2,000 of the peak-time buses. 

A number of tests were performed to check the 
base-year network. Briefly, these checks revealed 
that no coded lines differed by more than 10 percent 
from actual values of round-trip travel time and 
one-way distance, except for a few routes that were 
identified as having incorrect actual values. Chi­
square and Kolmogorov-Smirnov tests were performed 
between actual and network values of times and 
distances, and no statistically significant dif­
ferences were found. Finally, with URAP, the network 
produced a coded peak-vehicle requirement (PVR) of 
1,619 buses for SCRTD and a nominal PVR of 1,871 
compared with the actual base-year PVR of 1, 848 
buses. This discrepancy of 23 buses, or 1.2 percent, 
was considered to be satisfactory. A summary of the 
statistics for the base-year network under coded and 
nominal conditions is shown in Table 3. 

The primary purpose of the use of URJ\P in con­
junction with the standard OTPS models i n this case 
study was to refine the background bus network for a 
proposed long-range future systemwide network that 
included an i nitial rail line of l(l .6 mi. Initial 
simulations of the rail and bus network with year 
2000 trip estimates from the Southern California 
Association of Governments (SCAG) provided the sta­
tistics shown in Table 4 for the original bus net­
work. The bus operating cost for this network of 
$435.7 million in 1983 dollars wa s estimated by 
using a UTPS-based operating cost model (7) that 
provi ded an estimate of $398 . 5 million for the base­
yeai: network. Thus , the increase in the peak-vehicle 
requirement from 1 ,871 to 1 , 895 for SCRTD tagether 
with increases in revenue-vehicle miles and revenue-

TABLE 3 Statistics of the Base-Year Network 

Statistical Measure 

Peak-vehicle requirement (PVR) 
SCRTD local buses 
All operators' express buses 
Total SCRTD buses 
Total systemwide buses 

Total daily revenue-vehicle hours 
Total daily revenue-vehicle miles 
Daily linked passenger trips 

Value 

Coded 

1,228 
420 
1,6 19 
2,278 
32,900 
420,000 
1,170,000 

Nominal 

1,120 
793 
1,871 
2,447 
33,000 
444,000 
1,170,000 

TABLE 4 Summary of Changes in PVR by Iteration (SCRTD 
Lines Only) 

Network Iteration 

Variable Original Second Third 

Peak coded vehicles I 775 1,820 1,919 
Peak nominal vehicles 1,895 1,858 1,907 
Base coded vehicles 1,111 905 977 
Base nomina 1 vehicles 985 936 942 
Revenue-vehicle miles 97,350,000 95,260,000 96,540,000 
Revenue-vehicle hours 7,610,000 7,260,000 7,360,000 
Linked passenger trips 1,924,000 1,817,000 1,863,000 
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Bus operating cost• ($) 435,697 ,000 384,522,000 421,563,000 

31983 dollars. 

vehicle hours and transit ridership growth from 
1,170,000 to 1,924,000 daily trips resulted in an 
estimated increase in cost of $37.2 million. The 
issue to be determined was whether the future net­
work could be operated more economically without 
significant loss of patronage. 

A series of iterative adjustments was made in the 
network on the basis of the URAP and ULOAD reports. 
First, all lines were identified from the URAP out­
puts that were overloaded in either the peak or the 
base period. Each such line was examined in the 
ULOAD reports to determine whether the peak load was 
of extremely limited duration or was spread over a 
significant portion of the line. In the latter case, 
consideration was given to defining a new subline. 
This resulted in the definition of 64 new sublines, 
the suggested deletion of 43 lines or sublines, and 
replacement of the current operation of 23 lines or 
sublines with one of the new sublines. This was a 
net decrease of two coded sublines in the entire 
network, but represented some significant shifts of 
service. All the proposed changes were submitted for 
review by the planning staff of SCRTD, after which 
some of the lines recommended for deletion were 
restored for policy reasons and 10 of the sublines 
were either removed or assigned different end points, 
where it is feasible to turn back buses. Even from 
this first round of network revisions, the majority 
of routing changes was greeted with no surprise by 
the SCRTD staff. Most identified changes were logical 
in light of present loadings, and the extent of the 
overloaded line segments that were used to identify 
sublines corresponded well with known segments of 
heaviest loading. This provides a further indication 
that the network possessed a high degree of realism 
and accuracy. 

A measure of the degree to which the network is 
unable to satisfy demand is the difference between 
nominal and coded vehicle requirements. Table 4 
shows the results of the second and third itera­
tions. (The first iteration is not reported here, 
because a number of errors were found subsequently 
in it, and the second iteration provided correc­
tions to this.) From the initial network, it can be 
seen that the nominal PVR was 120 buses greater than 
the coded one, whereas the base coded network was 
136 buses too great. By the second iteration, not 
only were the nominal vehicle requirements for both 
peak and base lower than in the original network, 
but the differences between coded and nominal had 
decreased markedly, being 38 buses in the peak and 
31 buses in the base period. The third iteration 
shows maintenance of this improvement, although the 
differences here are that some lightly loaded lines 
were returned to a higher service level because the 
previous adjustments had reduced patronage too far. 
This shows clearly in the annual cost per daily 
1 inked trip (not all of which are on the SCRTD 
buses). For the original network, this cost is 
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$226.45, for the second iteration it is $211.62, and 
for the third iteration it is back up to $226. 28. 
However, the difference between coded and nominal 
PVRs is now 12 buses, with the nominal PVR being 
slightly lower than the coded PVR. At the same time, 
the base-vehicle requirement is overestimated by 35 
buses. These changes show a slight overcorrection of 
the deficiencies in the second iteration and auger 
well for a stable system at the fourth iteration. 

Adjustments were made in these iterations by 
accepting the URAP-generated nominal headways in 
those instances where lines were severely under­
loaded or overloaded and coding about half the 
change between URAP and the orig in al coded headways 
in all other cases. The use of about half of the 
headway change is necessai:y to dampen ou L L11e 

cyclical shift of patronage from lightly loaded 
lines and into heavily loaded lines. Even so, the 
second iteration shows too large a swing to the 
heavy lines and away from the light lines, and this 
was modified in the third iteration. 

At time of writing, a fourth iteration was being 
developed to complete the redesign of the background 
bus system. Even before this, it could be seen that 
the redesign that was enabled by URAP allowed three 
iterations to reduce the PVRs, the base-vehicle re­
quirements, and the operating cost, all with a rela­
tively small loss of transit riders. More important, 
the revisions to the network were easily identified 
and were lengthy to input only because of the large 
size of this particular case-study network. This 
procedure would be efficient for a small or medium­
s ized network. 

The most important results of this analysis are 
that information is provided to allow a systematic 
adjustment to be made to the bus system for a long­
range planning situationi such an adjustment is not 
usually feasible. Furthermore, all indications are 
that the final results will be an increase in the 
efficiency of the resulting bus system and a re­
orientation of service to where the greatest demands 
are. 

CONCLUSIONS 

A procedure for producing bus system statistics from 
standard UTPS planning models and how this procedure 
can be used in conjunction with the UTPS procedures 
to undertake detailed long-range planning of a bus 
system have been described. It has been shown that 
the capability of the procedure to produce data that 
accurately reflect the base year is considerably 
greater than that normally associated with aggregate 
travel-forecasting models. Given the increasing 
importance of developing planning strategies to 
contain operating costs for transit systems and 
comprehensive operating-cost plans for regions con­
templating major capital investments in transit, 
this procedure is an important one that adds a 
needed dimension to the battery of UTPS models. 

A number of subsequent improvements are con­
templated for the program, including the development 
of graphical displays of the ULOAD reports that are 
used in conjunction with URAP and addition of a 
capability for URAP to output a modified network 
file by using the nominal headways or some predeter-
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mined fraction of the chan~~ between coded and 
nominal headways. Such enhancements will remove much 
of the time-consuming portion of the current pro­
cedure. This capability to refine bus systems through 
a long-range route analysis also permits a fairly 
extensive capability to simulate alternative futures 
and determine probable directions of service changes 
that should be planned. 
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The Demand for Personal Travel 1n Developing Countries: 
An Empirical Analysis 
ANGUS DEATON 

ABSTRACT 

Conventional travel survey data, whether household- or traveler-based, are 
scarce in developing countries, and it is suggested that household expenditure 
surveys, which are relatively common, be used instead. Al though many of the 
traditional topics of travel surveys cannot be addressed with expenditure data, 
many others can, and there are compensating advantages of coverage and scope. 
This concept is illustrated with data from household surveys of Sri Lanka, Hong 
Kong, Thailand, and Tunisia. Broad regularities in travel expenditures are dis­
cussed, both within and across countries, and for the Tunisian survey, a more 
detailed regression analysis is presented that focuses on the interrelations 
between travel expenditures and vehicle ownership. 

A preliminary empirical analysis of the demand for 
personal travel in a number of developing countries 
is presented. The data come from household expendi­
ture surveys and typically were not collected with 
the specific purpose of analyzing travel behavior. 
They are therefore inferior in many respects to 
standard travel surveys, which typically contain a 
great deal of "physical" (as opposed to financial) 
information about travel, for example, the number, 
length, frequency, and timing of trips for various 
purposes. However, by giving up this detail, several 
advantages are gained. Household expenditure surveys 
are relatively plentiful around the world. Most 
countries publish cost-of-living or other price 
index statistics, and household surveys are the 
standard way of obtaining the weights for their 
construction. The quality of design and data pro­
cessing is often excellent; response rates are high 
by western standards, as is the quality of the in­
terviewing and coding staff. The surveys are typi­
cally large and are representative of the country as 
a whole. Their size means that there is a great deal 
of useful data, and quantity is to some extent a 
substitute for lack of detail. However, representa­
tiveness is even more important. The choice-based 
sampling problem that arises from surveys confined 
to travelers is avoided, and information is given 
not only for urban areas, where a good deal is known 
about travel patterns in less-developed countries 
(LDCs), but also for rural areas for which there is 
much less information. 

Studies such as those by Maunder (1-3), Eastman 
and Pickering Cilr Heraty C2lr and Thoba;i C&l have 
revealed much about trip patterns of household mem­
bers in a number of urban contexts in developing 
countries, but research on personal travel in the 
countryside has been hampered by the lack of an 
adequate framework for description. In towns, trips 
can be conveniently classified by purpose; in LDCs 
they are usually to work or to school. They are 
regular, usually occurring 6 days a week, and they 
are predominantly single-purpose. None of these 
descriptions fits rural travel patterns, so that 
even the taxonomic framework around which a ques­
tionnaire could be designed is lacking. Expenditure 
surveys avoid these problems by asking much simpler 
and more limited questions, so although they cannot 
answer many of the questions to which answers are 

desired, they can tell a great deal about such mat­
ters as what fraction of households spends anything 
on travel at all, whether travel expenditures form a 
significant enough share of the budget to be worth 
investigating, and which modes account for the ex­
penditures that do exist. This paper is concerned 
with presenting some of such information and demon­
strating its usefulness. Many of the standard pat­
terns that appear in the studies of trip patterns in 
urban areas can be discerned in the expenditure data 
here, so the approach of this paper can be seen as 
complementary to that of the standard studies. 

There are two main empirical sections to the 
paper. In the first, the broad patterns of travel 
behavior are characterized by using data from five 
surveys or sets of surveys. These come from Hong 
Kong in 1979-1980; Sri Lanka, 1980-1981; Tunisia, 
1979-1980; Thailand, 1975-1976; and from several 
suburbs of Delhi, India, in 1979-1982. In the second 
section, the Tunisian data are subjected to a more 
detailed analysis of the influence on household 
travel patterns of regional, occupational, and family 
composition variables. The analysis is, at this 
stage, primarily designed to be descriptive but is 
also guided by its potential relevance to questions 
of how transportation services should best be priced. 
Modern pricing or tax and subsidy theory [see, for 
example, an overview by Atkinson and Stigli tz Cl)] 
has evolved a set of pricing rules that depends both 
on the distribution of commodity demands and on 
their sensitivity to price. In particular, if the 
pricing authority has an interest in improving the 
distribution of real income and if this interest 
cannot be met by direct systems of taxes and sub­
sidies (and in LDCs this is usually thought to be 
very difficult), then it will generally be desirable 
to tax highly those expenditures that are more 
heavily consumed by richer consumers and subsidize 
those that figure most prominently in the budgets of 
the poor. However, if different goods are dif­
ferentially elastic to price changes, this must be 
allowed for, too, and it is typically undesirable on 
efficiency grounds to tax heavily those commodities 
that consumers will readily find substitutes for in 
response to price increases. Clearly then, a good 
deal of empirical evidence is required to assess 
alternative pricing schemes; much of this evidence 
can be provided by household survey data. In partic-
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ular, the surveys provide an excellent picture of 
who gets what, so that the distributional effects of 
pr ice policy can readily be seen. Descriptions of 
the relationship betwee n household income and ex­
penditures on the various travel modes give a na­
tional picture of the consequences for real income 
distribution of changes in transport pricing pol­
icies, and the relationships with other variables 
such as region and household demographics reveal the 
differential effects of policy in different regions 
or over different household types. 

TRAVEL PATTERNS FROM HOUSEHOLD SURVEYS 

Evidence from four household ~urveys is discussed in 
this section; all are standard socioeconomic surveys 
specializing in the detail of household expendi­
tures. The surveys are the 1980-1981 socioeconomic 
and labor force survey of Sri Lanka, with a sample 
s i z e of nearly 10,000 households; the 1975-1976 
socioeconomic survey of the whole kingdom of Thai­
land, with 11,000 households (here a 10 percent 
random sample is used in order to minimize process­
ing costs); the 1979-1980 household expenditure 
survey of Hong Kong, with over 4,000 households; and 
the 1979-1980 expenditure survey of Tunisia, with 
almost 6,000 households. These particular surveys 
were chosen because of their current accessibility, 
diversity, and relatively detailed information on 
travel expenditure by modes. 

Table l lists the evidence on travel expenditures 
as a component in total consumer expenditure. In 
principle, the denominator is total expenditure on 
nondurable goods and services, and shares are cal­
culated for each household and then averaged by 
using weights as necessary to reflect the sample 
design. Note that this is quite different from total 
consumer expenditure on travel expressed as a share 
of all consumer expenditure. This alternative con­
cept is effectively a weighted average of individual 
shares with weights proportional to household total 

TABLE 1 Personal Travel Expenditure 
as Share of Total Outlay 

Area Percentage 

Hong Kong, 1979-1980 
All 5.68 
Hong Ko ng Island 5.32 
Kowloon 4. 6 1 
New Kowloon 6.66 
New Territo ries 5.85 

Sri La nka, 1980-198 1 
All 3.2 
Urban 4.4 
Rura l 3. 1 
Estates 1.7 

Tun isia, 1979-1980 
All 3.06 
Cities 4.22 
Towns 2.23 
Rural 2.96 

Thailand , 1975-1976 
All 4.07 
Cities 4.9 1 
Towns 4.17 
Rural 3.50 

Delhi suburbs, 1979- 19823 

Nand nagri II 
Shakarpur 12 
W. Patel Nagar 11 
Dakshin puri 8 
Janakpuri 9 
Saket 12 

3 
As shares of income, no t total outlay. 
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expenditure; the rich are therefore effectively 
overrepresented. As an example, the aggregate figures 
for Sri Lanka corresponding to those in the table 
are 5.0, 6.7, 4.5 and 2.0; the rich spend a higher 
proportion of their outlay o n travel. 

Delhi apart, there is a good deal of uniformity 
in these figures. Shares tend to be higher the higher 
the level of development and are higher in urban than 
in rural ar e as. Nevertheless, travel expenditures 
s till exist in the countryside; even if a high pro­
portion of trips are made by foot, and even in the 
(presumed) absence of regular commu t a t ion trips, the 
rural shares of expenditure are only 20 to 30 per­
cent lower than those in the cities. Even in the 
extremely low-income tea estates of Sri Lanka, where 
incomes are barely above subsistence by most er i­
ter ia, more than 1 1 / 2 percent of the budget is de­
voted to personal travel. The very high Indian 
figures, taken from work by Maunder <.!) , may be 
peculiar to Delhi where urban resettlement to rela­
tively distant suburbs enfor ces high travel costs on 
even poor consumers. There may also be understate­
men t of income, which would artificially inflate the 
ratios. 

An alternative way of assessing the importance of 
travel expenditure is to examine the fraction of 
households spending nothing on travel. These ratios, 
corresponding to those in Table 1, are given in 
Table 2. Because surveys have a finite reporting 
period, these figures will be somewhat of an over­
estimate because occasional trips will only show up 
for a fraction of households. Nevertheless, the 
pattern is consistent with that in Table 1. Travel 

TABLE 2 Proportions of 
Households Reporting No 
Expenditures on Travel 

Area Percentage 

Hong Kong 
All 3.02 
Hong Kong Island 1.93 
Kowloon 6.22 
New Kowloon 1.69 
New Territories 2.97 

Sri Lanka 
All 25.0 
Urban 26.1 
Rural 24.1 
Estates 33 .7 

Tunisia 
All 35.2 
Cities 18. 6 
Towns 47 9 
Rural 36.0 

Tha iland 
All 21.8 
Cities• 21.0 
Towns 22.5 
Rural 22 . l 

aBangkok, 14.4. 

expenditure is a part of the budget for the vast 
majority of urban dwellers, and even in the rural 
areas, only a minority of households show no such 
expenditures. If Tables l and 2 are taken together, 
shares of the budget devoted to travel for house­
holds that spend something on travel can be calcu­
lated. By this measure, travel composes much the 
same share of travelers' budgets in the rural areas 
as it does in the cities and towns. 

These patterns must be disaggregated by rich and 
poor households if the distributional effects of 
transport policy are to be assessed. Because expen­
diture groups are not comparable across countries, 
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TABLE 3 Proportions of the Budget 
Devoted to Travel by Expenditure Groups: 
Four Countries 

Percentage 
Percentage of Spending 
Population Nothing on Mean 

Group in Group Travel Share 

Thailand 

I 3.7 64.3 1.90 
2 I I.I 45.7 2.51 
3 15.2 29.7 2.87 
4 22.6 22.3 3.37 
5 15.9 16.4 4.07 
6 15.4 39.0 4.93 
7 5.8 7.5 6.64 
8 6.5 2.7 6.19 
9 3.7 7.0 8.70 

Hong Kong 

l 1.0 40.0 1.7 5 
2 3.8 17.8 4.10 
3 6.4 JO.I 5.27 
4 10.9 3.3 5.25 
5 12.0 1.7 5.12 
6 11.8 1.6 5.40 
7 10.5 0.5 5.70 
8 7.9 1.7 5.79 
9 6.8 1.6 6.02 

10 5.6 0.0 6.30 
II 7.8 0.3 6.62 
12 5.2 0.4 6.73 
13 6.0 0.3 6.72 
14 1.8 0.0 5.92 
IS 2.4 0.0 8.06 

Tunisia 

l 2.7 72.2 2.14 
2 9.0 57.0 2.20 
3 13.3 44.0 2.55 
4 13.9 39.7 2.68 
5 11.4 34.6 2.74 
6 9.8 28.8 3.36 
7 14.8 25.l 3.17 
8 9.2 23.4 3.65 
9 5.3 16.9 3.85 

10 5.6 16.7 4.35 
II 2.2 7.5 6.00 
12 2.8 14.5 5.14 

Sri Lanka 

I 5.0 51.5 1.4 
2 5.0 39.0 1.9 
3 10.0 31.3 1.8 
4 10.0 32.4 2.0 
5 10.0 28.6 2.2 
6 10.0 27.2 2.2 
7 10.0 24.1 2.7 
8 10.0 22.4 2.9 
9 10.0 16 .5 3.8 

10 10.0 14.2 4.5 
II 5.0 9.1 6.3 
12 5.0 5.9 11.0 

Table 3 shows expenditure groups for each country 
from poorest to richest together with the estimated 
proportions of the population in each group. The 
third column gives the proportion of households in 
the expenditure group spending nothing on travel and 
the fourth the estimated mean of shares within the 
group. In all cases, the proportion spending nothing 
on travel declines steadily with increasing total 
expenditure (except possibly among the very rich, 
whose expenditure on pr iv ate transport is more ir­
regular and therefore less likely to occur in the 
survey period). Among the very poor, more than half 
spend nothing on travel, so subsidizing travel can 
do little for them. Note, however, the possibility 
that for some consumers, travel expenditures may be 
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necessary for them to earn anything at all. Low or 
zero travel expenditures among the poor could there­
fore reflect high unemployment and poor work oppor­
tunities in those groups. As total outlays increase, 
the share devoted to travel also increases in all 
four surveys. The overall expenditure elasticity of 
travel is therefore typically greater than unity; 
overall subsidization will therefore tend to propor­
tionally favor the rich over the poor. Depending on 
the pr ice elasticity, efficiency considerations may 
offset the undesirability of this situation. Assess­
ing the balance requires more detailed analysis than 
is possible here. 

In Maunder's work (1) on the Delhi suburbs, travel 
shares are rather different from those in Table 3. 
For all six suburbs, the fraction of income devoted 
to travel is remarkably constant over all income 
groups except the poorest, where the shares are 
extraordinarily high, with averages as high as 30 to 
40 percent in three of the districts. However, it 
should be noted that there are very small numbers of 
households in the poorest groups in the Delhi sur­
veys, and that these groups, almost by definition, 
contain an abnormal representation of individuals 
whose incomes are temporarily low. In consequence, 
if travel expenditures remain at their normal level 
while incomes fluctuate, there will always be a few 
individuals or households with extremely large shares 
of income devoted to travel. This is no more a mat­
ter of concern than is the fact that a daily com­
muter who gets paid only weekly spends an infinites­
imal fraction of his Monday's income on Monday's 
transport. Because total expenditures are much more 
stable than are incomes, this phenomenon is much 
less pronounced if shares of the budget are used in 
place of shares of income. Nevertheless, and in 
spite of the averages in Table 3, it is still the 
case that some poor households spend remarkably high 
proportions of their budgets on travel and that a 
higher proportion of poor households do so than is 
the case among groups that are better off, though 
not among the richest. For example, in Hong Kong, 
among the poorest 15 percent of the population, 14 
percent spend more than 10 percent of their outlay 
on travel; in the next richest 25 percent, only 8 
percent spend more than 10 percent. In Tunisia, of 
the poorest 15 percent, 6 percent spend more than 10 
percent; the same is true of the next 15 percent in 
spite of their higher total budgets. 

As is to be expected, modal choice shows much 
greater diversity across space than do the aggregate 
travel expenditure patterns. Tables 4-6 give the 
travel expenditure shares disaggregated by mode for 
Tunisia, Thailand, Hong Kong, and Sri Lanka. At this 
level of aggregation, these figures hold few sur­
prises. Buses are the major item of expenditure 
throughout; in Tunisia, the hire car element that 
dominates outside the cities is essentially a form 
of bus service. Vehicle ownership is most important 
in the cities, and operating expenses are closely 
linked to automobile and motorcycle ownership. More 
interesting is to disaggregate these figures further, 
both by income level and by region. However, cross­
tabulation is too clumsy a tool for this, and it is 
necessary to summarize the patterns more succinctly. 
Regression analysis is one way of doing this, and 
the next section contains some illustrative results 
from the Tunisian survey. 

REGRESSION ANALYSIS OF TUNISIAN TRAVEL PATTERNS 

One immediate problem with the application of 
regression analysis to travel expenditures is that a 
large fraction of households report zero expendi­
tures. To some extent, these zeroes reflect low 
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TABLE4 Travel Budget Shares by Mode: Tunisia and Thailand 

Mode All Cities Towns Rural 

Tunisia 

Total 3.06 4.22 2.23 2.96 
Private 0.92 1.88 0.78 0.48 
Public 2.14 2.34 1.45 2.48 

Bus 0.52 1.10 0.30 0.35 
Hire automobile 1.19 0.42 0.87 1.83 
Taxi 0.20 0.35 0.10 0.18 
Other (including season 

tickets) 0.23 0.47 0.19 0.12 
Automobile ownership 15.8 25.4 14.5 11.4 

Thailand 

Total 4.07 4.91 4.17 3.50 
Local 1.97 2.52 1.93 1.64 

Bus 1.51 1.71 1.68 1.31 
Taxi 0.07 0.20 0.01 0.02 
Other 0.39 0.61 0.24 0.31 

Nonlocal 1.06 1.01 0.92 1.16 
Bus 0.76 0.56 0.69 0.92 
Other 0.30 0.45 0.23 0.24 

Private 1.04 1.38 1.32 0.71 
Automobile ownership 4.3 9.1 4.3 1.4 
Motorcyc1e ownership 11.3 18.1 11.3 7.1 
Bicycle ownership 26.8 25.2 31.6 25.8 

TABLE 5 Travel Budget Shares by Mode: Hong Kong 

Hong Kong New New 
Mode All Island Kowloon Kowloon Territories 

Total 5.68 5.32 4.61 6.66 5.85 
Public 5.19 4.77 4.22 6.12 5.40 

Bus 3.13 2.70 2.27 3.82 3.90 
Taxi 0.86 0.74 1.00 0.86 0.76 
Air 0.07 0.11 0 .07 0.05 0.02 
Other 1.13 1.22 0.88 1.39 0.72 

Private 0.49 0,55 0.39 0.54 0.45 

TABLE 6 Travel Budget Shares by Mode: 
Sri Lanka 

Mode All Urban Rural Estates 

Total 3.2 4.4 3.1 1.7 
Public 2.6 3.0 2.6 1.6 

Bus 2.3 2.5 2.3 1.4 
Taxi 0.1 0.2 0.1 0.1 
Train 0.2 0.3 0.1 0.1 
Other 0.0 0.0 0.0 0 .0 

Private 0.6 1.4 0.5 0.1 

frequencies of purchase; if trips on a particular 
mode are taken once a month and the survey period is 
a week, then a quarter of the households will 
register four times their normal weekly expenditures 
and three-quarters will register nothing. It is 
clear in this case that the expected value of ex­
penditures is correct, and for that reason, a 
regression with expenditure as the dependent var i­
able will yield unbiased and consistent parameter 
estimates. More difficult to deal with are those 
zeroes that occur because the household never makes 
that type of expenditure, and presumably this is 
frequently the case for certain travel modes and 
occasionally even for all travel expenditures. Un­
fortunately, there is no way of telling these 
"genuine" zeroes from the "infrequent purchase" 
zeroes, and even if this problem could be solved, 
there is as yet no agreed-on technique for estimat­
ing such models that is feasible on anything other 
than small data sets (~-!.Q_). In this paper, for lack 
of anything better, ordinary least-squares regres-
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sions are reported, and these include all the obser­
vations, zero or nonzero. This"~as the advantage of 
preserving the same sample for all regressions so 
that regressions for subcategories of expenditures 
relate to the same households as does the regression 
for the sum. Coefficients then add up across regres­
sions, allowing decomposition of totals. The param­
eters of such regressions can also be straightfor­
wardly interpreted, at least under certain 
assumptions. The coefficient on an explanatory vari­
able estimates the corresponding coefficient for 
households that purchase that particular category 
multiplied by the proportion of such households. 
Dividing by this proportion yields the conditional 
coefficient, so that the regression context corre­
sponds exactly to that in the cross-tabulations 
where the mean shares are unconditional means (in­
cluding zeroes) and the means conditional on travel­
ing can be obtained by dividing by the proportion of 
travelers. 

The final issue is how to allow for ownership of 
motor vehicles. Clearly, the short-run travel deci­
sions of household members depend crucially on 
whether the household owns a motor vehicle. In the 
long run, of course, vehicle ownership is determined 
along with other consumption decisions. Formally, 
the following expressions can be written: 

Yi 8 I _l ~li 

d~ I 

J_ ~2 ~2i 

di 1 if 

0 if 

where 

+ a di + U1i 

+ U2i 

d'l" > i_ 0 

d~ 
J_ <. 0 

endowed with a joint distribution, 
usually bivariate normal; 
expenditure by household i on some 
mode, say buses; 

(1) 

(2) 

(3) 

B and ~2 

dummy variable that is l if a vehi­
cle is owned and zero otherwise; and 
vectors of variables influencing 
bus travel and vehicle ownership, 
respectively. 

The estimation of this model is discussed, for exam­
ple, by Heckman (11) and ideally is handled as fol­
lows. Equations 2 and 3, the vehicle ownership equa­
tions, are estimated by a standard probi t. Equation 
1 is then estimated by "instrumental variables" by 
rPpl;ir.ing ni hy its estimated probability of being 
unity from the probit. For this to work properly, 
there must be variables in ~2 that do not appear 
in ~1 ; otherwise the model is essentially under­
identified (except for functional form, which is a 
poor crutch on which to lean). For the current 
Tunisian data, the most plausible variables appear 
to be the employment status of heads of households. 
Presumably certain types of workers will need pri­
vate means of transport, for example, those for whom 
there is a high penalty for persistently being late 
for work. Otherwise there appears little reason to 
expect household transport budget shares to depend 
directly on employment status. 

One possibility that is followed here is to esti­
mate Equation 1 as it stands; this produces con­
s is tent estimates only if u1 and u2 are independent, 
that is, only when there are no common omitted vari­
ables. If one could believe this, the estimates from 
Equation 1 could be regarded as those of short-run 
demands. The second line is to estimate Equation 1 
excluding di; this can be thought of as a linearized 
reduced form or long-run demand. For example, condi-
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tional on vehicle ownership, the income elasticity 
of the demand for bus tickets may be positive, 
whereas the long-run elasticity, taking into account 
higher vehicle ownership, may be negative. 

Therefore the determinants of the probability of 
vehicle ownership are presented first. For conve­
nience, the formulation used was logi t rather than 
probit. Hence, the parameters shown in Table 7 rep­
resent the derivative with respect to each explana­
tory variable of the log odds in favor of owning an 
automobile. 

TABLE 7 Vehicle-Ownership Logistic Regression: Tunisia 

Variable Abbreviation Coefficient Chi-Square 

Regression constant CONST -2.71 281.8 
Total household expenditure THE 0.0004 173.6 
No. of female workers NFW -0.96 1.9 
No. of ma]e workers NMW 0.07 2.0 
No. of children in primary school NCP 0.04 1.3 
No. of children in high school and 

tertiary education NCH -0.08 1.9 
Cities 

Northeast CNE -0.68 18.5 
Center cc -0.87 6.2 
South cs 1.45 62.5 

Towns 
Northeast TNE -0.85 18.5 
Northwest TNW -0.73 11.3 
Center TC -0.78 19.9 
South TS -0.36 4.0 

Rural areas 
Northeast RNE -1.04 31.1 
Northwest RNW -0.20 2.0 
Center RC -1.08 42.4 

Employer PATRON 0.88 14.9 
Self-em ployed INDEP 0.48 9.2 
Laborer OUVRIER 0.57 15.4 
Wage earner EMPLOYEE 1.26 60.5 
Salaried employee SALARIE 0.75 1.3 
Family worker AIDEFAM 1.85 6.9 

Note: The model was estimated without weightjng the sample data. Model x2 = 675.73; 
degrees or freedom = 2] . 

As is to be expected, the level of total house­
hold expenditure is the dominant explanatory vari­
able. The coefficient suggests that an increase in 
total housing expenditure of 1,200 dinars, say for 
just below the first quartile to just above the 
third quartile, would raise the log odds by 0.53, 
and the probability of ownership from, say, 0.25 to 
0.38. Additional male workers and primary school 
children have a positive effect on vehicle owner­
ship; female workers and school children have nega­
tive coefficients. All of these effects, however, 
appear to be rather weak. The regional and urbaniza­
tion dummies indicate that the probability of owning 
a vehicle is greatest in the south, especially in 
the cities. Adopting rural south as the base, the 
probability of ownership is slightly lower in the 
towns and significantly lower in the rural northeast 
and center. The concentration of pr iv ate modes in 
the south presumably reflects a relative shortage of 
public transport in that region. The base for em­
ployment status of the head of the household incor­
porates persons not working and a small group of 
apprentices and persons for whom occupations are 
unknown, which accounts, in all, for about 16.5 
percent of the sample. The probability of owning a 
vehicle is greater for all other groups and is sur­
prisingly large for wage earners and family workers. 

Tables 8 and 9 show what, with some presumption, 
are labeled short-run and long-run travel regres­
s ions; Table 8 contains the ownership dummy and 
Table 9 does not. The responses are not inconsistent 
with this basic interpretation. For example, Table 8 
shows the total expenditure elasticities of the 
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transport, private, and public categories to be (at 
the mean) 1.1, 1.3, and 1.0, respectively. In Table 
9, when the long-run effects operating through vehi­
cle ownership are also included, these become 1. 3, 
2.0, and 0.98, respectively. Because vehicle owner­
ship itself responds to changes in per-capita house­
hold expenditures (PCEs) , long-run elasticities are 
higher for those categories that are positively 
affected by vehicle ownership and lower for those 
that are negatively affected. Similar patterns of 
short-run versus long-run responses can be seen for 
the coefficient on the number of male workers in the 
household; once again, it is the strong effect on 
vehicle ownership that accounts for the differences 
in parameter estimates between Tables 8 and 9. 

In reading these tables it is helpful to note 
that because total transport is the sum of the pub­
lic and private categories, column l is the sum of 
columns 2 and 3. Similarly, public transport is the 
sum of five modes shown plus an unimportant "other" 
category so that column 3 is the sum of columns 4 
through 8 approximately. Hence, looking along rows 
reveals how the structure (as well as total) of 
travel demand responds to changes in the variable 
concerned. Taking PCE first, it may be seen that 
better-off households spend a larger share of their 
outlay on travel, an increase that is almost totally 
in the short run and more than totally in the long 
run accounted for by the luxury nature of pr iv ate 
travel expenditures. Among the public modes, taxis 
and car hiring tend to replace buses among better­
off households, other things held constant. The next 
group of variables shows the impact of work and edu­
cation patterns on travel expenditures. From Table 
8, extra workers, male or female, have a similar 
effect on the public travel share, as do extra high 
school children. Primary school children have little 
impact on the budget, presumably because primary 
schools are relatively close to residences and 
therefore do not involve paid trips. Extra male 
workers, conditional on automobile ownership status, 
cause a switch from private to public transport; in 
the long run such workers tend to lead to higher 
probabilities of automobile ownership. These results 
are clearly consistent with fixed trip patterns in 
relation to work and higher education. The public 
modes associated with these trips are of some 
interest. The additional public share associated 
with male workers goes to buses and to hires, 
presumably the former in the towns and the latter in 
the countryside. Hires are also associated with 
extra female workers and high school children, but 
there is no effect on bus fares, only on season 
tickets. Presumably there is some explanation for 
this anomaly. 

The regional dummies are of interest in assessing 
how much of the regional variations in patterns 
remain once the other variables, particularly PCE, 
have been controlled for. Notably, most of the vari­
ations in the share of private transport over regions 
and levels of urbanization are explained by the 
other variables, although there is still a signifi­
cant positive dummy for southern cities. Otherwise, 
public transport tends to be low in the towns; the 
cities are heavy on buses and the rural areas on 
hiring, and neither is very important in the towns, 
hence the difference. 

SUMMARY AND CONCLUSIONS 

In this paper, it is proposed that household expen­
diture surveys be regarded as a useful supplementary 
source of data on household travel patterns and the 
point is illustrated with travel data from a number 
of household surveys from developing countries around 



64 

TABLE 8 Short-Run Travel Regression 

Variable 

CONST 
Coefficient 
!-Statistic 

LN PCE 
Coefficient 
!-Statistic 

NFW 
Coefficient 
!-Statistic 

NMW 
Coefficient 
t-Sta tis tic 

NCP 
Coefficient 
t-Statistic 

NCH 
Coefficient 
!-Statistic 

MVD 
Coefficient 
t-Statistic 

CNE 
Coefficient 
!-Statistic 

cc 
Coefficient 
t-Statistic 

cs 
Coefficient 
t-Statistic 

TNE 
Coefficient 
t-Statistic 

TNW 
Coefficient 
t-Statistic 

TC 
Coefficient 
!-Statistic 

TS 
Coefficient 
l-Statisiic 

RNE 
Coefficient 
!-Statistic 

RNW 
Coefficient 
!-Statistic 

RC 
Coefficient 
t-Statistic 

Transport 

.54 
1.2 

.33 
4.1 

.20 
2 .2 

.04 
0.7 

-.06 
-1.2 

.20 
2 .5 

4.6 
28.1 

.41 
1.8 

-.40 
-0.9 

.76 
2.4 

-.89 
-3.2 

-1.3 
-4.0 

-.50 
-2.0 

- 1.4 
- 5.3 

.61 
2.4 

-1.0 
-4.4 

.96 
4. 1 

Private 

-1.5 
-5.5 

.28 
5.8 

.04 
0.8 

-.13 
-3.5 

.02 
0.8 

-.01 
-0.2 

5.4 
56.0 

.74 
5 .4 

-" 0.4 

-.10 
-0.6 

.II 
0.7 

.30 
1.6 

.21 
1.4 

-.19 
-i.2 

.33 
2.1 

-.13 
-0.9 

.42 
3.0 

Public 

2.1 
5 .3 

.05 
0 .8 

.16 
2.1 

.17 
3.2 

-.08 
-1.9 

.21 
3 .1 

-.84 
-6.2 

- .33 
-1.7 

-.51 
-1.3 

.87 
3.3 

-.99 
-4.3 

-1.6 
-5.9 

-.71 
-3.4 

-1.2 
-5,4 

.28 
1.3 

-.91 
-4.5 

.54 
2.8 

Buses 

.48 
2.5 

-.06 
1.9 

-.01 
-0.l 

.JI 
4.5 

-.04 
-2.3 

,03 
0_9 

-.33 
-5.0 

.72 
7.8 

1.1 
6.1 

1.8 
13.9 

.21 
2.0 

-.20 
-1.6 

.15 
2.S 

-.002 
-.02 

.79 
7 .6 

-.26 
-2.7 

.02 
0 .2 

Hires 

1.4 
4.7 

.06 
1.1 

.08 
1.3 

.09 
2.2 

-.03 
-0.9 

.08 
1.4 

-.34 
-3.2 

-1.4 
-9.7 

-1.7 
-5.8 

-1.2 
-5.9 

-I.I 
-6.1 

-1.3 
-6.4 

-.70 
-4.2 

-1.0 
- 5.9 

-.55 
-3.2 

-.50 
-3.2 

.77 
S. I 

Taxis 

.06 
0.7 

.04 
2.8 

.01 
.4 

-.003 
-.3 

.01 
1.3 

-.01 
-1.0 

-.05 
-1.5 

.07 
1.6 

.07 
0.9 

- .04 
-0.6 

-.19 
-3.6 

-.20 
-3.3 

-.24 
-5.2 

-.14 
-2.Y 

-.09 
-1.8 

-.12 
-2.6 

-.15 
-3.4 
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Seasons 

.09 
1.0 

- .01 
-.9 

.06 
3.9 

-.001 
-.13 

-.01 
I.I 

.13 
9.1 

- .05 
-1.6 

.25 
6.0 

-.07 
-0.9 

.05 
0.8 

.15 
3.0 

-.07 
-1.2 

.03 
0.6 

.003 
.06 

.10 
2.0 

-.03 
-.6 

-.05 
-1.1 

Trains 

-.004 
-.04 

.02 
1.3 

.01 
0.7 

~.03 

-2.2 

-.01 
-0.9 

-.01 
-0.6 

-.09 
-2.3 

.12 
2.2 

.! '.! 
1.2 

.34 
4.7 

-.02 
-0.4 

.25 
3.4 

-.01 
-0.2 

-.01 
-0.1 

.07 
1.2 

.02 
0.3 

-.02 
-0.3 

Note: All coefficients (times J 00) express the shares in total expendHures of each mode. LNPCE ===log of per-capita household 
1:xp"nditurwj MVD;;;; dummy (1) ifvehklei owned. All other abbreviatiom; are given in Table 7. 

the world. The share of the budget devoted to travel 
appears to increase slightly with income within 
countries, and the limited evidence here reveals 
that the share also increases as does the level of 
development. Travel expenditures in relation to the 
total budget are greater in urban than in rural 
areas, though travel expenditures are still sub­
stantial in the latter. The vast majority of the 
households sampled, whether in Sri Lanka, Hong Kong, 
Thailand, or Tunisia, show some expenditure on 
travel. As with the share devoted to travel, the 
fraction of households spending anything on travel 
tends to increase with income in all the surveys. 
The pattern of mode choice is less uniform across 
surveys than is the broad characterization of total 
travel expenditures; as is to be expected, local 
availability exerts a strong influence on the de­
tails of transport modes. For the Tunisian data, the 
pattern of vehicle ownership was studied together 

with its relation to patterns of household expendi­
tures on travel. Total household resources exercise 
the dominant influence on both, though other fac­
tors, such as the presence of additional male members 
in the household, are important for determining the 
probability of vehicle ownership. Travel expendi­
tures themselves are significantly influenced by 
vehicle ownership, so that factors such as income 
exert quite different long- and short-run effects. 
In particular, conditional on vehicle ownership, 
both public and private transport are income elastic, 
but once the effects of income on promoting automo­
bile ownership are allowed for, private transport 
becomes more elastic and the elasticity of demand 
for public transport falls below unity. As is to be 
expected, regional effects are strong, as are the 
influences of the demographic composition of the 
household. The latter are consistent with findings 
in other developing countries that the majority of 
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TABLE9 Long-Run Travel Regression 

Variable Transport Private Public Buses Hires Taxis Seasons Trains 

CONST 
Coefficient -1.6 -4.1 2.5 6.3 1.6 .08 .11 .04 
t-Statistic -3 .3 -12.1 6.4 3.4 5.3 0.9 1.3 0.4 

RNPCE 
Coefficient 0.86 .91 -.04 -.10 .02 .04 -.02 .01 
t-Statistic 10.2 15.5 -.7 -3.1 0.3 2.6 -1.3 0 .7 

NFW 
Coefficient .20 .04 .16 - .01 .08 .OJ - .06 .01 
t-Statistic 2 .1 0.7 2.1 -0 .2 1.3 0.4 3.9 0.6 

NMW 
Coefficient .18 .04 .14 .10 .08 - .005 - .003 - .03 
t-Statistic 2.8 0.5 2.8 4.1 2.0 -0.4 -0.3 -2.4 

NCP 
Coefficient .05 .15 - .10 -.05 -.04 .01 -.01 -.01 
!-Statistic 0.9 4.2 -2.4 -2.6 -1.l 1.l -1.3 -1.1 

NCH 
Coefficient .21 0 .21 .03 .07 -.01 .13 -.01 
!-Statistic 2.5 O. l 3.0 0.9 1.4 -1.0 9.1 -0 .6 

CNE 
Coefficient .06 .32 -.27 .75 -1.4 .07 .25 .12 
t-S ta tistic 0.2 1.9 -1.4 8.1 -9.5 1.7 6.1 2 .4 

cc 
Coefficient -.94 -.53 -.41 1.2 -1.7 .08 -0.7 .13 
!-Statistic -2.0 -1.6 -1.1 6.3 -5.6 1.0 -0.8 1.3 

cs 
Coefficient 2.2 1.6 .6 1 1.7 -1.3 -.05 .03 .3 1 
t-Statistic 6.6 6.9 2 .4 13 .3 -6.5 -0.9 0.5 4.4 

TNE 
Coefficient -1.4 - .47 -.90 .25 -1.1 -.18 .16 - -01 
!-Statistic 4.6 -2.3 -3.9 2.3 -5.9 -3.5 3.1 -0.2 

TNW 
Coefficient -1.6 -.14 -1.5 -.18 -1.3 -.19 -.06 .26 
!-Statistic -4.9 -0.6 -5.6 -l.4 -6.3 -3.2 -1.1 3.5 

TC 
Coefficient -.93 -.29 -.64 .28 -.67 -.24 .03 -.01 
t-S ta tistic -3 .5 -1.6 -3.0 2.8 -4.1 -5.2 0.7 -0.1 

TS 
Coefficient -1.5 -.41 -l.2 .0 1 -1.0 -.14 .005 -.002 
t-Statistic -5.6 -2 . l -5 .3 0.1 -5 .8 -2 .9 0.1 -0 .03 

RNE 
Coefficient .16 -.21 .37 .83 -.52 -.08 .10 .08 
!-Statistic 0.6 -1.l 1.7 8.0 -3.l -l.7 2.l 1.4 

RNW 
Coefficient -1.0 -.09 -.92 - .26 -.50 -.12 -.03 .02 
t-Statistic -4.0 -0.5 -4.6 -2.7 -3.2 -2.6 -0.6 0.3 

RC 
Coefficient .56 -.06 .62 .05 .80 -.14 -.04 -.01 
!-Statistic 2.3 -0.3 3.2 0_5 5.3 -3.3 -1.0 -0.2 

Note: Coefficients (times 100) express the shares in total expenditures of each mode. Abbreviations are as given in Table 7. 

household trips are associated with either work or 
school. Although not all such trips give rise to 
expenditures, the pattern of paid-for trips appears 
to be similar to that for all trips. These results 
appear to be of considerable interest in their own 
right and, in the author's view, they demonstrate 
the usefulness of household expenditure survey data 
for the analysis of travel behavior. 

ACKNOWLEDGMENT 

The research reported here is part of a World Bank 
study into the demand for personal travel in devel­
oping countries. The author is grateful to the editor 
of that study and three referees for helpful comments 
and suggestions. 

REFERENCES 

1. D.A.C. Maunder. The Effects of Household Income 
and Location on Trip Rates and Travel Patterns 
of Different Socio-Economic Groups in Delhi, 

India. U.K. Transport and Road Research Labora­
tory, Crowthorne, Berkshire, England, 1903. 

2 . D.A.C. Maunder. Household and Travel Charac­
teristics in Jaipur, India. Working Paper 159. 
U.K. Transport and Road Research Laboratory, 
Crowthorne, Berkshire, England, 1904. 

3. D.A.C. Maunder. Household and Travel Charac­
teristics in Vadodara, India. Working paper 
171. u.K. Transport and Road Research Labora­
tory, Crowthorne, Berkshire, England, 1904. 

4. C.R. Eastman and D. Pickering. Transport Prob­
lems of the Urban Poor in Kuala Lumpur. TRRL 
Supplementary Report 603. U.K. Transport and 
Road Research Laboratory, Crowthorne, Berk­
shire, England, 1901. 

5. M.J. Heraty. Public Transport in Kingston, 
Jamaica and Its Relation to Low Income House­
holds. TRRL Supplementary Report 546. u.K. 
Transport and Road Research Laboratory, Crow­
thorne, Berkshire, England, 1980. 

6. M. Thobani. A Nested Legit Model of Travel Mode 
to Work and Auto Ownership. Journal of Urban 
Economics, Vol. 15, 1902, pp. 287-301. 



66 

7. A.B. Atkinson and J.E. Stiglitz. Lectures on 
Public Economics. McGraw-Hill, New York, 1980. 

8. T.J. Wales and A.D. Woodland. Estimation of 
Consumer Demand Systems with Binding Non-Nega­
t ivi ty Constraints. Journal of Econometrics, 
Vol. 21, 1983, pp. 263-85. 

9. L.F. Lee and M.M. Pitt. Specification and Esti­
mation of Demand Systems with Limited Dependent 
Variables. Department of Economics, university 
of Minnesota, Minneapolis, 1983. 

10. A.S. Deaton. Demand Analysis. In The Handbook 
of Econometrics (Z. Griliches and M.D. Intrili­
gator, eds.), North-Holland, Amsterdam, in 
preparation. 

Transportation Research Record 1037 

11. J. J. Heckman. Dummy Endogenous Variables in a 
Simultaneous Equations System. Econometrica, 
Vol. 46, 1978, pp. 931-61. 

The views expressed are those of the author and 
should not be attributed to the World Bank, to its 
affiliated organizations, or to any individual act­
ing on their behalf. 

Publication of this paper sponsored by Committee on 
Passenger Travel Demand Forecasting. 

Analysis of Automobile Ownership by Using a 

Divisive Hierarchical Technique 

JOKE M. JAGER and WIM H. SCHELTES 

ABSTRACT 

A method of analysis of personal automobile ownership is presented that differs 
from the well-known aggregate and disaggregate methods. The analysis consists 
of two steps. First, a cluster-s~gmentation method is applied to data from the 
Dutch National Travel Survey. The results show that personal automobile owner­
ship is mainly determined by personal net income, age, and sex. Second, a model 
has been specified that includes these factors. When income and age are ac­
counted for, a structural difference in automobile ownership is shown between 
men and women. Furthermore, for the period studied (1979-1982) the results in­
dicate that for the age group 65 and older, automobile ownership increased sig­
nificantly, whereas for those 25 years and younger, it decreased. Advantages of 
the method are (a) the relative stability of the homogeneous population groups 
independent of accidental changes in the survey population and (b) insight into 
the relationship of automobile ownership with the most essential determining 
factors. Because of these advantages, the method presented can be used to im­
prove both analysis and forecast of automobile ownership. 

rt has been widely recognized that travel behavior 
is strongly influenced by automobile ownership. This 
applies to mode choice as well as to trip frequency 
and daily mileage (!_-1_). Therefore numerous models 
of automobile ownership have been developed, both at 
aggregate and disaggregate levels (4). Some models 
are based on time-series data under- the assumption 
that a certain saturation level exists, whereas 
others are disaggregate at the household level and 
are based on cross-sectional data (5,6). Because 
both aggregate and disaggregate method~ -;;uffer from 
a number of disadvantages (2_-2_) , another method is 
applied in this paper. 

Phase 1 of this work aims at finding those demo­
graphic and socioeconomic factors that influence 
personal automobile ownership most. The survey popu­
lation is split into homogeneous population groups 

according to these most important factors. Personal 
automobile ownership is preferred here to household 
automobile ownership because models of travel behav­
ior are usually specified at a personal level and 
because this analysis is part of a comprehensive 
transportation study. Phase 2 of this work focuses 
on the level of influence of these factors on auto­
mobile ownership and investigates trends in the de­
velopment of automobile ownership in the homogeneous 
population groups. 

DATA BASE 

The data base used was Onderzoek Verplaatsingsgedrag 
(OVG), the Dutch National Travel Survey (!.Q_). It 
contains extensive information, both demographic and 
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socioeconomic data on the interviewees and data on 
the trips they made. Since the survey started in 
1978, about 25,000 persons have been interviewed 
annually. In contrast to most other surveys, the 
interviews were held throughout the year. Because of 
the large number of questions, the home-interview 
technique was used. A trained interviewer registered 
the information concerning the household. The data 
on trips were recorded by the respondents (12 years 
old or older) themselves, usually during a 2- or 3-
day period. 

VARIABLES OF POTENTIAL IMPORTANCE 

A whole range of demographic and socioeconomic vari­
ables correlate with automobile ownership. A portion 
of this range formed by the variables that were col­
lected in the Dutch National Travel Survey has been 
analyzed for the relation with automobile ownership. 

These characteristics of interviewees and their 
environment are listed alphabetically (the number of 
distinct classes is given in parentheses after each 
variable): 

• Age (5) 
• City size (3) 
• Educational level (7) 

Employment status (5) 
• Household income (6) 
• Household size (6) 
• Marital status (4) 
• Personal income (6) 
• Position in household (7) 

Province (13) 
• Pattern of visit to office or school (6) 
• Sex (2) 

Note that a number of other possibly relevant vari­
ables (such as population density and public trans­
port quality) were not included. 

METHOD OF ANALYSIS 

It is obvious that the method of analysis should be­
long to the group of multivariate techniques. From a 
mathematical point of view, the interviewees are ob­
servations in a multidimensional space formed by the 
selected demographic and socioeconomic variables and 
their distinct classes. 

Clustered observations in this hyperspace indi­
cate dominating variables or dependencies or both. A 
well-known technique to find these data concentra­
tions is the cluster-segmentation analysis. Its 
mathematical robustness makes it easy to use. Sev­
eral algorithms exist [see, e.g., studies by Everitt 
(11) and Spath (12)), most of them combining nearby 

observations to form clusters. However, dividing the 
data into separate groups is (in the case of many 
observations) preferable, as it often leads to bet­
ter group distinction. These algorithms are called 
segmentation or divisive hierarchical techniques. 

The likelihood-segmentation method is one of 
these. Its algorithm was developed by Hamers lag (!_) 

by using the likelihood-estimation theory. When the 
number of clusters is equal to the number of obser­
vations (so each cluster contains only one element), 
the likelihood value is maximal. Each data combina­
tion causes the likelihood value to decrease, so the 
lowest value will be found when all observations are 
merged into one single cluster. Thus the value of 
the likelihood can be used to measure loss of infor­
mation during the clustering process. All variables 
have discrete classes; for each variable, classes 
are combined and the information loss is calculated. 
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The variable that shows the largest drop is (nor­
mally) the most significant. 

The opposite is also valid: Dividing a data 
cluster will increase the likelihood value and the 
information level. Thus the data base will be split 
into several segments (subspaces) , every segment be­
ing a class from the most discriminating variable 
(dimension). The obtained data groups can be ana­
lyzed in the same manner. Theoretically the process 
ends when all clusters contain only one observation. 
In practice, however, segmentation is stopped in an 
earlier phase. 

The formula for calculating the decrease or in­
crease of information (using an amount k of simul­
taneous criteria factors) is 

d (X,Y) 

where 

d (X,Y) 

eps 

k 

rkf<NxXklln(Xk + eps) + (NyYklln(Yk + eps) 

- <Nxxk + NyYkJ1n<llJ<>l 
- -(t"icXk + NyYk)/(t"ic +Ny) (1) 

information loss when group X and group Y 
are combined; 
number of elements in groups X and Y, 
respectively; 
average value of the observations in 
groups X and Y, respectively; 
small number to prevent ln(O) from occur­
ring; and 
number of criteria factors, used to mea­
sure the data distance (normally k = 1) • 

For more details, see work by Hamerslag (_!). 

SEGMENTATION RESULTS 

In the Netherlands the minimum age for drivers is 
18. To make certain that statistics are useful and 
understandable, all younger interviewees (and those 
with unstated answers) are eliminated from the 1979 
data base, leaving 16,777 persons to analyze. 

The first computer run showed that the variables 
personal income, position in household, and sex had 
a significant influence on automobile ownership. Al­
though the information loss among these variables 
did not differ much, personal income was pointed out 
as most important, for the following reasons: 

• It is an important indicator for potential 
expenditure, in contrast to both other variables 
mentioned. Fairly static characteristics such as sex 
and household position cannot easily be used in re­
search applications like forecasting. By using in­
come, continuous annual research is also possible. 

• Research on travel behavior and in particular 
travel performance also showed personal income to be 
of great significance (1). Linking up to this might 
bear advantages in intei?Preting the results. 

To maximize the information level, the data base 
was split up into its distinct income classes. As 
seen in Figure 1, low income and high income form 
quite homogeneous groups (small data dispersion). 
This indicates that there are no other important in­
fluences, so further analysis of these groups is not 
necessary. 

In the second computer run, all income classes 
were analyzed sepai:ately. Age, position in house­
hold, and sex turned out to be the most discriminat­
ing factors. After all information loss was totaled 
for each class (this is allowed because of interde­
pendencies), age was found to be the most important 
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FIGURE 1 Relationship between automobile ownership 
and personal net income (source: Dutch National Travel 
Survey). 

variable. Thus each income group was split into age 
classes. The effect of personal income and age on 
automobile ownership is shown in Figure 2. In most 
cases the peak level is located around the ages of 
36 to 45. 

In the third computer run the population groups 
formed were analyzed further. Depending on the group 
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FIGURE 2 Automobile ownership in 
relation to personal net income and age 
(source: Dutch National Travel Survey). 

ai::e 

characteristics, sex and position in household 
turned out to be the most important factors. New 
groups were created based on this knowledge. At this 
stage some groups did not contain enough inter­
viewees to be analyzed in further detail, whereas 
the remaining ones had small data dispersion (homo­
geneous data). Therefore the analysis stopped. 

In Figure 3 the results of each computer run are 
shown. Note that the population groups given are 
quite homogeneous, or too small to analyze. 

CLASSIFICATION OF POPULATION GROUPS 

As was demonstrated in Figure 3, the two most rele­
vant factors to personal automobile ownership are 
personal net income and age. Another important fac-
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FIGURE 3 Segmentation results visually summarized. 

tor is sex, which sometimes appears in a different 
form, such as position in the household or employ­
ment status. 

It was therefore decided to classify the survey 
population according to personal net income, age, 
and sex. For each group the percentage of personal 
automobile ownership was calculated. This was done 
for the survey years 1979-1982, which span the 
turbulent period of the second oil crisis and the 
subsequent income stagnation in the Netherlands. The 
classification is given in Table 1. 

TABLE 1 Classification of the Relevant Factors for 
Automobile Ownership 

Personal Income 
(Dfl x 1,000) 

No income (I I) 
0-8 (12) 
8-17(13) 
17-24 (14) 
24-38 (IS) 
;. 38 (16) 

Age (yr) 

18-25 (Al) 
25-36 (A2) 
36-45 (A3) 
45-65 (A4) 
;. 65 (AS) 

SouTce: Dutch National Travel Survey. 

Sex 

Male (SI) 
Female (S2) 

COMPOSITION OF SURVEY POPULATION 

Year 

1979 (YI) 
1980 (Y2) 
1981 (Y3) 
1982 (Y4) 

The composition of the survey population in 1982 
according to age and income is given in Figures 4 
and 5. As expected, there is a somewhat higher per ­
centage of women than men in the group over 65 years. 
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FIGURE 4 Cumulative age distribution for 1982 (source : Dutch 
National Travel Survey). 
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FIGURE 5 Cumulative income distribution for 1982 (source: Dutch 
National Travel Survey). 

The distribution of income by sex shows great 
differences between men and women: about 65 percent 
of the women have a personal net income of less than 
Dfl 8,000 per year versus 7 percent of the men. The 
percentage of men and women in the annual survey 
population is found to be stable, ranging from 50.16 
to 49.25 percent men. The composition of the survey 
sample can have important consequences for aggregate 
data such as personal automobile ownership. 

Table 2 gives the percentage of personal auto­
mobile ownership for 1979-1982 for both the total 
population and men and women separately. It can be 

TABLE 2 Percentage of Automobile 
Ownership 

Year To tal Group Men Women 

1979 41.9 68.3 15.4 
1980 43.2 69 .9 16.6 
198 1 43.4 70.7 16.5 
1982 42.2 69.5 15.8 

Source: Dut ch Natio nal Travel Survey. 

seen that a 1 percent increase in the proportion of 
women in the survey may cause a drop of more than 
0. 5 percent in automobile ownership for the total 
group. 

MODEL FORMULATION 

To analyze the influence of the most relevant fac­
tors (income, age, and sex) on automobile ownership 

and also the development of automobile ownership 
over the years 1979-1982 for the distinct groups, a 
multiplicative model was used: 

NUMCO(i,j,k) 

where 

NUMCO(i,j,k) 

c 
NPERS(i,j,k) 

I (i) 

A(j) 
s (k) 

C * NPERS ( i , j , k ) * I ( i ) 
* A(j) * S(k) (2) 

number of automobile-owning persons 
in groups i, j, and k; 
constant; 
total number of persons in groups 
i, j, and k; 
coefficient of income class i; 
coefficient of age class j; and 
coefficient of sex class k. 

The estimation was carried out by using a 
weighted multiproportional Poisson estimation method 
(!l_,14). This was done both for marginal factors and 
for the simultaneous inclusion of all factors. 

The results of the general estimations are shown 
in Tables 3 and 4. Table 3 indicates a strong in­
crease in automobile ownership with increasing in­
come as well as a relation to age (lowest in the 
group of 65 and older, highest in the group 36 to 
45). As shown, women reach only about 22 percent of 
the automobile-ownership level of men. 

Table 4 indicates, however, that the simultaneous 
inclusion of all relevant factors leads to somewhat 
less marked differences per factor, which is caused 
by correlation between the factors. The difference 
between men and women is sharply reduced with the 
inclusion of the income factor. This is because of 
the previously mentioned wide difference in personal 
income distribution between men and women. 
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TABLE 3 Results of the General Estimation of Automobile 
Ownership with Marginal Factors 

Factor 

Income 
(Dfl) 

Age 
(yr) 

Sex 

Class 

Constant 
No income 
0-8,000 
8,000-17,000 
I 7,000-24,000 
24.000-38,000 
;;. 38,000 
Constant 
18-2S 
2S-36 
36-4~ 

4S-6S 
;;.6S 
Constant 
Men 
Women 

Source: Dutch Natjona1 Travel SW'vey. 

Weight 

16,Sl3 
4,471 

10,844 
10,320 
8,S63 
4,402 

8,219 
13,9S9 
8,930 

16,290 
7,7 15 

26,S61 
28,SS2 

Automobile 
Ownership Coeffi-
(%) cient 

C(I) = 0.11 
10.9 II = I.DO 
16.9 12 = I.SS 
30.8 13 = 2.82 
62.1 14 = S.69 
80.2 IS= 7.35 
89.0 16 = 8.20 

C(A) = 0.20 
32.4 Al = 1.60 
S0.9 A2 = 2.SI 
54.9 A3 = :.!."/ U 
42.2 A4 = 2.08 
20.3 AS= 1.00 

C(S)=0.16 
70.l Sl = 4.44 
IS.8 S2 =I.OD 

TABLE 4 Results of the General Estimation of Automobile 
Ownership with Simultaneous Inclusion of All Factors 

Factor 

Constant 
Income 
(Dfl) 

Age 
(yr) 

Sex 

Class 

No income 
0-8,000 
8,000-17 ,000 
17,000-24,000 
24,000-38,000 
;;.38,000 
18-2S 
2S-36 
36-4S 
4S-6S 
;;.6S 
Men 
Women 

Source: Dutch National Travel Survey. 

Weight 

16,Sl3 
4,471 

10,844 
10,320 
8,S63 
4,402 
8,219 

13,959 
8,930 

16,290 
7,71 s 

26,S61 
28,5S2 

Automobile 
Ownership Coeffi-
(%) cient 

C= O.OS2 
10.9 ll = l.00 
16.9 12 = l.42 
30.8 13 = 2.26 
62.1 14 = 3.2S 
80.2 IS= 3.7S 
89.0 16 = 4.17 
32.4 Al = 1.89 
S0.9 A2 = 2. 17 
54.9 A3 = 2.21 
42.2 A4 = 1.88 
20.3 AS= 1.00 
70.l Sl = 2.18 
I S.8 S2 = l.00 

It should be noted, however, that when the ef­
fects of income and age have been taken into ac­
count, the percentage of automobile ownership by 
women is less than half that of men. The difference 
in automobile ownership between men and women is 
least for middle-aged persons and the highest income 
group. 

Similar estimations were performed with the model 
including a factor for the distinct survey years. No 
overall trends for automobile ownership were found. 

SEPARATE ESTIMATION BY SEX 

In Tables 5 and 6 separate estimations are presented 
for men and women. These results are shown in Figure 
6. It is found that the relative effect of the dis­
tinct factor classes is much greater for women than 
for men (although absolute automobile ownership for 
women is much lower in any case). 

The age effect for women is especially strong; 
there is a sharp drop in automobile ownership for 
the group over 65 years. Similar estimations have 
been made with the inclusion of a year factor for 
the total group and for separate income and age 
groups. 

It was found that there are significant changes 
in the automobile ownership of the oldest age group; 
automobile ownership increased in 1982 compared with 
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TABLE 5 Results of the Simultaneous Estimation of Automobile 
Ownership for Men 

Factor 

Constant 
Income 
(Dfl) 

Age 
(yr) 

Class 

No income 
0-8,000 
8,000-17 ,000 
17,000-24,000 
24,000-38,000 
;;.38,000 
18-2S 
25-36 
36-45 
4S-65 
;;.6S 

Source: Dutch National Travel Survey. 

Automobile 
Ownership Coeffi-

Weight (%) cient 

C= 0.134 
1,2S4 22.l 11 = 1.00 

677 32.6 12 = I.SO 
4,9SO 47.6 13 = 2.37 
8,047 69.9 14 = 3.16 
7,S32 84.S IS= 3.6S 
4,101 91.9 16 = 4.06 
4,122 47.1 Al= 1.62 
6,9S9 81.9 A2 = l.83 
4,569 86.8 A1=1 R1 
7,4SS 75.6 A4 = 1.64 
3,4S6 39.7 AS= 1.00 

TABLE 6 Results of the Simultaneous Estimation of Automobile 
Ownership for Women 

Factor 

Constant 
Income 

(Dfl) 

Age 
(yr) 

Class 

No income 
0-8,000 
8,000-17,000 
17,000-24,000 
24,000-38,000 
;;.38,000 
18-2S 
2S-36 
36-4S 
45-6S 
;;.65 

Source: Dutch National Travel Survey. 

Weight 

1S,2S9 
3,794 
5,894 
2,273 
1,031 

301 
4,097 
7,000 
4,361 
8,835 
4,2S9 

Automobile 
Ownershlp Coeffi-
(%) cient 

C= 0.024 
9.9 11 = 1.00 

14.I 12 = 1.37 
16.7 13 = 2.05 
34.S 14 = 3.62 
48.8 IS = 4.8S 
S7.5 16 = 5.98 
17.7 Al= 3.75 
20.0 A2 = 4.8S 
21.5 A3 = 5.63 
14.1 A4 = 3.71 
4.S AS = 1.00 

previous years. This is sometimes referred lo as d 

"generation effect." In the youngest age groups, 
automobile ownership decreased. There are no signif­
icant changes in automobile ownership by income 
group. 

CONCLUSIONS 

The method applied in this paper is a useful alter­
native to the generally used aggregate or disaggre­
gate methods. It leads to distinguishable population 
groups, the behavior of which ~ith respect to auto­
mobile ownership is different. The groups themselves 
are homogeneous because they are differentiated on 
the basis of the most influential factors that were 
documented in the data base. 

With data from the Dutch National Travel Survey, 
it was found that automobile ownership is mainly de­
termined by personal net income, age, and sex. It is 
essential to distinguish between the right influen­
tial factors, because changes in the composition of 
the (survey) population in relation to these factors 
will cause significant changes in the automobile 
ownership of the aggregate group, whereas other fac­
tors will have much less effect. 

Analysis of a multiplicative model of automobile 
ownership versus income, age, and sex for four con­
secutive years has clarified these relationships and 
their interdependencies. Because there is a strong 
relation between automobile ownership and income, it 
can be expected that future income development will 
influence automobile ownership as well. 
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car-ownership 

Al A2 A.1 

71 

16 

16 

A4 AS 

FIGURE 6 Results of estimated automobile ownership coefficients for income and age by sex 
[CAROW%= C x I(i) x Afj)]. 

Furthermore, continuing generation effects are 
expected, which means that the automobile ownership 
in the group older than 6 5 will increase. Al though 
the relative effect is especially strong for women, 
this will only have a limited effect on total auto­
mobile ownership, because of the small absolute 
values. The same applies to developments such as in­
creasing participation of women in the labor force, 
which would influence their personal income. 

Automobile ownership in the age group of 18-25 
has decreased slightly. This may have been caused by 
unemployment, but further analysis will be necessary 
to confirm this. 

It is remarkable that there is a structural dif­
ference in automobile ownership between men and 
women, even in the middle-aged and high-income cate­
gories. Th is can most probably be explained by the 
position in the household and employment status, 
which are not very likely to change rapidly in the 
near future. 

The consequences of the established relationships 
for forecasting purposes are interesting and a num­
ber of exercises for possible developments can be 

performed, assuming that the established relation­
ships remain valid. Because the population group 
that will be 18-25 years old in the year 2000 has 
already been born, the group size is known. The same 
applies to the other age groups, depending on their 
life expectations. By using the relative group sizes 
of the survey sample, the automobile ownership in, 
for instance, the year 2000 (ignoring any income ef­
fects) can be calculated. For the total population 
that is 18 years or older the result of such a cal­
culation shows 48 percent automobile ownership (76 
percent for men and 20 percent for women) • 

A similar exercise is to calculate automobile 
ownership for several scenarios of future economy 
(without age effects). An increase of 1 percent per 
year in personal net income for all income groups 
may lead to 46 percent automobile ownership (75 per­
cent for men and 18 percent for women) in the year 
2000. 

If women obtained exactly the same income distri­
bution as men have at present, total automobile own­
ership would rise to about 50 percent (women would 
reach 32 percent automobile ownership). This, how-



72 

ever, assumes that there still is a structural dif­
ference in automobile ownership between men and 
women. (This could be caused by factors that are 
assumed to remain unchanged, e.g., position in the 
household.) Other exercises such as calculation of 
combined effects could of course be performed as 
well. 

A time-trend calculation based on historic data 
or a backward calculation in time using the survey 
data could be applied to confirm the validity of 
these coefficients for forecasting purposes. 
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Automobile Availability and Its Application 1n 
Transportation Studies 

JANUSZ SUPERNAK and DAVID SCHOENDORFER 

ABSTRACT 

The usefulness of personal automobile availability in travel behavior analyses 
as an alternative to the more familiar automobile-ownership approach is dis­
cussed. A measure of automobile availability for an individual based over a 
longer period of time (an average situation) rather than a person's actual ac­
cess to the automobile at a specific time is offered. Four versions of the pro­
posed definition of automobile availability are formulated and their perfor­
mance is studied by examining the relationship between automobile availability 
and modal split. This is done by using data sets from Baltimore and the KONTIV 
data sets from Germany. Results of this analysis give preference to a simple 
three-level stratification [automobile (never/ sometimes/always) available] in 
defining automobile availability for its apparent application in travel demand 
and policy analyses. 

Until recently, the term "automobile availability" 
appeared in the literature just as a synonym for 
family automobile ownership. A forecast level of the 
family automobile ownership (0, 1, or 2+ automo­
biles) was a simple and natural input into the 
household-based trip generation models and an im­
portant explanatory variable for modal-split models. 

However, in recent years interest in the variable 
"automobile availability," which describes an indi­
vidual's access to a private automobile, has in­
creased noticeably. In order to better understand 
transportation-related behavior it became necessary 
to focus on analyses oriented toward individuals 
within the household rather than on the household as 
a whole, because individual needs , options, and con­
straints are ultimately responsible for the travel 
choices made. Both individually oriented modal-split 
models and recent person-based trip generation 
models (1,2) required a compatible term: "individual 
automobile - availability" rather than "household 
automobile ownership." Indeed, automobile availabil­
ity, or its equivalent variable, automobile competi­
tion, appeared crucial for both modal choices (!_, 
~-]) and mobility analysis Clrll. 

The usefulness of the automobile availability 
concept in transportation studies is examined with a 
primary focus on modal-split analysis. The following 
issues are addressed: (a) comparison between automo­
bile availability and automobile ownership concepts 
and (b) comparison of alternative definitions and 
measurements of automobile availability with primary 
reference to the relationship between automobile 
availability and modal choices in different geo­
graphic contexts. 

Two data sets are utilized in this study: the 
Baltimore Disaggregate Data Set from 1977 and the 
German data set called KONTIV, gathered in 1976. 
Only data records from German cities with more than 
500,000 inhabitants (code 7) were considered for the 
KONTIV set, to make it comparable with the Baltimore 
set. 

COMPARISON BETWEEN AUTOMOBILE AVAILABILITY AND 
AUTOMOBILE OWNERSHIP APPROACHES 

For all household-oriented modeling approaches, an 
automobile ownership description (0, 1, or 2+ auto-

mobiles in the family) is a natural and simple one. 
For years, the forecast level of family automobile 
ownership has been commonly used as an input to the 
household-based trip generation models and as an im­
portant explanatory variable for modal-split models. 
However, a closer look at this problem from the point 
of view of an individual--the true decision maker 
and traveler--can raise some doubts about the ade­
~uacy of the term "automobile ownership" for travel 
behavior analyses and disaggregate travelchoice 
models. 

First, it is apparent that any given level of 
family automobile ownership seldom means equal ac­
cess to automobiles for all family members. For ex­
ample, some will be primary users, whereas others 
will have to wait for the automobile until it is not 
needed for a more important activity. Also, not all 
family members may have a driver's license. A seem­
ingly easy automobile-sharing arrangement among fam­
ily members may often be significantly restricted if 
their activities outside the home are, for different 
reasons, temporarily or spatially inflexible. 

Therefore, the total number of automobiles owned 
by a family may not be an absolutely objective de­
scription of high or low ownership level because it 
does not refer to the real need for an automobile by 
each family member. For example, family ownership of 
two automobiles (seemingly high) may not fully sat­
isfy the needs of a family with four drivers if 
three of them are employed at different, widely dis­
persed locations. On the other hand, a low ownership 
level of one automobile will warrant unrestricted 
access to the automobile if there is only one driver 
in the household. 

In addition, modal choices made by different fam­
ily members depend primarily on the availability of 
private transportation to each individual family 
membe r rather than on the overall automobile owner­
ship of the family. "Family modal choice" is virtu­
ally an uhdef inable term because the individual mode 
choices are often dramatically different among fam­
ily members. Thus, the automobile availability de­
scription may be more suitable than the automobile 
ownership approach in describing the behavioral 
background of the modal-split choices, which are 
always closely related to automobile ownership and 
automobile availability issues. 
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Finally, the household-based automobile ownership 
concept encounters several problems when dynamic 
changes in the family "life cycle" (family size or 
number of employed members) are accounted for. Such 
changes contribute to the changing attitudes toward 
possessing a given number of automobiles. These 
changes are crucial considerations for long-range 
travel forecasts. Also there is difficulty in cap­
turing such commonly observed trends relevant to the 
family automobile ownership issue as (a) decrease in 
the household size (fewer children and lower per­
centage of three-generation families), (b) increase 
in families with two or more breadwinners (increase 
in percentage of female employment), (c) increase in 
percentage of single-parent families, (d) increase 
in percentage of single persons, (e) increase in the 
average age of the population, and (f) increase in 
the percentage of women possessing a driver's li­
cense. 

Because the automobile availability concept ad­
dresses the issue of access to an automobile at the 
individual level, it provides the potential for a 
more precise and better behaviorally based descrip­
tion of the complex relationship among a person's 
need for travel, travel opportunities, and actual 
travel itself. It should be stressed that any de~ 

script ion of automobile availability should not ig­
nore obvious family links and constraints, which may 
affect both access to the automobile and its actual 
use. 

DEFINITIONS AND MEASUREMENTS OF AUTOMOBILE 
AVAILABILITY 

Previous Studies 

The majority of studies on automobile availability 
have based their measures on direct questions asked 
in household surveys, for example, "Was there an 
automobile available that you could have used for 
this trip?" Bailey (4) argues that this simple 
question can be difficult to interpret and is likely 
to be difficult for a respondent to answer quickly. 

Therefore, in a number of studies, attempts have 
been made to overcome some of the problems and ambi­
guities by not asking the question about actual 
automobile availability at all (4). Instead, a num­
ber of assumptions had to be mad~ regarding the pri­
ority of use of the automobile in potentially con­
flicting and nonconflicting situations. From these 
assumptions a judgment about actual automobile 
availability was made. 

Gwilliam and Banister (8), for example, made the 
following assumptions: (a)- an automobile was con­
sidered available for a particular trip when it was 
not in use and located at the point from which that 
trip was to begin, (b) availability of the automo­
bile for passenger travel was excluded from the 
analysis, and (c) all trips measured as "automobile 
available" would be made by automobile. 

Bailey and Layzell (2) postulated a clarification 
of the automobile availability concept. They com­
pared the number of 1 icense holders and number of 
automobiles in the household, and defined the auto­
mobile as being available only if it remained unused 
for the duration of the period for which a particu­
lar traveler would be away from home. 

It has to be emphasized that all the aforemen­
tioned definitions of automobile availability con­
sistently attempted to represent actual access to an 
automobile by an individual at the analyzed specific 
period of time. 

Proposed Definition of Automobile Availability 

Stopher and Wilmot (2_) developed individual-choice 
models of modal split by using a variable defined as 
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"automobile competition." This variable was defined 
as the ratio of automobiles to licensed drivers and 
was a continuous measure of automobile availability. 
When the automobile competition variable was added 
to the multinomial legit model as a mode-specific 
variable for automobile driver, it added significant 
explanatory power to the work-trip model of mode 
choice. 

Similar to Stopher and Wilmot's definition of 
automobile competition, the definition of automobile 
availability proposed here refers to the average 
situation over a longer period of time rather than 
just a survey day, which could be atypical (e.g., an 
automobile normally available for a given individual 
could be in for repair during the survey day: a per­
son without an automobile can use a friend's automo­
bile, etc.). Instead of delving into a complex sys­
tem of dependencies to understand why an automobile 
is available for a given family member at certain 
times or directly asking the question about automo­
bile availability in the household survey (which 
will never bring any clear-cut answers), it appears 
to be more beneficial and practical to investigate 
the general travel choices made by a person who has 
no access to the automobile as a driver, limited 
access, or unlimited access. The difference between 
the analysis presented in this paper and the one 
made by Stopher and Wilmot (7) is that the purpose 
of the automobile availability variable used here is 
to stratify the population into homogeneous groups 
that can be examined individually rather than using 
the automobile competition variable as an explana­
tory variable for multinomial legit (MNL) models. 

The concept of automobile availability presented 
in this paper was originally proposed by Supernak et 
al. (5, 6, 10) • The three-level choice described in 
this ~pproach [automobile (never/sometimes/always) 
available] replaces a two-level choice [automobile 
(available/ not available) for a particular trip]. 

Automobile availability levels are described as fol­
lows (Ne = number of automobiles in the household 
and Na = number of persons with a driver's license 
in the household): 

Automobile Availabili t:i::: 
Criterion Drivers Nondrivers 
Ne = 0 Never Never 
Ne> o, Na> Ne Sometimes Never 
Ne> o, Na .s_ Ne Always Never 

It should be noted that similar to previous work 
[e.g., that of Bailey (ill, the level of automobile 
availability refers to the availability to drive an 
ctulu111u!Jlle ctl crny yiven time (not to beiny a passen­
ger). Theoretically, any person can be a passenger 
in an automobile at any time (by hiring a taxi, for 
example). Also, any ridesharing arrangements are not 
limited to the same household. 

Automobile Availabilit:i::: as an Element of a Person 
Category Travel-Demand Analysis 

The concept of automobile availability was developed 
as part of an integrated modeling system based on 
homogeneous person categories. In particular, the 
result of the automobile availability model--a fore­
cast share of the population with an automobile 
available (never/sometimes/always)--is the direct 
input into the person category trip generation model 
(1). 

In developing this model, a multistage, multi­
variate analysis of factors influencing a person's 
travel behavior proposed that the most significant 
variables describing differences in travel behavior 
were age, employment status, and automobile avail­
ability. This analysis resulted in the formulation 
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of eight homogeneous person categories as seen in 
Figure 1. 

Age reflects obvious differences in demand for 
travel among (a) preemployment, (b) employment, and 
(c) postemployment stages in everyone's life. Em­

ployment status reflects a basic distinction between 
employed and nonemployed adults with respect to 
their deinand for activities and travel. The former 

Car 
Available 

Never 

Sometimes 

Always 

Age 

<:18 

18-65 

>65 

FIGURE I Description of the eight-person homogeneous 
categories. 

group participates regularly in both obligatory and 
discretionary activities, whereas the latter par­
ticipates primarily in discretionary outside-home 
activities. The third variable describes a person's 
ability to fulfill his or her travel needs through 
"purchasing" the services offered by the most con­
venient transportation mode: an automobile. 

The aim of the person category automobile avail­
ability model is to describe the proportions a 2 : 
"3 : " 4 and " 5 : " 6 : " 7 , where a i is the share of 
the population in category i. This is the only re­
maining element needed to forecast category percent­
ages " 1 , " 2 , ••• , a 8 for the trip generation model. 
Shares of" 1 and a 8 are known from the demographic 
forecasts, whereas the split between the employed and 
nonemployed adults (e>2 + a3 + a4)/(a5 + a6 + a7) is 
known from the labor force and employment projections 
(which have to be made anyway for trip generation 

and trip distribution forecasting). 
It should be noted that the level of automobile 

availability has to be described separately for em­
ployed (a 2 : a 3 : a 4) and nonemployed (a 5 : a 6 : a 7) 
adults because it can be reasonably expected that 
the need for an automobile is significantly differ­
entiated between these two groups. Supernak has dis­
cussed the description of these shares briefly (~). 

Modifications of Proposed Definition of Automobile 
Availability 

The description of individual automobile availabil­
ity proposed earlier is only one of many possible 
formulations. Although the situations "automobile 
never available" and "automobile always available" 
are clearly specified, there could be several alter­
native definitions of the situation "automobile 
sometimes available" to capture the difference be­
tween, say, one automobile shared by three drivers 
or three automobiles shared by four drivers. There­
fore, three other descriptions of the situation 
"automobile sometimes available" are presented as 
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modifications to the proposed definition of auto­
mobile availability. 

Modification 1 

Obligatory trips, which include work and school 
trips, usually must occur at a specific time of the 
day. Discretionary trips, which include personal 
business, shopping, and social-recreational trips, 
are more flexible and can be scheduled for more con­
venient times during the day. Because obligatory 
trips are on this rigid time schedule, they would 
usually be considered to have priority over discre­
tionary trips. Therefore, in a household with less 
automobiles than drivers, the employed individuals 
may often have priority for the automobile to go to 
work. 

Schoendorfer (11) proposed a modification of the 
automobile availability description that could ac­
count for the priority given to obligatory trips. 
The definition of the situation "automobile some­
times available" was revised by introducing a vari­
able Ne, which is the number of employed persons 
in the household with a valid driver's license. The 
Ne variable (number of automobiles in the house­
hold) maintained the same definition that was used 
in the previous version. 

If Ne > Ne (Ne/Ne < 1) , then some employed per sons 
in that household may not always have unrestricted 
access to the automobile for their obligatory trips. 
If Ne 2 Ne (Ne/Ne~ 1), then the employed persons in 
this household may not need to compete for the auto­
mobile for obligatory trips or "always" have ace es s 
to the automobile for these trips. Taking this into 
account, the original Category 3 (employed, auto­
mobile sometimes available), was divided into two 
groups, Categories 3A and 3B. Category 3A includes 
those individuals who may "sometimes" have access to 
the automobile for obligatory trips and Category 3B 
is those individuals who may "always" have access to 
the automobile for these trips. 

Modification 2 

Modification 2 examines in more detail Category 3A 
according to the actual ratio Nc/Ne• Although theo­
retically continuous, in reality this ratio is re­
duced to a relatively few discrete values resulting 
from possible combinations of number of automobiles, 
drivers, and employees in a household. 

It was found that this ratio was often 1/3, 1/2, 
and 2/3. Based on this finding, the stratification 
of the segment of the population that is employed 
with an automobile sometimes available resulted in 
four ranges; 0 < x < 1/3; 1/3 < x < 2/3; 2/3 < x < 
l; and x > 1. The categories were named 3A.l, JA.2, 
3A.3, and-3B, respectively. 

Modification 3 

Modification 3 is an extension of the original de­
scription of automobile availability based on the 
ratio Ne/Na to introduce more segments in the "auto­
mobile sometimes available" category (0 < Ne/Na < 1). 
The stratification of the segment of the population 
that is employed with an automobile sometimes avail­
able resulted in three groups, 3.1, 3.2, and 3.3, 
corresponding to Ne/Na ranges 0 < x:: 1/3, 1/3 < x < 
2/3, and 2/3 .s_ x < 1, respectively. 

COMPARISON OF ALTERNATIVE DEFINITIONS OF AUTOMOBILE 
AVAILABILITY 

The aim in this section is to recommend the pre­
ferred version of automobile availability descrip­
tions by comparing the proposed version and Modifi­
cations 1, 2, and 3. Data sets from Baltimore, 
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Maryland, and German cities are utilized in order to 
(a) examine population representations with in each 
automobile availability segment, (b) examine the 
consistency of category-specific modal-split charac­
teristics for alternative descriptions of automobile 
availability, (c) compare modal•split characteris­
tics of person categories between Baltimore and the 
German cities (this is done for the purpose of com­
paring automobile availability definitions only; the 
modal-split relationship will be investigated in 
greater detail in a separate paper), and (d) examine 
prospects for transferring category-specific modal 
shares from Germany to predict the use of the auto­
mobile and public transit modes in Baltimore. 

Population Representations f or Each Category 

Table 1 shows the percentage of the population rep­
resented by each category. Most of the emphasis in 
this section is directed at Category 3 (age 18 to 
65, employed, automobile sometimes available), which 
represents only about 20 percent of the population 
in both Baltimore and the German cities. Although 
this may be considered a small percentage of the en­
tire population, it represents those who sometimes 
have an automobile available, a category that is not 
as clearly defined as situations in which an auto­
mobile is never or always available. However, when 
the individuals in Category 3 were reclassified ac­
cording to Modifications 1, 2, and 3, it was recog­
nized that this group was not as ambiguous as origi­
nally thought. In large German cities, for example, 
74. 6 percent of Category 3 fell into Category 3A. 2 
(Ne/Ne > 1/3 and< 2/3) for Modification 2 and 86.3 
percent of Category 3 fell into Category 3.2 (Ne/Na> 
1/3 and < 2/3) for Modification 3. This suggests 
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that because such a small segment of the population 
is represented by some of the other categories (Cat­
egories 3A.l and 3A.2 in Modification 2 and Catego­
ries 3.1 and 3.3 in Modification 3), little accuracy 
is to be gained by the further stratification of 
Category 3, as was done in all modifications. 

For Baltimore it is interesting to note that a 
larger percentage of the employed population has an 
automobile always available (23. 6 percent of the 
population, or 46.8 percent of the work force). Al­
most half of the population represented by Category 
3 always has an automobile available when avail­
ability is defined by the ratio of Ne/Ne as in Modi­
fication 1. This means that nearly 62 percent of the 
work force always has access to the automobile for 
obligatory trips. This suggests that the number of 
employees in a household directly affects the de­
sired level of automobile availability within a 
household. 

Automobile Availability and Modal Split in Baltimore 
and German Cities 

The results summarizing modal-split characteristics 
are presented in Tables 2 and 3 for Baltimore and in 
Tables 4 and 5 for the German cities. The findings 
may be summarized as follows: 

1. Independent of version, an increase in auto­
mobile availability results in consistent increases 
in shares for the automobile-driver mode and de­
creases in the automobile-passenger and public tran­
s it share. The walk share also decreases, although 
less consistently. This applies to both obligatory 
and discretionary trips for both data sets, although 
the overall differences in modal-split characteris-

TABLE 1 Category Representations for Alternative Descriptions of Automobile 
Availability 

Category Representations(%) 

Entire Population Category 3 

Employment Automobile German German 
Age Status Availability Category• Baltimore Cities Baltimore Cities 

Proposed Definition: Ne/Nd 

<18 N/A N/A I 20.5 15.0 
18-65 Employed Ne= 0 2 10.2 20.9 
18-65 Employed <I 3 16.6 20.5 100.0 100.0 
18-65 Employed ;.l 4 23.6 18.2 
18-6:i Nonemployed Ne= U 5 9.5 10.7 
18-65 Nonemployed <1 6 6.9 4.0 
18-65 Nonemployed >1 7 6.8 2.5 
>65 N/A N/A 8 5.9 8.2 

Modification 1 b: Ne/Ne 

18-65 Employed < I 3A 8.9 16.2 53.6 79.0 
18-65 Employed > I 3B 7.7 4.3 46.4 21.0 

Modification 2: Ne/Ne 

18-65 Employed >0; d/3 3A.l 0.7 0.3 4.2 1.5 
18-65 Employed >1/3; <2/3 3A.2 4.7 15.3 28.3 74.6 
18-65 Employed ;;.2/3; < 1 3A.3 3.5 0.6 21.1 2.9 
18-65 Employed ;;.l 3B 7.7 4.3 46.4 21.0 

Modification 3: Ne/Nd 

18-65 Employed >O;d/3 3.1 l. 7 1.2 10.2 5.9 
18-65 Employed >l /3;< 2/3 3.2 10.3 17.7 62.0 86.3 
18-65 Employed ;.2/3; <l 3.3 4.6 1.6 27.7 7.8 

Note : Ne= number orautornobUcs in the household; Nd= number of persons in household with a driver's license; Ne= 
number of ernptoycd person1 tn household with a driver's license; N/A ::; not applicoble. 

~Ca.tti;orh::s 1, 2, and 4 through 8 romnln the soma for aH versions. 
For Modifications I, 2, and 3, Ne is ohVAY.S RTC411 tcr than ~c:ro . 
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TABLE 2 Modal-Split Shares for Obligatory Trips in Baltimore for All Category Descriptions 

Mode-Split Shares(%) 

Trip Auto- Auto-
Employment Automobile ~trav Rate mobile mobile Public Other 

Age Status Availability Category• (%) (N) Driver Passenger Transit Walk Modes 

Proposed Definition: Ne/Nd 

<18 N/A N/A 1 20.5 1.79 4.6 14.5 24.2 43 .7 13 .0 
18-65 Employed Ne= 0 2 10.2 1.75 2.4 30.7 49.2 14.6 3.1 
18-65 Employed < l 3 16.6 2.05 65.1 18.2 9.3 7.0 0.4 
18-65 Employed ;>! 4 23.6 2.00 88.l 6.2 1.8 2.7 1.2 
18-65 Nonemployed Ne= 0 5 9.5 0.34 0 .0 15.2 30.4 54.3 0.0 
18-65 Nonemployed <l 6 6.9 0.50 46.9 28.6 8.2 16.3 0.0 
18-65 Nonemployed ;;. l 7 6.8 0.37 66.7 8.3 5.6 11.1 8.3 
>65 N/A N/A 8 5.9 0.29 83.3 12.5 4.2 0.0 0.0 

Modification lb : Ne/Ne 

18-65 Employed < l 3A 8.9 1.96 54.6 22.5 11.6 10.8 0.4 
18-65 Employed ;> l 3B 7.7 2.16 76.2 13.6 6.8 3.0 0.4 

Modification 2 : Ne/Ne 

18-65 Employed >O;.- 1/ 3 3A. l 0.7 1.60 37.5 25 .0 12.5 25 .0 0.0 
18-65 Employed > 1/3 ; < 2/3 3A.2 4.7 l.83 50.4 26.4 14.l 8.3 0.8 
18-65 Employed >2/3 ; < l 3A.3 3.5 1.98 58.6 16.2 12.1 13. l 0.0 
18-65 Employed ;;. l 3B 7.7 2.16 76.2 13.6 6.8 3.0 0.4 

Modification 3: Ne/Nd 

18-65 Employed > 0; .- 1/3 3.1 1.7 1.83 50.0 25.0 11.4 13.6 0.0 
18-65 Employed > l /3 ; < 2/3 3.2 10.3 1.99 58. 6 21.0 11.7 8.3 0.3 
18-65 Employed > 2/3 ; < l 3.3 4.6 2.27 82.0 10.7 4.0 2.7 0.7 

Note: Ne = number of automobiles in the household; Nd = number of persons in household with a driver's License ; Ne= number or em-
ployed persons in household with a driver's license; atrav = percentage of travelers in each category of the po pulation; N/A = not applicable. 

~Cate~ories 1, 2, and 4 through B re n111ln the u me for all vcn:lons. 
For Modifications 1, 2, and 3, Ne is nhvays greiu or than xcro. 

TABLE 3 Modal-Split Shares for Discretionary Trips in Baltimore for All Category Descriptions 

Mode-Split Shares(%) 

Trip Auto- Auto-
Employment Automobile a'trav Rate mobile mobile Public Other 

Age Status Availability Category• (%) (N) Driver Passenger Transit Walk Modes 

Proposed: Ne/Nd 

< 18 N/A N/A l 20.5 l.72 5.8 28.3 4.6 52.4 8.9 
18-65 Employed Ne= 0 2 10.2 1.14 0.0 24.8 21.8 46.1 7.3 
18-65 Employed < l 3 16 .6 l.33 70.5 17.5 0.6 10.8 0.6 
18-65 Employed ;;. ] 4 23.6 l.64 83.0 7.5 1.3 7.3 0.9 
18-65 Nonemployed Ne= 0 5 9.5 2.70 l.l 33 .5 11.0 50.8 3.6 
18-65 Nonemployed <I 6 6.9 2.91 50.5 27.0 2.8 16.5 3.2 
18-65 Nonemployed ;;. ] 7 6.8 3.33 73.4 22.0 0.3 4.0 0.3 
> 65 N/A N/A 8 5.9 2.64 39.6 11.7 12.6 30.2 5.9 

Modifica tio n lb : Ne/Ne 

18-65 Employed < I 3A 8.9 1.4 7 61.5 23 .0 I.I 13.4 I. I 
18-65 Employed ;;. l 3B 7.7 l.17 83.6 9.4 0.0 7.0 o.o 

Modification 2: Ne/Ne 

18-65 Employed >0 ;.;; 1/3 3A.1 0.7 l.60 25.0 43 .8 6.2 25 .0 0.0 
18-65 Employed > l /3;<2 /3 3A.2 4.7 1. 50 70.7 13.1 1.0 13.1 2.0 
18-65 Employed >2/3; < l 3A.3 3.5 1.22 57.4 29.5 0.0 13.l 0.0 
18-65 Employed :> 1 3B 7.7 1.17 83 .6 9.4 o.o 7.0 0.0 

Modification 3: Ne/Nd 

18-65 Employed >0 ; .- J /3 3.1 l.7 J.25 36 .7 33.3 3.3 26.7 0.0 
18-65 Emplo yed > l/3; <2 / 3 3.2 10.3 1.35 73.6 14.7 o.s 10.2 1.0 
18-65 Employed :>2 /3;< 1 3.3 4.6 1.33 75.0 18.2 0.0 6.8 0.0 

Note: Ne = number ofn ulomo hUes in the household; Nd = number or persons in household with a driver's license; Ne= number of em-
ployed persons in hou.stho ltl with a driver's lic.,nse; atrav = percentage of travelers in each category of th e po pulation; N/A = nol applicable. 

~Cate,.;,orrc s J, 2, and 4 through B remain the amc for all V~l"$ l o ns. 
For Mo difications 1, 2, and 3, Ne is always fl:C011(ifr than w ro . 
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TABLE 4 Modal-Split Shares for Obligatory Trips in German Cities (KONTIV Code 7) for All Category 
Descriptions 

Mode-Split Shares(%) 

Trip Auto- Auto-
Employment Automobile O'.trav Rate mobile mobile Public Other 

Age Status Availability Category• (%) (N) Driver Passenger Transit Walk Modes 

Proposed: Ne/Nd 

<18 N/A N/A 15.0 1. 85 0.1 4.1 37.0 38.4 20.4 
18-65 Employed Ne= 0 2 20.9 1. 52 4.7 9 .1 46 .6 32.6 7.0 
18-65 Employed <I 3 20.5 1.94 57.3 6.4 16.6 16 .3 3.4 
18-65 Employed ;.l 4 18.2 2.06 81.1 2. 1 4.5 11.2 I. I 
18-65 Nonemployed 'le= 0 5 10.7 0.92 2.9 6.9 44.9 36.9 8.4 
18-65 Nonemployed <I 6 4.0 1.47 41.7 6.7 27.3 16. l 8.2 
18-65 Nonemployed .. , 7 2.5 1.49 71.4 1.6 8.3 15.7 3.0 
>65 N/A N/A 8 8.2 0.59 17.5 3.8 25.4 50.3 3.0 

Modification I b : Ne/Ne 

18-65 Employed <I 3A 16.2 1.97 54.4 7.1 17.3 17.8 3.5 
18-65 Employed ;. J 3B 4.3 1.80 69 .5 3.8 13.2 10.2 3.3 

Modification 2: Ne/Ne 

18-65 Employed >0; <; l/3 3A.l 0.3 2.22 44.9 8.2 20.4 22.4 4.1 
18-65 Employed >1/3; <2/3 3A.2 15.3 2.01 54.2 7.1 17 .0 18.1 3.5 
i8-65 Employed ;. 2/3; <I 3A.3 0.6 1.63 62.5 4.5 28.4 4.5 0.0 
18-65 Employed ;. l 3B 4.3 1.80 69.5 3.8 13.2 10.2 3.3 

Modification 3 : Ne /Nd 

18-65 Employed >0; <; l/3 3.1 1.2 1.93 50.4 7.2 23.9 14.4 4.1 
18-65 Employed >1/3; <2/3 3.2 17.7 1.9 1 55.8 6.7 16.4 17.6 3,5 
18-65 Employed ;.2/3; <I 3.3 1.6 1.88 78.0 2.8 13.6 4 .9 0.7 

Note: Ne= number of automobiles in the household; Nd= number of persons in household with a drive r 's license; Ne= number of em-
ployed persons in household with a driver's Jicense; O'trav =percentage of travelers in each category of the population; N/A =not applicable. 

~Categories 1, 2, and 4 through 8remnln 1ht$nmCt for all \'Or..\ions . 
For Modifications 1, 2, and 3, Ne Js:.1w:))lf. gr-c:uor than 1.cro. 

TABLE 5 Modal-Split Shares for Discretionary Trips in German Cities (KONTIV Code 7) for All 
Category Descriptions 

Mode-Split Shares(%) 

Trip Auto- Auto-
Employment Automobile °'tr.iv Rate mobile mobile Public Other 

Age Status Availability Category• (%) (N) Driver Passenger Transit Walk Mo des 

Proposed: Ne/Nd 

<18 N/A N/A 15.0 1.49 0.3 10.5 22.3 43.4 23.5 
18-65 Employed Ne= O 2 20.9 1.51 3.7 11.5 22.6 52.S 9.7 
18-65 Employed <l 3 20.5 1.69 49.6 10.0 7.3 29. 5 3.6 
18-65 Employed ;. 1 4 18.2 1.71 77 2 1.li ?. 7 l'\ 1 1 4 
18-65 Nonemployed Ne= O 5 10.7 2.12 1.9 11.8 20.8 57.7 7.7 
18-65 Nonemployed <l 6 4 .0 2.14 43.4 9.8 10.6 30.2 6.0 
18-65 Nonemployed .. , 7 2.5 2.25 65.7 0.7 4.4 24.1 5. 1 
>65 N/A N/A 8 8.2 2.42 9.0 3.8 24 .6 57.3 5.4 

Modification I b: Ne/Ne 

18-65 Employed <l 3A 16.2 1.6 5 45.1 10.6 8.3 32.1 3.9 
18-65 Employed .. , 3B 4.3 1.8 1 65.4 7.6 3.7 20 .5 2.8 

Modification 2: Ne/Ne 

18-65 Employed >0; <; l/3 3A.l 0.3 0.68 53.3 13.3 0.0 26.7 6.7 
18-65 Employed >l/3;<2/3 3A.2 15.3 1.70 44.8 10.7 8.2 32.4 3.9 
18-65 Employed ;. 2/3; <I 3A.3 0 .6 1.32 50.7 9.9 14.l 22.5 2.8 
18-65 Employed ;> l 3B 4.3 1.81 65.4 7.6 3.7 20 .5 2.8 

Modification 3: Ne/Nd 

18-65 Employed >0; <; l/3 3.1 1.2 1.36 53.8 7.7 10.3 26.3 1.9 
18-65 Employed > l/3 ;< 2/3 3.2 17.7 1.67 47.1 10.3 7.6 31.2 3.9 
18-65 Employed ;. 2/3; < l 3.3 1.6 1.87 69.8 8.4 2.8 16 .1 2.8 

Note: Ne= number of automobiles jn the househo ld; Nd = number of persons in household with a driver's license; Ne= number of em· 
ployed persons in household with o driver's license; C¥trav = percentage of travelers in each category or the population; N/A =not applicable. 

~Catego ries I, 2, and 4 through 8 rem:tlM 010 ,.\11U1~ for all ""crslons. 
For Modifications 1, 2 , and 3, Ne i11 :1 lwe))"I grcio.t<1r than ioro. 
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tics between Baltimore and the German cities should 
be kept in mind. 

2. The ratios Ne/Na and Ne / Ne are higher in Bal­
timore than in the German cities. Both of these ra­
tios were most often 1/ 2 for the German cities, 
whereas for Baltimore the Ne/Na ratio shifts from 1/2 
t oward 2/3 and the Ne/Ne ratio is frequently 1. This 
offers much better ridesharing opportunities in Bal­
timore as compared with the German cities. 

3. For Modifications 1 and 2 it is clear that 
preference is given to employed persons for their 
obligatory trips. In Modification 1, for example, 
Category 3B modal-split shares shift from Category 3 
toward Category 4, indicating a tendency to make the 
automobile always available for obligatory trips for 
employed members. The modal sha res are not exactly 
like Category 4, because those in Category 3B still 
may compete with other household members for the 
automobile when they make discretionary trips. 

Transferability Tests 

Simple transferability tests were performed to de­
termine (a) how consistent the category-specific 
modal-split travel behavior is in Baltimore and the 
German cities and (b) which version of automobil e 
availability description performs best for different 
population segments. The category-specific modal 

shares from Germany (a ~~rm) were "borrowed" to ex-
lJ 

plain modal share j in Baltimore (a~alt): 

a~alt,pred 
J ( ~i 0 ~~rm ~alt Balt) 

l µ iJ • i • a i 

.!. (~ Balt. Balt) 
• l Ni a i 

i 

(1) 

wher e 

a ~alt,pred 
J 

a~~rm 
l] 

~alt 
l. 

predicted share of mode j in 

Baltimore, 

actual share of mode j for person 

category i in the German cities, 

actual trip rate per traveler belong­

ing to Category i in Baltimore, and 
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Balt 
". l. 

actual share o f t he tr aveler Ca t egor y 

i in Baltimore. 

The e rrors were calculated as follows: 

E _ ( Balt,pred _ Balt,act)/ Balt,act 
rror - a j a j a j (2) 

where a~alt,act is the actual share of mode j in Bal­
] 

timore. 
The results of such a n analysis are shown in 

Table 6. It may be s e en that (a) transferability 
errors are small for the automobile-driver mode and 
much higher for the public transit mode; (b) errors 
are much smaller for "organized" obligatory trips 
than for more area-specific discretionary trips: (c) 
errors are much smaller for the employed segment 
than for the entire population; (d) Categories 1 and 
8, not defined around the automobile availability 
variable, are least transferable; and (e) level-of­
service variables are needed to explain the public 
transit share of the modal split, because the errors 
without these variables are too large, particularly 
for discretionary trips. [Note, however, that trans­
fers of MNL models of mode choice may result in much 
higher error s if the model is transferred into a 
different urban environment: f o r example, the trans­
fer of the Baltimore model to Twin Cities resulted 
in 500 percent error to the public transit share 
(12). Recent work by Supernak (13,pp. 533-559) shows 
a-method for updating alternati~ specific constants 
of MNL models of mode choice by utilizing category­
specific modal shares.] 

It appears from Table 6 that no one version of 
automobile availability performs much better than 
any of the others. In most cases, the original pro­
posed definition of automobile availability will be 
considered superior because of its simplicity as 
compared with the modified versions. Although fur­
ther stratification of Category 3 has provided some 
interesting observations (e.g., that the higher the 
ratio of number of drivers to number of automobiles, 
or the number of employed drivers to the number of 
automobiles, the higher is the likelihood of driving 
the automobile), the small representations of each 
of the modified groups make these descriptions of 
automobile availability more cumbersome than they 
ar e worth. 

Table 7 confirms the usefulness of categorization 
of the population according to such variables as 

TABLE6 Transferability Errors for Automobile-Driver and Public Transit Modes in 
Application of Category-Specific Modal Shares from German Cities to Baltimore 

Errors(%) 

Obligatory Trips Discretionary Trips All Trips 

Auto- Auto- Auto-
mobile Public mobile Public mobile Public 

Version Category Driver Transit Driver Transit Driver Transit 

Proposed version 2-4 -8.65 +25.75 -1 3.48 +66.68 -11.03 +27.23 
2-7 -8 .17 +3 1.61 -1 2.57 +1 07.55 -10.47 +63.17 
1-8 -11. 75 +41.28 -1 9.4 1 +1 49.24 -15. 79 +80.24 

Modification 
1 2-4 - 6.30 +22.44 -1 1.74 +60.03 -11.11 +12.82 

2-7 - 5.94 +28.64 -11.46 +104. 29 -10.53 +49.55 
1-8 - 9.61 +39.46 -1 8.42 +147.08 -15 .85 +70.80 

2 2-4 - 5.24 +25.80 - 11.08 +63 .20 -10.10 +1 1.35 
2-7 -4.93 +31.60 -11.04 +105.84 -1 3.84 +46.89 
1-8 - 8.69 +41.21 -18.06 +148.10 -15.1 5 +68.5 1 

3 2-4 -6 .04 +24.72 - 13 .82 +61.12 -11.08 +7.45 
2-7 -5.69 +27.62 -12.79 +104.84 -10.51 +43.44 
1-8 -9.44 +38.89 - 19.60 +147.45 -15 .83 +66. 12 
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TABLE 7 Analysis of Variance Results for All Trip Purposes 

Other 
Factor 

Auto­
mobile 
Driver 

Auto­
mobile 
Passenger 

Public 
Transit Walk Modes F0 · 01 

2 Cities and 8 Categories 

Categories 33.65 3.27 10.41 8.80 
Cities 4.30 41.22 11.38 7.25 

2 Cities and I 0 Categories• 

Categories 32.33 2.88 13.7 1 9.64 
Cities 3.35 51.10 16.59 7.87 

Note: Calculated F-vatues are shown and compared wilh FO.Ol 
3 As defined in Modification 3. 

7.77 6.99 
9.02 12.25 

8.36 5.35 
11.45 10.56 

automobile availability, employment status, and age 
(th e factor "categories" is significant at the 1 
percent level), for all modes except automobile pas­
s enger. When the analysis of variance is applied to 
the modified category description (Modification 3), 
th e significance of a r e a c haracteristics increases 
and the significance of category characteristics re­
mains unchanged (see Table 7). Most significantly, 
this table confirms the usefulness of the automobile 
availability concept to analyze travel behavior, 
particularly modal split. 

CONCLUSIONS AND RECOMMENDATIONS 

Th e following conclusions and recommendations may be 
stated: 

1. The concept of automobile availability ap­
pears to be a valid alternative to the automobile 
ownership concept. An individual's access to the 
most convenient transportation mode, an automobile, 
is a primary factor in determining mode choice, par­
ticularly the share of the automobile-driven trips. 
The relationship between automobile availability and 
automobile use is strong, consistent, and very sim­
ilar in Baltimore and certain large German cities. 

2. This paper tested with success the automobile 
availability description based on average potential 
access of an individual to the automobile (never / 
sometimes/always) rather than actual access to the 
automobile for a giv-=u Lt if,J (dVdildble/nut a vail­
able). The recommended description is simple and 
easily applicable. 

3. The proposed version of automobile availabil­
ity was extended by a more detailed description of 
the situation "automobile sometimes available." 
Three modifications were considered. They consis­
tently show that the higher the ratio of number of 
drivers to number of automobiles, or number of em­
ployed drivers to number of automobiles, the higher 
is the likelihood of driving the automobile. In 
families, priority for automobile use is commonly 
given to employed persons and their obligatory ac­
tivities. The proposed version in its original form 
was preferred because of its simplicity. 

4. The automobile availability issue deserves 
more studies, such as (a) an international compari­
son of the relationship between automobile avail­
ability and modal split, (b) explanatory variables 
for automobile availability levels, and (c) the po­
tential for practical applications. 
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Attribute Thresholds and Logit Mode-Choice Models 

W. YOUNG and D. BERTRAM 

ABSTRACT 

The concept of thresholds has been mentioned in the transport choice literature 
from time to time. Few studies of mode choice have attempted to incorporate 
them into a modeling context, however. In this paper the concept of minimally 
perceived attribute differences is introduced into a logit choice model. For 
estimating the parameters of the model, maximum likelihood is employed and an 
experimental test is carried out on a sample of trip makers going to the Mel­
bourne central business district. It was found that the average respondent re­
quired a 12-min (22 percent) difference in travel time or a 12-cent (32 per­
cent) difference in travel cost before he would react to the variation in 
attribute ratings. The model is compared with a more traditional logit model 
with a linear additive measure of utility. 

Transport planners have developed a variety of sta­
tistical techniques for analyzing mode choice (1-4). 
The common feature of all these models is -that 
choice is seen as a function of the utility gained 
from each alternative . To calculate utility it was 
assumed that an alternative was characterized by a 
set of attributes that contribute to an index of 
total utility. A linear additive function was used 
to combine the attribute utilities into the index. 
In turn attribute utilities were assumed to be a 
continuous function of the satisfaction gained from 
each attribute. That is, every change in satisfac­
tion, no matter how small, will influence the util­
ity gained from an alternative and hence an individ­
ual's choice. 

Evidence in the psychology (_?.,_§_), economics CU, 
and b iology (8) literature suggests that people may 
be indiffe r ent to changes in a stimulus unless it 
crosses a threshold of indifference. In the trans­
port literature this suggestion has found support in 
several studies of the application of transport­
choice models. Kovak and Demetsky (~) and Burns et 
al , (10) found that models that did not incorporate 
indifference thresholds tended to overestimate mode 
shift for small changes in attribute satisfaction. 
It was suggested that the inclusion of thresholds of 
indifference may overcome this problem because they 
would tend to dampen the effect of small changes in 
attribute satisfaction. In this paper the incorpora-

tion of such thresholds into logit choice models is 
investigated. 

The paper is divided into six sections. The next 
section describes the incorporation of thresholds as 
used in a number of disciplines. The third section 
describes the incorporation of thresholds into logit 
choice models. The fourth section describes the data 
used in the study, and the fifth to seventh sections 
discuss the model estimation and compare model per­
formance. 

BACKGROUND 

The existence of thresholds of acceptance has been 
discussed in many disciplines. 

In psychology, sensory thresholds were suggested 
by Weber in 1830 (5). He introduce d the concept of 
just noticeable differences and related their size 
to the magnitude of the stimulus. Fechner (6) ex­
tended Weber's law by relating the strength ;f the 
sensory process to the logarithm of the stimulus. 
Experimental studies that followed appeared to sup­
port Fechner's logarithm law and the existence of 
thresholds was accepted. 

Similarly, economists analyze consumer choice of 
commodities by the application of indifference 
curves <i>· In this approach it is considered that, 
in a choice between two commodities, the decision 
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maker will choose one or the other or be indiffer­
ent. If the decision maker is indifferent, he will 
tend to randomize his decision. Indifference curves 
define all situations where the consumer is indif­
ferent. 

Biological experiments indicate that thresholds 
vary between subjects. The distribution of these 
thresholds was hypothesized to be normal. The re­
sulting relationship between response and stimuli 
was therefore described by a probit model. Finney 
(!!) analyzed a number of situations and concluded 
that the probit model predicted response relatively 
accurately. He also considered other relationships 
for the form of the threshold distribution; one of 
these was the logit model. 

In transport planning, thresholds have been sug­
gested in a number of contexts. Choice inertia, per­
ception, and constraints (11) may to some extent ex­
hibit threshold effects. Empirical studies of these 
thresholds have been directed along two lines. 

The first related to thresholds in the comparison 
of the utility gained from each alternative (12,13). 
Krishnan (12) contended that the difference Tn the 
utility gained from a number of alternatives must be 
large enough for the individual to recognize the 
difference~ otherwise he will be indifferent~ Kr i sh­
nan introduced a threshold (6) into the choice 
situation such that in a choice between A1 with 
utility U1 and A2 with utility u2 

This model was found to fit the travel data better 
than the traditional logit model [i.e., the model 
with the threshold (6) equal to zero]. Kawakami 
and Hirobata (13) argued that the utility of an al­
ternative mustchange by an amount greater than a 
threshold of inertia before people will change mode. 
Their study of mode choice on the Nagaya-Tokyo rail­
way line, using before-and-after data, confirmed 
this hypothesis. 

The second approach was developed in the area of 
noncompensatory lexicographic or elimination-by­
aspects (EBA) models. These models hypothesize that 
the decision maker considers the attributes describ­
ing a set of alternatives in order of importance. An 
alternative is eliminated if its attribute satisfac­
tion level falls below an acceptance threshold. The 
most common method for calculating the acceptable 
threshold (14,15) has been to use a criterion where­
by attr ibut;"-;;tisfaction levels are considered to 
be acceptable if they lie within a specific frac­
tional tolerance of the best satisfaction level for 
the attribute over all alternatives for each indi­
vidual. Thus 

Acceptable Skjq;:_ (1 - Tk) Max(Skjql 
j 

(1) 

where 

Tk 
MaX(8kjq) 

j 

satisfaction with the kth attribute of 
the jth mode for the qth individual, 
tolerance for the kth attribute, and 
maximum satisfaction for the kth at­
tribute for the qth individual over 
all j modes. 

This approach enables the concept of just noticeable 
differences to be incorporated into the model as 
well as the size of the stimulus. It is therefore in 
line with the psychological research of Weber. 
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This review illustrates that there is consider­
able evidence for the existence of thresholds. Par­
ticular emphasis in the literature appears to be di­
rected at the decision maker's inability to discern 
small changes in stimulus levels. 

INCORPORATION OF THRESHOLD TYPES 

The literature review in the previous section al­
luded to the existence of two apparently different 
approaches to incorporating thresholds in mode­
choice models. The first concentrates on thresholds 
in total utility and the second on attribute thresh­
olds. Before these differences are discussed fur­
ther, it is necessary to develop the modeling frame­
work for the incorporation of the thresholds. 

The most commonly used choice model in transport 
is the legit model. The most popular derivations of 
this model are the constant-utility approach (_.h§) 
and the random-utility approach (l2_) • With the lat­
ter approach, in the choice between two al terna­
ti ves, it is assumed that the choice alternative 
will be the one that maximizes the decision maker's 
utility. That is, if x is chosen, 

(2) 

where Ux is the utility of alternative x. 
If it is assumed that the total utility is an 

additive function of the utility gained from each 
attribute of the alternative, then x will be chosen 
if 

k 

l Ukx > 
k=l 

k 

L Uky 
k=l 

(3) 

where ukx is the utility of attribute k for alterna­
tive x. 

Further the attribute utility is assumed to be 
composed of two independent elements. These are the 
degree of importance associated with and the satis­
faction gained from an attribute. Hence the utility 
function takes the form 

(4) 

where Ik is the importance of attribute k to the 
decision maker and 8kxq is the satisfaction gained 
from attribute k for mode x for individual q. 

It can be shown that if there is an error func­
tion associated with the decision maker's perception 
of utility and that the error function i3 dcGcribed 
by a Weibull distribution, then the multinomial 
logit model will describe the choice process (18). 
The form of this model is 

p (xi K) 

k 
exp(Ux)/L exp(Uk) 

k=l 

For the binary case the logit model takes the form 

p(x/xy) = exp(Uxl/[exp(Ux + exp(Uyll 

(5) 

(6) 

As stated earlier, there are two methods for in­
corporating thresholds into this model. The first 
concentrates on attributes and the second on total 
utility. An approach that combines both methods into 
the binary logi t model can be illustrated by ref­
erence to Figure 1. If the satisfaction levels are 
equal for the two alternatives, then there is no 
difference in the two alternatives. As the differ­
ence in the satisfaction levels increases, there is 
still no perceived difference until the difference 
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FIGURE 1 Threshold Type I. 

crosses the acceptance tolerance. Once this occurs, 
the utility obtained from the attributes for each 
alternative is equal to the product of the impor­
tance and satisfaction ratings. This will be refer­
red to as the Type I threshold in the ensuing dis­
cussion. 

In mathematical terms this can be written as fol­
lows. If 

then 

whereas if 

then 

where Skxg > Skyq• 
The utility for alternative x is then given by 

k 

I Ukx 
k=l 

(7) 

(8) 

(9) 

(10) 

(ll) 

A similar procedure can be used to obtain the util­
ity associated with alternative y. The utility for 
alternatives x and y can then be substituted into 
Equation 6 and the choice probability calculated. 

Another approach to thresholds is illustrated in 
Figure 2. Here the total utility gained from each 

( 
I 
I 

....J 

T 

/ 

/ 
/ 

/ 

M9X Sij - Sij 
J 

Max Sij 
j 

attribute for each alternative is obtained once the 
threshold tolerance is crossed. This approach is 
consistent with studies by Recker and Golob (_l!) and 
Young and Brown (15) • This approach will be referred 
to as the Type Ir-threshold in the ensuing discus­
sion. In mathematical terms this can be written us­
ing Equations 7-9. Then 

Ukx = Ik (12) 

The utility for alternative x is then given by 

k 
Ux I Ukx 

k=l (13) 

A similar procedure can be used to obtain the util­
ity associated with alternative y. The utility for 
alternatives x and y can then be substituted into 
Equation 6 and the choice probability calculated. 

DESCRIPTION OF THE DATA 

The data used in this study came from a survey of 
commuters going to the Melbourne central business 
district (CBD) in 1974 (19). A questionnaire survey 
was distributed to the employees of 35 CBD firms se­
lected on a representative geographical and classi­
fication basis. A total of 3,737 correctly completed 
responses was received from a total of 7,400 issued 
questionnaires; of these 1,205 respondents reported 
a choice between automobile and train travel. It is 
these respondents who have been considered through­
out the study. 

The survey provided detailed information regard-
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FIGURE 2 Threshold Type II. 
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ing the usual and next-best alternative mode avail­
able for the work trip. As well as actual time and 
cost data, perceptual data were solicited. The per­
ceptual data related to the level of satisfaction 
experienced with the overall descriptors--comfort, 
convenience, and reliability. More specifically, 
satisfaction scores for the three factors relating 
to the overall trip, for both usual and alternative 
modes, were registered on a semantic scale of 1 to 7. 

PARAMETER ESTIMATION AND MEASURES OF 
MODEL PERFORMANCE 

The review of the literature indicated that decision 
makers may not be sensitive to small differences in 
attribute satisfaction. These differences were also 
thought to be related to the magnitude of the attri­
bute satisfaction. The form of threshold most com­
monly used in transport research therefore takes the 
form presented in Equation 1. This expression incor­
porates both the maximum available attribute satis­
faction (Maxj Skjql and the tolerable difference 
('tk). It was therefore used in this study. 

The aim of the model estimation procedures is to 
determine the most appropriate value of the toler­
ance ('lk) • It was also necessary to determine the 
importance (Ik) placed on each attribute. Because 
the logit model was probabilistic, maximum likeli­
hood was used to estimate these two parameters. The 
likelihood function took the form 

L (I,T) =II II Pq (j)gjq 
q j 

(14) 

where 

L(I,T) 

gjq 

likelihood at tolerance level T and im­

portance level I, 
probability from the model that individ­
ual q chooses alternative j, and 
1 if alternative j was selected by indi­
vidual q, 0 otherwise. 

Because both the threshold and logit models used 
maximum likelihood to estimate the parameters, it 
was possible to compare the overall fit of the 
model. Two tests were used. The first was the gen­
eralized likelihood ratio test (18), which was used 
to test the nypothesis that the probability that an 
individual would choose an alternative was indepen­
dent of the value of the parameters in the choice 
model. If thio hypothcois cannot be rejected, the 
tolerance and importance estimates used in the model 
may be assumed to have no effect on choice (i.e., 
the choice was a random one). The likelihood ratio 
test for the models took the form 

-2lril. T -2[L*(Op>) - L*(I,T)) (15) 

where L* (0 I") is the log of the likelihood when the 
importance estimates are constrained to 0 and the 
tolerance estimates are constrained to a very high 

value, ~, and L*(i,T) is the log of the likelihood 
for the best estimates of the importance and toler­
ance parameters. This -2111A T value is distributed 
like a chi-squared distribution, with degrees of 
freedom equal to the number of parameters in the 
model. 

The second test was the pseudo-r' value (18) 
where 

p• = 1 - [L*(i,T)./L*(OF)l (16) 
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Although the statistic has the range 0 < p 2 < 1, a 
value between 0. 2 and 0. 4 was considered to - repre­
sent a good fit (18). 

MODEL ESTIMATION 

Model development consisted of a number of stages. 
First the model containing all the attributes was 
estimated. The attribute that was associated with 
the parameters that had the least influence on the 
model fit (lowest level of significance) was removed 
and the parameters for the new set of attributes 
were estimated. This refining procedure was contin­
ued until all remaining attributes had significant 
parameter estimates at the 5 percent level. The 
models presented in Tables 1 and 2 are the final 
product of this refining process. 

TABLE 1 Comparison of Statistical Performance of Threshold 
and Logit Models: Part 1 

Threshold Type I Threshold Type II 

Attribute Tolerance Importance Tolerance Importance Logit 

Time -0.20 -0.40 -0.22 l.2 -0.041 
Cost -0.29 -0.28 -0.32 1.3 -0.030 
Conve-

nience 0.31 -0.40 0.33 1.6 -0.414 
Constant 

Train -1.32 1.54 -1.486 
-21nAT 481 471 464 
p2 0.35 0.34 0.34 

TABLE 2 Comparison of Statistical Performance of Threshold 
and Logit Models: Part 2 

Threshold Type I Threshold Type II Logit 

Correct prediction 
Train 753 752 751 

Market share 895 895 895 
Percent 84 84 84 

Automobile 168 167 166 
Market share 310 310 310 
Percent 54 54 54 

Threshold !yPe I Model 

The physical measures of travel time and travel cost 
and the perceptual measure of convenience remained 
in the threshold Type I model. Convenience was found 
to have the highest importance (-0.40) and largest 
tolerance (0.31), whereas travel time had the lowest 
tolerance (-0.20) and travel cost had the lowest im­
portance (-0.28). 

In terms of the overall fit, the model was en­
couraging. The -2lril.T value was significant at the 5 
percent level (-2lra T = 481 > 12.6 = x' 

0 
) and the 

6,0. 5 

p 2 -value was in the generally accepted range of 
0.20 and 0.40. Further, the train mode was correctly 
predicted for 84 percent of the train users and the 
automobile mode was correctly predicted for 54 per­
cent of the automobile users. 

Threshold Type II Model 

The threshold Type I and I I models showed a number 
of similarities. Both models contained the same at-
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tribute set after refinement. There was also a 
marked similarity in the tolerance estimates. The 
major difference in the two models was the magnitude 
of the importance estimates. The threshold Type I 
model had importance ratings an order of magnitude 
lower than those of the Type II model. 

The overall fit of the threshold Type II model 
was acceptable but was slightly poorer than that of 
the threshold Type I model. 

Interpretation of Parameters 

Three aspects of the e s timated threshold model re­
quire further discussion: the interpretation of the 
estimated tolerance levels, the significance of the 
constant terms, and the relative magnitude of the 
estimated importance paramete rs. The threshold Type 
II mode l will be used to illustrate these points. 

To facilitate this discussion, and to obtain a 
clearer picture of how the threshold model works, it 
is useful to consider the choice process for an av­
e rage respondent in the sample, where such a respon­
dent experiences the average satisfaction ratings of 
the sample. These average ratings (Table 3) are 54 
min, 38 cents, and 4 units of convenience for th e 
train user and 56 min , 64 cents, and 4 units of con­
venience for the automobile user. 

TABLE 3 Model Allocation Process for Average Respondent 

Attribute 

Travel Travel Conve-
Time Cost nience 
(min) (cents) Units Constant Total 

Satisfaction 
Train 54 38 4 
Automobile 56 64 4 

Tolerance - 0.22 -0.32 0.33 
Acceptable satisfaction <66 <50 >3 
Estimated importances l.2 1.3 l.6 
Allocation to sets 

Automobile 0.0 0 
Train 1.3 0 1.5 2.8 
Both l.2 1. 6 2.8 

The first step in the threshold process is to de­
termine the acceptance levels. These are obtained by 
using Equation 1. For example, consider the attri­
bute travel time. The best satisfaction level for 
this attribute is the minimum travel time for each 
mode--54 min for the train mode. The tolerance level 
for this attribute is -0.22. Hence for the average 
r e sponde nt to react to any difference in the two 
modes there must be a 12-min [~ x Max(Skjql = 0.22 x 
54] diffe rence in travel time. Given that the best 
travel time is 54 min, all travel times under 66 min 
are acceptable. That is, both the automobile and 
train modes are acceptable to the average respondent. 

In the case of the trave l-cost attribute, the av­
erage respondent will react to a difference in the 
two modes if there is a 12-cent [~ x Max(8kjq) = 
0. 320 x 38] variation in th e cost of travel betwee n 
the two modes. This is in fact the case; the train 
i s mor e than 12 cents che aper than the automobile 
for thi s trip. 

Given the composition of each attribute set, its 
magnitude can be determined by summing the impor­
tances of each attribute a s shown in Table 3. It is 
evident that time and convenience allocate their im­
portance to the set that is satisfactory for both 
train and automobile. That is to say, these attri-
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butes have no influence on the final choice. The al­
location of the cost importance level is to the 
train set. 

The size of the alternative specific constants is 
large when compared with the importances of th e 
other attribute sets and hence it may be concluded 
that in this model unspecified attributes have a 
large effect on the final choice. 

Furthermore, it can be seen from Table 3 that 
travel cost, travel time, and convenience have equal 
importance ratings. 

COMPARISON OF THRESHOLD AND TRADITIONAL LOGIT MODELS 

The empirical comparison between 
models and the logit model will be 
two levels. First, the statistical 
the models and then the predictions 
the models will be compared. 

Statistical Performance 

the threshold 
carried out on 
performance of 
resulting from 

The parameter estimates for the refined logit mode l 
were presented in Table 1. It can be seen that th e 
refined logit model contained the same three attri­
butes as the two threshold models. Further compari­
son of the parameter estimates is unlikely to be of 
valu e because of the diffe rence in interpretation o f 
the attribute satisfaction. 

In terms of the overall fit there appeared to b e 
little difference among the three models. All ap­
peared to perform equally well. Hence on statistical 
grounds there appears t o be little difference in 
the s e models. 

Predicti ve Se nsit i vity 

A full comparison of the predictive sensitivity of 
the three models would require the models to predict 
changes in the transport system. Those predictions 
could be compared with what actually takes place and 
the accuracy of the mode l determined. However, the 
data used in this study could not be used for such a 
test. It is worthwhile, none theless, to have the 
models predict what might occur if a system change 
were made. These predictions could then be used to 
determine whether the three models would in fact in­
dicate different change s to the transport system f o r 
the same changes in attribute s atisfaction. 

The models were required to predict the magnitude 
of mode shift resulting from changes in attribute 
ratings between -95 and +100 percent in 5 percent 
increments for both time and cos t. A similar predic­
tion for changes in convenience ratings was not car­
ried out because it was based o n a semantic scal e 
and would inevitably be of a discontinuous nature. 

The changes in use of the train mode consequent 
on changes in the cost of travel by car and tr a in 
are shown in Figure 3. It can be seen that the thre e 
models give a very similar prediction of changes in 
train use due to chang e s in train travel cost. 

The changes in the use of the train mode conse­
quent on changes in the tr avel time by car and train 
are given in Figure 4. Unlike Figure 3 , there ar e a 
number of differences be tween the prediction s pro­
v ided by each model. In fact the only similarity in 
prediction is found when the three models predict 
cha nges in mode choice c onsequent on changes in a u­
tomobile travel time be tween -40 and +100 percent. 
It is also of note that the traditional logit mode l 
tends to provide predictions that are greater than 
the threshold models. 
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The differences among the predictions of the 
three models imply that each model would give a dif­
ferent valuation of travel time. The logi t model 
provides a value of travel time of 16 percent of the 
wage rate. The importance parameters from the 
threshold model cannot be interpreted in this way, 
but inspection of the sensi ti vi ty curves indicates 
that the value of travel time implicit in the 
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CONCLUSION 

The inclusion of attribute thresholds into logit 
mode-choice models has been investigated. The sta-
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tistical performance and the predictions of these 
models were compared with a traditional legit model 
that did not contain thresholds. It was found that 
on the basis of statistical fit there was little 
difference in the performance of the models. How­
ever, each model responded differently to changes in 
the attribute satisfaction level and would thus pre­
dict different outcomes for certain system changes. 
The traditional logit model was found to be more 
sensitive to attribute level changes than the models 
that incorporated thresholds. 

All three models indicated that the main attri­
butes influencing choice were travel time, cost and 
convenience. The threshold models indicated that the 
average traveler would not react to differences in 
travel time of less than 12 min and travel costs of 
less than 12 cents from the best available alterna­
tives satisfaction rating. 

Unfortunately, this study provided no clear indi­
cation of the need to include thresholds. Rather, it 
was found that if thresholds are included, the model 
will perform well statistically and provide a dif­
ferent prediction to the model that does not include 
thresholds. The unfortunate conclusion is therefore 
a call for further research to reconcile this di­
lerruna. 
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Dynamic Aspects of Departure-Time Choice Behavior in a 
Commuting System: Theoretical Framework and 

Experimental Analysis 

HANI S. MAHMASSANI and GANG-LEN CHANG 

ABSTRACT 

The day-to-day dynamics of departure-time decisions of urban commuters and the 
underlying behavioral mechanisms determining user responses to dynamically 
varying time-dependent congestion patterns are addressed. A conceptual model is 
presented incorporating the boundedly-rational notion of an indifference band 
of tolerable schedule delay. The results of an experiment involving real com­
muters interacting daily within a simulated traffic corridor are examined, with 
particular emphasis on the dynamics of user behavior. 

The departure-time decision of urban commuters is of 
fundamental importance to the study of peak-period 
traffic congestion and to the analysis of traffic 
control as well as to broader, demandside congestion 
relief measures, such as pricing, ridesharing incen­
tives, flex time, and others (1). Previous work on 
the departure-time problem has -followed one of two 
principal lines: (a) econometric models of individ­
uals' departure-time choices under fixed and known 
transportation level-of-service attributes (2-5) and 
(b) dynamic user equilibrium formulations i; ideal­
ized traffic systems consisting of a single origin­
destination pair connected by either a single route 
(6-13) or multiple routes (14,15), with congestion 

modeled either by using deterministic queues (~,.:!:.!_) 
or traffic-flow relationships (.h?.l. More elaborate 
reviews of these studies may be found elsewhere 
(15-17) • 
~There is, however, an important dimension of the 

dynamics of this problem that has received very 
little attention, namely, the processes governing 
commuters' day-to-day responses to the system's per­
formance, including the effect of prior experience 
and perceptions on current decisions. These pro­
cesses are undoubtedly complex because they involve 
behavioral aspects of individn;il clPr.ifdnn mnkin<J, 
learning, and judgment in the context of a complex 
interactive system. However, the understanding of 
these processes and the ability to represent them 
analytically are of considerable importance to the 
design and evaluation of congestion relief measures, 
particularly with regard to time lags that may be 
associated with users' responses to these measures 
and information dissemination programs that could 
influence these responses. Furthermore, these dy­
namic aspects have significant implications for the 
stability of the system, as demonstrated by Horowitz 
in the context of route choice in a simplified 
transportation network (18). It is these dynamic 
processes underlying users' departure-time decisions 
in an urban commuting corridor that form the focus 
of this paper. 

An effort in this direction was recently pre­
sented by Mahmassani and Chang (16), who addressed 
the day-to-day evolution of the time-dependent de­
mand pattern resulting from the interaction between 

system congestion and user decisions. In addition, 
that study differed from the previous lines of re­
search in its use of a process model of individual 
behavior consisting of a combination of relatively 
simple decision rules and heuristics, including ex­
plicit mechanisms for learning over time, and incor­
porating the notion of an "indifference band" of 
tolerable schedule delay. The latter reflects 
boundedly-rational, or satisficing (19), behavior of 
users in their daily commuting choices in an effort 
to explore behaviorally realistic decision rules as 
an alternative to the more restrictive but conve­
nient utility maximization rule adopted in all pre­
vious studies. Another different feature in that 
study was the use of a special-purpose traffic simu­
lation model for the performance side, thus allowing 
for greater flexibility and realism in system rep­
resentation. 

Understanding of these processes can of course 
best be furthered when coupled with observations of 
actual behavior. However, the acquisition of the 
necessary data at the desired level of richness in 
the real world presents formidable difficulties, in­
cluding (a) the need to monitor in great detail both 
user decisions and the facility's time-varying con­
gP.Rt inn lP.vels over a period of at lQast a few weeks 
and (b) the high degree of experimental control re­
quired. An alternative approach has recently been 
used by Mahmassani et al. (20) whereby the behavior 
of actual commuters is observed under controlled 
conditions. Participants, facing a hypothetical 
though realistic commuting situation, supply daily 
departure-time choices in response to congestion 
conditions, which are in turn obtained by using a 
special-purpose traffic simulation model, given the 
time-varying demand pattern (resulting from the ag­
gregation of the individual participants' decisions). 

In this paper the results of the first such ex­
periment, involving 100 participants over 24 days, 
are examined from the perspective of the processes 
governing the dynamics of the users' behavior. Other 
aspects, such as traffic conditions or convergence 
properties of the system, are discussed elsewhere 
(~).The related conceptual background is presented 
in the next section, followed by a brief description 
of the experiment. The principal results are then 
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examined and compared with the simulation results 
obtained earlier (16), and concluding comments are 
presented. 

CONCEPTUAL BACKGROUND 

Because the principal concern here is with the 
departure-time decision for home-to-work trips, it 
will be assumed that it is the only short-term deci­
sion available to trip makers. This would be the 
case in a commuting corridor consisting of a single 
highway facility with residences and workplaces dis­
tributed along this facility. As such, other choice 
dimensions normally available to trip rn.akers, such 
as the choice of mode or route, do not unduly divert 
the discussion from its central focus. Extension to 
the more general case would be possible, though it 
would require considerably more complexity in the 
presentation and notation. 

Given a work starting time wsi, a trip maker i 
will select, on day t, a departure time DT i t· The 
outcome of this decision will be an arciva'l time 
ATi,t• which follows the identity 

(1) 

where TTi t is the trip time experienced on day t 
(including travel time on the facility and all other 

components). The trip time naturally depends on the 
user's departure-time decision as well as that of 
all other users of the facility, that is, 

TTi,t = f (DTi,t• all i) (2) 

As mentioned in the previous section, prior stud­
ies have assumed that users select their respective 
DTi, t so as to maximize their utility, wbich is 
usually formulated as a weighted sum of the attri­
butes of the depacture-time opportuni·ties. Although 
theoretically appealing, the maximization paradigm 
has a number of limitations from a behavioral stand­
point, especially in the context of a descriptive 
model of day-to-day choice dynamics. For instance, 
it requires users to possess information on all the 
decision alternatives, that is, that they know a 
priori or cah predict the time-dependent congestion 
pattern on any given day. This is clearly a diffi­
cult task in view of the often substantial and well­
documented variability of travel time during the 
peak period (9, 21) • In addit i on, it is not clear 
that the para:m-;ters of one's utility function would 
remain constant from day to day, but rather that 
users may update their relative trade-offs as they 
learn about the system's performance. Another as­
sumption that is difficult to support in this con­
text is that of the individual ability to evaluate 
the optimal solutions of rather complicated objec­
tive functions (22). 

An alternative behavioral notion that suggests 
itself here is that of satisficing, proposed by 
simon (!2} as a model of so-called boundedly­
r ational decision makers in search of an acceptable 
solution as opposed to a necessarily optimal one. 
Acceptability is usually defined relati ve to some 
aspiral!ion level. I n addition, it i s well estab-
1 ished in behavioral science that deci sion rules 
employed by individuals are greatly influenced by 
the nature of the task and the decision environment 
(22, 23) • In everyday decisions , the predominance of 
m;r\tal heuristics in i ndividual judgment, learning, 
and decision making is generally well accepted (~, 

24). Preference is usually for simpler, less demand­
ing (in terms of cognitive strain on the decision 
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maker) rules, which subsequently may become more 
demanding in response to a more complex decision 
environment. 

A useful analogy here is between commuting behav­
ior and consumers' repurchase decisions, to the ex­
tent that the latter are repeated daily or fre­
quently and involve nonmajor i terns . As such, the 
marketing research literature can provide some use­
ful insights and possible guidance. Satisficing 
models have received increased attention and accep­
tance in marketing reseaICh because of their ability 
to capture consumer choice behavior (25-27). The 
cole of satisfaction in the consumer dectsion pro­
cess has been documented in a number of studies 
(_?!,29) , including that of Oliver (W, who identi­
fied the adaption-level theory (31) as an appropri­
ate one for explaining how past experience and cur­
rent satisfaction interact in affecting repeat 
purchase behavior [see also the paper by Labarbera 
(Bl). Worthy of note is the recognition that the 
very basis for satisfaction and acceptability of a 
given outcome itself dynamically varies in response 
to prior outcomes as well as cecent experience (~. 

The application of some of these concepts to the 
dynamics of the departure-time choice pcoblem is 
presente d next. Trip makers can be viewed as search­
ing for a departure time that yields a satisfactory 
outcome or arrival time. When user i is satisfied 
with ATi t • he is expected to maintain the s ame 
departure' time on the following day; thus DTi,t+l = 

DTi t · The acceptability of a particular outcome is 
evaiuated with respect to the trip maker's own de­
sired arrival time. Note here that the latter quan­
tity is generally diffe rent from the work start time 
ws 1, as shown empiricall y by Hendrickson and Plank 
(5). Users typically possess a preferred arrival 
time PAT1, which would prevail in the absence of 
congestion (yet still be wi thin the constraints of 
the workplace). It generally incorporates a safety 
margin to protect against lateness at work and allow 
some time for preparation at the onset of the work­
ing day. One can thus expect a distribution of pre­
ferred arrival times across the population, reflect­
ing both workplace conditions as well a s inherent 
i ndividual prefe r e nces and risk attitude s . i'urther 
s upport for this notion is presente d later in this 
paper base d on analysis of the experiment. 

A pla usible sat i sficing mechani s m used in earlier 
s ;i.mulations (16) is based on the not ion of an "in­
difference interval" or band of acceptable schedule 
delay. On a given day t, user i's schedule delay is 
soi,t = PATi - A'l'i,t· Letting 6 i,t be a b inary vari­
able that takes the value 1 if the actual arr i val 
time on day t is acceptable to user i, and 0 other­
wise, the decision rule can be stated as 

if 0 .'.:_ SDi,t < IBf.t or IBi,t < SDi,t 2 0 

otherwise ( 3) 

where IBi t and IBi tare two nonnegative threshold 
values reflecting what user i consider s tolerable 
earliness and tolerable lateness, respectively. The 
time interval within which an arrival time ATi t will 
be considered acceptable then becomes (PATi -'IBI,t• 
PATi + I s1,tl · 

The threshold values IBr t and IBi t can be ex­
pected to vary across indi~iduals. ref lecting dif­
fering preferential attitudes as well as workplace 
conditions. To the extent that the pref erred arrival 
time PATi reflects some of these same source s of 
variation, it can be expected to be corr elated with 
those threshold values. For this reason, in the em­
pirical analysis section, various user groups will 



90 

be considered on the basis of their preferred ar­
rival times. 

An individual's indifference band, reflecting his 
aspiration level on a given day, is not necessarily 
constant over time , particularly if the system is 
not in a steady state, such as after the imp.lementa­
tion of a major new control or policy. This band is 
instead dynamically changing in response to the 
user ' s personal experience with the facility as well 
as information that he may have active.ly or pas­
sively acquired from other sources. Insight into 
this phenomenon was obtained in earlier simulations 
(16). In particular, more distant users (relative to 
a~common work destination) would tend to adjust 
their aspirations more frequently than closer users 
in order to accommodate greater day-to-day variabil­
ity and fluctuation in their longer commutes. Simi­
larly, more distant users appear to require wider 
indifference bands . These aspects of user behavior 
are expl or·ed in the section on analysis of exper i­
mental results. 

Information acquired through repeated usage of 
the facility , as well as from other possible 
sources , influences trip makers' s hort-ter-m depar­
ture-time choice behavior in two major ways : (a ) the 
previously mentioned eftor on the aspiration level , 
defining the acceptability of particular outcomes, 
a nd (b) learning abou t the facility ' s performance, 
which provides the basis for th e user's travel time 
estimate and the subsequent departure-time adjust­
ment in the event that the latest outcome was not 
acceptable. This adjustment is determined by both 
the current indifference band and the user's percep­
tion of the system's travel time characteristics: it 
can thus be viewed as the following function: 

DTi,t+l - DTi,t = g(TTi,s• SDi,s: s = l, ..• ,t) (4) 

In this expression, the relative importance of 
terms corresponding to different values of s (days) 
is not expected to be uniform. Clearly, recent expe­
rience is likely to contribute more heavily than 
that of more distant days . At one e nd of the spec­
trum, user behavior could be purely myopic and af ­
fected by the latest day only. At the other extreme, 
a.11 days from 1 to t could contribute with equal in­
tensity to he user 's decision on day (ttl). How­
ever , because of memory capacity limitations , the 
retrieval of prior information is not 1 ikely to go 
beyond a relatively small number of recent days . 

In summary, user behavior in this commuting sys­
tem can be viewed as a boundedly-rat ional search for 
a satisfactory departure time. Conceptually, it con­
sists of two principal components: (a) the accep­
tance or rejection of a given day's decision out­
come, which determines, respectively, whether the 
user will or will not mainta i n the same departure 
time on t he following day and (bl the amount by 
which departure time should be adjusted, if that is 
needed. The first component can be viewed as the 
stopping criterion in the user 's search process, 
whereas the second is analogous to the "step size." 
The former is based on the key notion of an indif­
ference band of tolerable schedule delay. Prior ex­
peri.ence with the facility, as the principal mecha­
nism of information acquisition, enters the first 
component through its effect on the indifference 
band, and the second component through its contribu­
tion to the user's learning about the facility's 
performance. 

It should be noted here that the use of schedule 
delay as the principal criterion for acceptability 
of a given decision outcome should not be taken to 
imply that other attributes, particularly travel 
time, will under no circumstances be explicitly 
evaluated by trip makers. Implicit is the assumption 
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that the range of trav·el times encountered by indi­
viduals in this urban commuting system is such that 
users are effectively indifferent among the travel 
time outcomes of their departure decisions. Natu­
rally , for excessively long travel times, this as­
sumption is not likely to hold . In an intercity con­
text , w)'lere travel times are much more substantial., 
explicit trade-offs between schedule delay and 
travel time should be expected , as in airline flight 
selection . However, in an urban commuting context, 
particularly for short-range, day-to-day decisions, 
schedule delay is clearly s ignificantly more highly 
valued (negatively) than travel time, as evidenced 
by the findings of Hendrickson and Plank (~ . Users 
are likely to control for their travel times through 
longer-run choices such as that of residence or 
workplace location. In a dynamically changing con­
text, where users possess only limited information 
on the system's performance, boundedly-rational be­
havior predicated on the most-important attribute 
appears to be plausible descriptivity. 

In the remainder of this paper, the results of an 
experiment for additional insight into the foregoing 
aspects of user behavior and the extent to which 
they appear consistent with the conceptual model 
presented i n this section are analyzed . However, no 
formal functional specification and estimation will 
be conducted herein , because the analysis is explor­
a tory in nature and is intended at this stage pri­
marily as an indication of the useful.ness of this 
general approach to studying the complex day-to-day 
dynamics o f commuter "behavior . The experiment itself 
is described in the next section. 

DESCRIPTION OF EXPERIMENT 

Given the previously mentioned difficulties of ob­
taining aoequate data for the study of the day-to­
day dynamics of commutru:: behavior, the approach 
recently described by Mahmassani et al. (20) con­
sists of Observing the decisions of real CO""rnmuters 
placed in controlled and carefully desig ned hypo­
thetical commuting si tuations. A number of important 
f eatures characterize this type of experiment, in­
cluding the following: 

1. All the departure-time decisions that col­
lectively determine the system's service levels can 
be observed, 

2. The analyst has a high degree of control over 
the information available to participants, and 

3. The interactions in the traffic system, which 
determine the user ' s decisions, are realistically 
captured hy a speci al-purpoi::c tr;iffic simulation 
model. 

The commuting context considered in this e xperi­
ment consists of an urban corridor composed of a 
four-lane highway (two lanes in each direction) used 
by residents who live adjacent to i ·t for their daily 
home-to-work trips to a single work destination , 
s uch as a central business district (CBD) or a major 
industrial park. Concern here is with the inbound, 
or home-to-work, direction . The corridor is subdi­
vided into nine identical 1-mi sectors, with the 
common destination located at the end of the last 
sector. Sectors are numbered from 1 to 9 in order of 
decreasing distance from the destination; Sector 1 
is the farthest outbound. Commuter residences are 
located in Sectors 1 through 5 only, each of which 
is treated as distinct trip origin, whereas Sectors 
6 through 9 are treated as a nonresiden~ial fringe 
area in which no trips are generated. 

The time-dependent departure pattern from each 
residential sector on any given day results from 
departure-time decisions made by the participants. 
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Each participant is assigned to only one sector and 
is assumed to represent a group of 20 trip makers 
who make identical decisions. A total of 400 trip 
makers was assumed in each of the residential sec­
tors (or 200 trip makers per lane per sector), re­
sulting in 20 participants for each of the five sec­
tors in this experiment. 

The following information was initially provided 
to each participant: (a) a general description of 
the foregoing commuting context, (b) the partici­
pant's residential sector, (c) the highway facil­
ity's characteristics (number of lanes, free-flow 
speed), and (d) the work start time. 

With regard to the third item, note that similar 
facilities in the Austin area were indicated to the 
participants for anchoring purposes. With regard to 
the fourth item, all participants were placed in the 
familiar situation of having to start work at 8:00 
a.m. Although it would have been more representative 
of the real world to have had a distribution of work 
start times, still strongly peaked at 8:00 a.m. (~), 

it would have required considerably more partici­
pants to attain a meaningful level of interaction in 
the system. The specification of a single work start 
time in this first experiment captures all the key 
phenomena of interest and avoids undue complexity. 

At the onset of the experiment, each participant 
was asked to state his or her preferred arrival time 
at work (PATi for participant i), in the absence 
of traffic congestion, given the official work start 
time ws. Naturally, PATi < ws for all i. 

Every simulation day,-each participant supplied a 
departure time and an anticipated arrival time, de 
noted hereafter by DTi,t and AATi,t• respectively, 
for user i on day t. The departure-time decisions of 
all individuals in a given sector were aggregated 
into a time-dependent departure pattern for that 
sector. These patterns formed the input to the high­
way traffic flow simulation model, briefly described 
later in this section. The outcome of each partici­
pant's decision (the actual arrival time ATi ti 
and the corresponding travel time TTi t were ~e­
termined by the simulation and supplied to each par­
ticipant individually on the following day before 
that day's choice. This iterative interactive pro­
cess covered 24 simulation days, by the end of which 
the system had evolved to a stable state, with all 
participants maintaining the same choices from one 
day to the next. In order to relate the experiment 
to the participants' daily commute, it was adminis­
tered daily, 5 days per week, during the entire 
period. 

The importance of information acquired through 
one's own commuting experience and from other possi­
ble sources was discussed in the previous section. 
In this experiment, the informational scenario under 
which users have only their own actual experience to 
rely on is considered. Furthermore, to the extent 
that commuters do not usually maintain a written log 
of their departure and arrival times over a number 
of days, only the latest day's decision outcome was 
displayed to each participant. Other informational 
scenarios involving additional sources, such as mass 
media reports or word of mouth, were outside the 
scope of this particular experiment and may be ad­
dressed in future work. 

In order to achieve the desired quality of the 
results, participants were selected very carefully, 
especially because their involvement was required 
for a period of several weeks. All 100 participants 
were affiliated with the University of Texas at 
Austin, and most were staff members or graduate stu­
dents with formal work experience. In addition, 
these participants were scattered over various parts 
of the campus, thus controlling for information ex­
change among participants during the survey period. 
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Before this experiment was conducted, a pretest 
was administered to a smaller and different group of 
individuals. Responses and suggestions from this 
pretest group led to helpful improvements in the 
procedure as well as initial insights into the be­
havior of the system. 

A special-purpose, fixed-step macroscopic highway 
traffic simulation model was developed in conjunc­
tion with this experiment. The highway facility is 
segmented into a number of sections, in which traf­
fic flow is modeled by using well-established funda­
mental traffic flow relationships; of particular 
interest is the speed-density model, which has the 
following form: 

v = (Vf - Vol (1 - K/Kolc + Vo (5) 

where 

V and K 

Vf and v0 

speed anrl density prevailing on a 
given highway section, respectively; 
free-flow speed and the minimum allow­
able speed on the facility, respec-
tively; 

Ko maximum or "jam" density; and 
c = parameter reflecting the sensitivity 

of travel speed to density variations. 

In this experiment, the following parameter val­
ues were used: Vf = 40 mph, Vo = 6 mph, Ko = 180 
vehicles/lane-mile, and c = 1.0. Further details of 
the simulation model are outside the scope of the 
present paper and can be found elsewhere (~,21..J. 

ANALYSIS OF EXPERIMENTAL RESULTS 

The presentation of the principal results of inter­
est to the behavioral processes underlying user de­
e is ion dynamics is organized around four types of 
quantities: 

1. Actions, meaning the actual departure-time 
decisions of users over the survey period (i.e., 
DTi ti for i = 1, ••• ,100 and t = 1, ••• ,24; 

~. Outcomes, which result from the foregoing ac­
tions, namely, the actual arr iv al time AT i, t and 
associated travel time and schedule delay (TTi,t 
and SDi,t• respectively); 

3. Perceptions, by users, of the foregoing out­
comes, translating into anticipated travel times and 
schedule delays (ATTi,t and ASDi,t• respectively); 
and 

4. Intentions, or preferences, which, when com­
bined with the foregoing anticipated quantities, 
result in actual decisions; of concern here are the 
preferred arrival times PATi for all i and the an­
ticipated arrival times AATi,t stated by all users 
along with their departure decisions on any given 
day. 

In addition to the description of the evolution of 
the foregoing quantities and their variation by geo­
graphic sector (as a function of distance from the 
destination) and other factors, their interrelation, 
as discussed in the previous section, is explored. 
However, first the overall evolution of the system's 
behavior is summarized. 

Summary of System Evolution 

The system equilibrates when all users are essen­
tially satisfied with the outcome of their depar­
ture-time choices, thus maintaining the same daily 
departure pattern. In this experiment, no user 
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changed his or her departure time as of day 21; how­
ever, the steady-state values were first attained on 
day 18 but were perturbed by a few participants who 
tried, unsuccessfully, to improve their outcome and 
subsequently returned to their steady-state choices. 
A clear geographic pattern in the evolution to the 
steady-state choices was apparent, with sectors 
closer to the destination generally reaching their 
steady-state earlier than more distant sectors. For 
instance, the steady-state departure patterns were 
reached (and maintained) in Sectors 1 through 5 as 
of days 20, 17, 16, 16, and 5, respectively. Fur­
thermore, only a small fraction of the users in Sec­
tor 4 kept searching for a satisfactory outcome 
beyond day 7, as revealed by Figure 1, which shows 
the day-to-day evolution of the departure-time dis­
tribution (i.e., the fraction of users departing 
before time ton a given day) in Sector 4. The 
"ease" with which users in different sectors are 
able to attain a satisfactory outcome is further 
documented later in this section by looking at the 
frequency of departure time as well as anticipated 
arrival-time changes. 

Day 11- Day 24 L. Day I -Day 10 
,...~~~~~~~~>-r~-'-~-'-~_.. 

FIGURE 1 Cumulative departure pattern evolution for Sector 4. 

Of course, the overall system cannot be consid­
ered in equilibrium so long as some sector has not 
yet reached its steady state, because changes in any 
sector will affect the outcomes of user decisions in 
other sectors through the traffic interactions. Ac­
tually, the fact that many users maintained their 
departure-time choice despite the continued var ia­
tion of travel times and schedule delays suggests 
the existence of the tolerable range associated with 
the boundedly-rational behavior described earlier. 
For instance, the day-to-day variation of the aver­
age of the absolute value of schedule delay, per 
ccctor, in nhown in Figure 2, which reveals that 
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FIGURE 2 Evolution of average schedule delay in absolute 
values per sector. 
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this quantity still varied for Sector 5 for many 
days after users in that sector had stopped adjust­
ing their departure times. 

Although it is clear that convergence was at­
tained, it is not possible to ascertain, on the 
basis of this single experiment, the uniqueness of 
this pattern nor to derive conditions for its exis­
tence. Further discussion of the convergence proper­
ties of this experimental system may be found else­
where (1Q). 

Preferred Arrival Time 

As mentioned earlier, commuters have different pre­
ferred work arrival times. In this experiment, al­
though the same common work start time (8:00 a.m.) 
was specified for all participants, the stated pre­
ferred arrival time followed the distribution shown 
in Figure 3, which reveals that over 40 percent pre­
fer to reach their workplace at least 15 min before 
the official work start time. This distribution is 
primarily a reflection of inherent differences in 
individual preferences and does not exhibit any sys­
tematic variation across sectors. To the extent that 
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FIGURE 3 Preferred arrival time 
distribution. 

the excess time preferred by users can be inter­
preted as a safety margin for avoiding lateness, the 
preferred arrival time provides a useful indication 
of a user's risk attitudes. Therefore, it has been 
used as a basis for segmenting the participants, and 
indeed significant differences in behavior across 
the three groups that were defined were found: 

• Group 1, including all users i such that 7: 30 < 
PATi< 7:40a.m., 

• Group 2, where 7:40 < PATi < 7:50 a.m., and 
• Group 3, where 7:50 < PATi ~ 8:00 a.m. 

The relative frequency distribution of users into 
each of the foregoing three categories is given in 
Table 1 per sector, as well as overall. 

The preferred arrival times represent the initial 
intentions of users before their experience with and 
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TABLE 1 Relative Frequency Distribution of 
Users into Preferred Arrival-Time Groups per 
Sector 

Percentage of Users by Sector 

Group 2 3 4 All 

I (7:30-7:39 a.m.) 10 15 5 5 10 9 
2 (7:40-7 :49 a.m.) 40 30 30 40 35 35 
3 (7 :50-8 :00 a.m.) so SS 65 SS SS S6 

subsequent learning about the system's performance. 
However, as learning develops through usage, these 
intentions evolve, as seen later in this analysis of 
the daily anticipated arrival times. 

Actions: Departure-Time Decisions 

Patterns exhibited by the 
time changes and the time 

frequency of departure­
interval between succes-

s ive changes across sectors and across user groups 
are examined first. Also the effect of the previous 
day's outcome on the decision to adjust one's depar­
ture time, particularly with regard to the existence 
of an indifference band of schedule delay, is high­
lighted. In addition, the magnitude of this adjust­
ment is examined relative to the previous day's 
schedule delay. 

Table 2 shows the respective proportion of par­
ticipants in each sector who changed their daily de­
parture time at least n times, where n = 1, ••• , 15 
(15 was the highest number of changes observed out 
of a maximum of 23 possible changes in 24 days). The 
overwhelming pattern is that the frequency of these 
changes increases with distance from the destina­
tion, thus confirming the observation that more dis­
tant sectors experience greater difficulty in con­
verging to a steady state. 

TABLE 2 Proportion of Users in Each Sector 
with at Least n Departure-Time Changes 

Percentage of Users by Sector 
No. of 
Changes• 2 3 4 

l 100 100 100 100 7S 
2 100 100 95 6S 2S 
3 100 100 90 60 
4 100 95 8S 15 
5 90 90 70 5 
6 90 80 40 
7 90 75 30 
8 80 60 10 
9 65 50 
10 so 30 
11 35 15 
12 25 
13 20 
14 10 
15 5 

aMinimum number. 

Table 3 presents the same information as Table 2, 
but for each of the previously defined user groups 
within each sector. As expected, users in Group 1, 
who were initially willing to accept a wide safety 
margin, were able to conclude their search for an 
acceptable departure time significantly sooner than 
the other groups. (It should be noted here that com-
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parisons of Group 1 users across sectors is not 
meaningful given the small number of participants in 
this group in any one sector.) The same general 
trend is present for Groups 2 and 3, especially in 
Sector 1, in which residents encounter greater 
travel time fluctuation than in closer sectors, thus 
making it particularly difficult to successfully 
maintain a departure time that results in arrival 
within less than 10 min from the work start time. In 
addition, the preferential differences captured by 
the user groups may correspond to varying degrees of 
individual persistence, whereby users in Group 3 are 
less willing to adjust their indifference band to 
accommodate otherwise unacceptable outcomes. This 
particular aspect is more specifically explored in 
the context of the discussion of intentions. 

Table 4 shows, per user group within each sector, 
the mean number of days since the previous change 
for the nth change (n = 1, ••• ,15) as well as its 
standard deviation. Naturally, these numbers must be 
interpreted with caution because many of these aver­
ages, particularly for higher values of n, are taken 
over a small number of participants. Al though no 
strong patterns are present in a uniform manner, the 
time until the first change appears to be of the 
same order of magnitude across the categories con­
sidered, with the notable exception of Sector 4, in 
which a large fraction of users did not have to 
change their initial selection for a long time, 
which resulted in the large means and standard devi­
ations seen in Table 4. It is also apparent that the 
variability of the interval between changes is 
greater for the closer sectors (though not for Sec­
tor 5, where very few changes took place). More ac­
curately, this variability is more evident for user 
groups in sectors where the decision to change was 
not clear-cut. For instance, users in Groups 2 and 3 
in Sectors 1 and 2 experienced outcomes that were 
clearly unacceptable to most, resulting in the low 
observed standard deviations in Table 4. This was 
less the case in Sectors 3 and 4, where the time be­
tween consecutive changes varied considerably across 
users. These results will be contrasted later in 
this section with the time interval between changes 
in anticipated or intended arrival times reported by 
users. 

To ascertain the effect of the previous day's 
outcome on the decision to change departure time, 
the response, in each sector, to different levels of 
schedule delay (in 5-min increments) has been ex­
amined. Thus for each sector, the fraction of those 
users experiencing a given schedule delay on day 
t - 1 that have changed their departure time on day 
t has been calculated. In order to detect the postu­
lated evolution (see section on conceptual back­
ground) of the users' indifference bands as the 
search progresses and still have enough observations 
to yield meaningful fractions, the data were aggre­
gated on a weekly basis (each including 5 days). Al­
though not all schedule delay levels are suf f i­
c iently represented, two rather clear trends are 
suggested by these data. 

First, as expected, the fraction of users who 
find a particular schedule delay unacceptable and 
thus change departure time on the next day increases 
with the magnitude of the delay. This is exemplified 
in Table 5, which shows these fractions for Sector 1 
during the third week of the survey. Interestingly, 
no user experiencing lateness of up to 5 min or ear­
liness of up to 10 min (relative to his or her re­
spective preferred arr iv al time) decided to adjust 
departure time on the following day. 

The second trend concerns the evolution of the 
indifference band, whereby the fraction of users re­
jecting a given outcome appears to decrease as the 
search progresses, shown as follows for selected 
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TABLE 3 Proportion of Users in Each User Group Within Sectors 1, 2, and 3 with at Least n 
Departure-Time Changes 

Percentage of Users by Sector 

2 3 
No. of 
Changes• Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Group I Group 2 

I 100 100 100 100 100 100 100 100 
2 JOO 100 100 100 100 100 100 
3 JOO 100 100 100 100 100 83.4 
4 JOO 100 100 66.7 100 100 83.4 
5 100 100 33.3 100 100 83.4 
6 100 100 33.3 66.7 100 66.7 
7 100 100 33.3 66.7 90.9 50.0 
8 71.5 100 50.0 81.8 16.7 
9 28.6 100 50.0 63.6 
10 14.3 81.9 33.2 36.3 
II 63.7 27.3 
12 45.5 
13 36.4 
14 18.2 
15 9.1 

3 Mlnimum number. 

Group 3 

100 
100 
100 

92.8 
69.7 
31.2 
23.4 

7.8 

TABLE 4 Mean and Standard Deviation of Nwnher of Days Between Consecutive Departure-Time Changes per User Group Within 
Each Sector 

Sector and Group 

Change Sequence No. 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3 5,1 5,2 5,3 

Mean I.SO 1.71 1.50 1.0 1.25 I.SO 1.0 2.83 1.84 1.0 5.3 5.58 I.SO 2.50 
SD 0.70 1.25 0.53 0.0 0.50 0.85 -a 2.31 0.89 0.0 6.0 4.28 1.00 0.68 

2 
Mean 2.50 2.14 1.27 1.0 1.40 I. 70 2.85 1. 76 1.5 3.67 1.0 1.0 
SD I.DO 0.78 0.47 0.0 0.55 0.48 3.10 1.64 1.0 4.30 0.0 0.0 

3 
Mean 2.50 1.28 1.09 5.67 1.20 1.60 2.80 2.92 4.75 7.57 
SD I.OD 0.49 0.30 2.89 0.45 1.07 1.64 1.78 4.30 5.50 

4 
Mean 7.50 2.28 1.20 3.50 1.80 1.60 1.0 3.83 4.50 4.0 
SD 0.70 1.25 0.63 1.85 0.83 1.58 0.0 3.00 4.90 -a 

5 
Mean 1.29 2.00 4.0 1.60 1.40 1.75 4.0 4.0 
SD 0.76 1.61 - a 0.89 0.52 0.95 3.24 - a 

6 
Mean 1.71 1.36 2.0 1.40 1.90 2.25 3.0 
SD l.25 0.92 -· 0.55 1.28 0.78 2.3 

7 
Mean 1.85 1.36 5.0 6.00 1.44 5.0 3.67 
SD 1.46 0.94 -a 4.12 1.33 4.20 1.15 

8 
Mean 1.50 1.40 1.0 1.87 4.0 1.0 
SD I.DO 0.96 0.0 1.64 - a -a 

9 
Mean 2.00 1.33 1.0 2.83 
SD 0.85 1.00 0.0 1.94 

10 
Mean I.SO 1.0 1.0 
SD 1.24 - • 0.0 

11 
Mean 1.40 3.30 
SD 0.55 0.58 

12 
Mean 1.25 
SD 0.50 

13 
Mean 1.0 
SD 0.0 

14 
Mean 1.0 
SD -• 

15 
Mean 2.0 
SD -· 

Note: SD = standard deviation in days. 
3 0nly one participant accounted for this change. 
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TABLE 5 User Response to Previous 
Day's Schedule Delay, Sector 1, Week 3 

Schedule Delay 
on Day t - 1 
(min)3 

<-15 
-15 to -11 
-10 to-6 
-5 to -1 
0-5 
6-10 
11-15 
16-20 
21-25 
>25 

Proportion of Users 
Experiencing Delay 
Who Change Departure 
Time on Day t (%) 

100.0 
84.6 
56.3 

0.0 
0.0 
0.0 

11.1 
33.3 
37.5 

100.0 

3 Note that schedule delay on day t for a given user is 
defined as the difference between that user's preferred 
arrival time and his or her actual arrival time on day 
t. As such, negative values of schedule delay cor­
respond to late arrivals, whereas positive values cor­
respond to early arrivals (relative to the preferred 
arrival time). 

schedule delays (the first column for lateness and 
the second for earliness) for Sector 1: 

Week 
1 
2 
3 
4 

Proportion of Users 
(%) by Schedule 
Delay (min) 
-10 to -6 
81.8 
45.5 
56.3 
4a.a 

16-2a 
laa.a 
78.6 
33.3 
a.a 

A comparison of the responses between the first and 
the final weeks reveals this decrease in all cases 
where sufficient data exist. However, the path dur­
ing the intervening weeks is not necessarily mono­
tonic, particularly for the negative schedule delays 
as shown in the second column of the foregoing tabu­
lation. Naturally, there are other factors affecting 

18. 

>. 
0 
0 
c: 6. 0 

>. 
0 

cu 
0 
cu - s. 
::I 

-0 
cu 
.c * u 
(/) 

-1e. 

* 3 
8 
6 
9 
7 
9 
4 
2 

* 
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this response, such as the user preferential group, 
in addition to daily effects (aggregated in the 
weekly data) and random variation across users and 
days, which is of particular concern when the number 
of participants is relatively small. 

Further support for the above two trends can be 
obtained by examining the magnitude of the departure 
.time adjustment on day t (Le ., DT i t - DT i t-ll as a 
function Of SDi,t-1' Figures 4-8 show this adjust ­
ment versus SDi,t-l ' for all users· in tile system 
for t = 2 , 6 , ll , 16 , and 24 . In Figures 4-B , a n 
asterisk corresponds to a single observation, a 
plotted number (2 to 9) refers to the number of par­
ticipants with identical coordinates, whereas a plus 
sign represents at least la participants. When the 
focus is on the evolution of the points correspond­
ing to a zero adjustment, these plots suggest that 
(a) as expected, there is a range of schedule delay 
that users are willing to tolerate and for which 
they do not adjust their departure time and (b) this 
range increases over time, indicating that users 
progressively accept greater schedule delay. In ad­
dition, examining the relative magnitudes of the two 
plotted variables reveals that (a) earliness on a 
given day implies a later (or same) departure on the 
next day, whereas lateness implies an earlier (or 
same) departure, and (b) the magnitude of the ad­
justment on day t is in most cases less than the 
corresponding magnitude of the earliness or lateness 
on day t - 1, which is consistent with a hypothe­
sized rule in earlier simulations (16). 

Further insight into the relation between this 
adjustment and schedule delay on the previous day is 
obtained by examining (DTi,t - DTi,t-1l/SDi,t-l• For 
each user group in each sector, the average of this 
ratio was calculated for the nth change given that 
the user was respectively late and early on day 
t - 1, with n = 1, ••• ,8, and that the adjustment was 
nonzero. Table 6 shows these averages for Sector 1, 
which is representative of the other sectors. The 
variation of this ratio across user groups takes 
place in opposite directions depending on whether 
the adjustment is in response to an early or late 
arrival on the previous day. A plausible explanation 

* * 2 2 * * 2 
4 

* 2 * 2 8 
3 7 
7 * 3 

-30.~~~~~~~~~~~~~~~~~~~~~~~~c3 

-30. -18. -6. 6. 18. 30. 

FIGURE 4 Departure time adjustment versus deviation from preferred arrival time 
on previous day: Day 2. 
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FIG URE 5 Departure time adjustment versus deviation from 
preferred arrival time on previous day: Day 6. 
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FIGURE 6 Departure time adjustment versus deviation from 
preferred arrival time on previous day: Day 11. 
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FIGURE 7 Departure time adjustment versus deviation from 
preferred arrival time on previous day: Day 16. 
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FIGURE 8 Departure time adjustment versus deviation from 
preferred arrival time on previous day: steady state. 

TABLE 6 Average Ratio of Departure-Time 
Adjustment to Previous Day's Schedule Delay, Sector 1 

Average Ratio by User Group 

Change 2 3 
Sequence 
No. E L E L E L 

1 0.67 0.29 0.56 0.38 0.50 0.52 
2 0.55 0.22 0.24 0.40 0.26 0.46 
3 0.38 0.23 0.24 0.19 0.46 
4 0.20 0.21 0.17 0.46 
5 0.11 0.25 0.12 0.5 1 
6 0.11 0.63 
7 0.90 
8 0.36 

Note: E and L refer to departure-time changes in response to earliness 
and lateness, respectively, on the previous day. 

is that lateness relative to a preferred arrival 
time that is closer to the official work start time 
is more likely to result in actual lateness for 
work i the adjustment in this case is larger (rela­
tive to soi,t-1> than that when the latenes s is 
entirely within the excess time between PATi and 
WS. On the other hand, adjustments in response to 
earliness are larger for users with earlier pre­
ferred arrival times, to avoid otherwise excessive 
earliness relative to the work start time. Table 6 
also reveals the general trend of a decreasing ad­
justment ratio across successive changes, particu­
larly in response to earliness. The trend is not as 
clear for responses to lateness. It should also be 
noted as one interprets Table 6 that the averages 
for the later changes are based on very few partici­
pants. 

outcomes: Schedule Delay and Tra ve l Time 

It was seen earlier that the average schedule delay 
ultimately accepted by users in each sector in­
creases with distance from the destination (Figure 
2), which suggests that more distant users ulti­
mately accept larger schedule delays and as such 
possess wider indifference bands of tolerable sched­
ule delay. This is supported by the more detailed 
analysis of the proportion of users accepting (at 
equilibrium) various levels of schedule delay, in 
5-min increments, presented in Table 7. 
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TABLE 7 Relative Frequency per Sector of 
Difference Between Preferred Arrival Time and 
Actual Steady-State Arrival Time 

Frequency by Sector 
!J." 
(min) 2 4 All 

Early 
21-25 20 15 10 0 0 9 
16- 20 30 25 25 0 0 16 
11-1 5 0 10 40 10 5 13 
6- 10 10 10 15 35 25 19 
1-5 0 5 5 30 45 17 

0 0 0 0 0 0 0 
La te 
(-!)- (-5) 20 0 5 10 15 10 
(- 6)- (-10) 20 20 0 15 5 12 
(-11)-(-15) 0 15 0 0 5 4 

at. = preferred arrival time minus actual arriva l time at steady state. 

The evolution of average travel time per sector 
is shown in Figure 9, which reveals the greater day­
to-day fluctuation encountered by commuters origi­
nating in more distant sectors and the ensuing dif­
ficulty in converging to a steady state. Further 
details on the facility's traffic flow performance 
and the travel time character is tics of the system 
may be found elsewhere (20,11.l. 

Perceptions and Learning 

Direct information on user perception of travel time 
and schedule delay was not available from this ex­
periment. However, of related interest are the an­
ticipated travel time and schedule delay derived 
from the anticipated arrival time reported daily by 
users along with their departure-time choice. 

In order to examine how actual experience on a 
given day influences perception on the following 
day, the ratio of the actual travel time on day 
t - 1 to the anticipated travel time on day t is 
considered (i.e., TTi,t- 1/ATTi,tl. The average of 
this rati o is taken separ a tely over users experi­
encing lateness and earliness (relative to PATil, 
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FIGURE 9 Evolution of average travel time for each sector. 
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respectively, on day t - 1 for each sector. Table 8 
shows these averages for days 1 through 6 along with 
the corresponding standard deviations. If the ratio 
is greater than 1, travel time is anticipated to be 
lower than on the previous day. It can thus be seen 
that users arriving late on day t - 1 appear, on 
average, to anticipate travel time on day t to be 
lower than on the previous day, whereas those arriv­
ing early on day t - 1 anticipate higher travel time 
on the next day. This somewhat counterintuitive 
finding can be attributed to the allowance by early 
users of a safety margin over their latest experi­
enced travel time when they reset their departure 
time. On the other hand, late users are somehow hop­
ing to compensate for the latest experienced tr ave 1 
time by an earlier departure that would face less 
congestion. 

In order to compare the anticipated travel time 
on a given day with the actual travel time on that 
day, Figure 10 (a-e) shows the day-to-day evolution 
of the average d i f fer ence TTi t - ATTi t for Sectors 
1 through 5. Figure 10 rev~als cons

1
iderable daily 

fluctuation, with no clear decreasing pattern ap­
pearing until day 16. Overall (with the exception of 
Sector 5), there seems to be no particular tendency 
of overestimation as opposed to underestimation. The 
key conclusion suggested here is that users can b e 
good travel time predictors only when the system has 
essentially stabilized. There is therefore no sup­
port for the contention that users are systemati­
cally learning about the facility's time-dependent 
performance, as is usually implied in a perfectly 
rational decision framework. Instead, local and 
somewhat myopic rules seem to be governing users' 
perception of the facility's performance. 

The day-to-day evolution of the average absolute 
value of the difference between actual and antici­
pated schedule delay on a given day is shown in Fig­
ure 11. The same conclusions apply here as previously 
because it can be established algebraically that 
soi,t - ASDi,t = ATTi,t - TTi,t · 

I nte n t ions: An t i c i pated Arr ival Time 

This analysis parallels that of the departure-time 
choices, particularly because the concern is primar-

Lli.t..!:IP 
-&- SECTOR1 

-5- SECTOR2 

-+- SECTORJ 

-*" S£CTOR4 

-+-SECTORS 

17 21 
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TABLE 8 Average Ratio of Actual Travel Time on Day t - 1 to Anticipated Travel 
Time on Day t for Early Versus Late Users by Sector 

Day t 

2 3 4 s 6 

Sector Ratio SD Ratio SD Ratio SD Ratio SD Ratio SD 

1 
E 0.75 0.07 0.78 0.05 0.74 0.13 0.47 0.06 0.48 0.08 
L 1.19 0.15 1.14 0.09 1.36 0.12 1.23 0.13 1.36 0.30 

2 
E 0.65 0.22 0.76 0.09 0.64 0.21 0.66 0.11 0.69 0.16 
L 1.04 0.03 I.IS 0.30 1.26 0.24 1.35 0.27 1.15 0.09 

3 
E 0.72 0.16 0.71 0.17 0.75 0.06 0.44 0.08 0.62 0.23 
L 1.31 0.29 1.30 0.29 1.21 0.17 1.38 0.22 1.33 0.23 

4 
E 0.76 0.14 0.76 0.13 0.75 0.13 0.85 0.11 0.88 0.08 
L 1.26 0.11 1.29 0.14 1.33 0.31 1.17 0.13 1.29 0.19 

5 
E 0.70 0.11 0.67 0.13 0.64 0.16 0.50 0.12 0.73 0.11 
L 1.10 0.14 1.23 0.23 1.22 0.18 1.10 0.0 

Note: E =group of users with early arrival on day t - 1. L =group of users with late arrival on day t - 1. 

ily with the changes in intentions in response to 
experience with the facility. Table 9 shows the 
fraction of users in each sector who modified their 
anticipated arrival time at least n times, where 
n = 1, •.• ,6. Comparing these data with Table 2 indi­
cates that users are more prone to change actions 
before shifting intentions, as evidenced by the sig­
nificantly fewer anticipated arrival-time changes. 
The same information is presented in Table 10 for 
each user group within Sectors 1, 2, and 3, respec­
tively, thus confirming the general trend, discussed 
in conjunction with Table 3, that users with earlier 
preferred arr iv al times have to compromise less as 
the search progresses. 

15 
SECTOR 2 

9 

3 

3 

TABLE 9 Proportion of Users in Each 
Sector with at Least n Anticipated 
Arrival-Time Changes 

Percentage of Users by Sector 
No. of 
Changes• 2 3 4 All 

I 75 75 80 30 35 59 
2 50 60 25 5 28 
3 20 30 10 12 
4 15 10 5 
s 15 5 4 
6 10 2 

3 Minimum number. 
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FIGURE 10 Day-to-day evolution of average difference between actual and anticipated travel time for each sector. 
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FIGURE 11 Day-to-day evolution of average absolute difference between actual and anticipated schedule 
delay for each sector. 

Table 11 gives for each sector the mean number of 
days (and the standard deviation) since the previous 
revision for each of the n anticipated arrival-time 
changes, n = 1, ••• , 6. Unlike Table 4, a clear de­
creasing trend is evident here, whereby users revise 
intentions at gradually smaller time intervals. As a 
matter of fact, the mean time until the first change 
is quite large, which indicates user persistence in 
initial intentions. However, as users progressively 
realize the inability to achieve their initial pref­
erence, and as they develop a better feel for the 

system's performance, they appear more willing to 
revise their anticipated arrival time. Increasingly, 
a number of participants updated their anticipated 
arrival time only after the system had reached 
steady state. 

Table 12 presents the average number of depar­
ture-time changes (and the standard deviation) that 
took place since the previous revision for each of 
the six anticipated arrival-time revisions. The num­
ber of departure-time changes is an indication of 
the number of intervening unacceptable outcomes, and 

TABLE 10 Proportion of Users in Each User Group Within Sectors 1, 2, and 3 with at Least n 
Anticipated Arrival-Time Changes 

Percentage of Users by Sector 

No. of 
Changes• 

1 
2 
3 
4 
s 
6 

Group 1 

0 

8 Minimum number. 

Group 2 Group 3 

62.S 100 
37.S 90.0 
25.0 70.0 
12.S 40.0 

30.0 
20.0 

2 

Group 1 

33.3 

Group 2 Group 3 Group 1 Group 2 Group 3 

so.a 100 0 66.6 100 
16.7 100 33.3 61.S 
16.7 63.6 16.7 23.1 

18.2 16.7 
9.1 
9.1 
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TABLE 11 Mean and Standard Deviation of the Number of Days Between Consecutive Anticipated 
Arrival-Time Changes per Sector 

Sector 

Change 2 4 All Users 
Sequence 
No. Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

1 7.62 4.12 6.53 4.42 9.63 5.32 14.52 6.98 9.14 3.92 8.77 5.21 
2 4.54 2.99 5.08 3.68 6.89 5.13 6.00 _a 5.43 3.81 
3 3.63 1.60 3.80 2.90 2.00 2.00 3.44 2.28 
4 1.67 1.1 5 4.06 4.24 2.33 2.42 
5 1.00 0.00 4.00 -a 1. 75 1.55 
6 1.50 0.72 1.50 0.72 

8 0nly one participant was involved in this change, 

TABLE 12 Mean and Standard Deviation of the Number of Departure-Time Changes 
Between the Consecutive Anticipated Arrival-Time Changes per Sector 

Sector 

Change 2 
Sequence 
No. Mean SD Mean SD 

No change 6.00 1.80 6.00 2.60 
1 4.50 2.58 3.70 1.87 
2 2.61 2.14 2.74 1.72 
3 1.00 1.32 1.20 1.20 
4 0.80 0.83 1.50 0.70 
5 0.75 0.52 1.00 -" 
6 1.00 0.00 

0 0n1y one participant was involved in this change. 

is as such a measure of the number of failures until 
the next revision. As expected from the foregoing 
discussion, this number decreases as the search pro­
gresses, reflecting the initial resistance (to re­
vising intentions), which appears to weaken progres­
sively. Table 12 also reveals that users in closer 
sectors encounter fewer "failures," on average, than 
those in more distant sectors. 

Finally, the direction of these readjustments is 
examined. Are users shifting their anticipated ar­
rival to an earlier or a later time? And are they 
doing so consistently in one or the other direction? 
As suggested in the second section, users would tend 
to accept increasing earliness relative to their 
preferred arrival time in order to accommodate the 
fluctuations in system performance. This is indeed 
the case in this experiment, with 72 percent of all 
users who adjusted anticipated arrival time at least 
once consistently shifting to an earlier time. Only 
7 percent consistently shifted to a later time (ac­
tually only two participants, both in Sector 4) , 
with the remaining 21 percent moving at least once 
in each direction. 

CONCLUSION 

This paper has presented the principal elements of a 
theoretical framework to describe the processes gov­
erning commuters' daily departure-time decisions in 
response to experienced congestion patterns. Com­
muter behavior is viewed as a boundedly-rational 
search for an acceptable departure time. A key no­
tion is that of an indifference band of tolerable 
schedule delay that determines the acceptability of 
a particular decision outcome on any given day. This 
indifference band, which varies across individuals, 
also shifts in response to users' experience with 
the facility. 

3 4 

Mean SD Mean SD Mean SD 

3.50 2.30 2.50 1.22 1.30 0.63 
3.00 1.93 1.33 1.50 0.57 0.53 
1.56 2.06 1.00 -· 
1.00 0.00 

Although not intended as a formal validation of 
the foregoing model, an experiment involving real 
commuters interacting daily with a hypothetical sim­
ulated traffic corridor was conducted over a period 
of 24 days, yielding valuable insights into the dy­
namics of the departure-time decision and its inter­
action with system performance. The results pertain­
ing to the underlying behavioral processes were 
analyzed in this paper from the perspective of the 
key notions articulated in the conceptual framework. 

Of course, this is only one such experiment, 
which involves obvious restrictions because of the 
hypothetical nature of the commuting corridor. 
Nevertheless, it has been quite insightful, particu­
larly given the difficulty and the scale of corre­
sponding real-world observations at the desired 
level of detail. As such, it offers a useful comple­
mentary approach to support the development of a 
comprehensive descriptive theory that would be sub­
sequently validated, if only in part, in the field. 
Other experiments under different informational sit­
uations (e.g., where information about system con­
gestion is available by word of mouth or through 
media reports) are also contemplated. In addition, 
formal mathematical model building and parameter 
estimation will be conducted. 
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Transfer Model Updating with Disaggregate Data 

FRANK S. KOPPELMAN, GEOK-KOON KUAH, and CHESTER G. WILMOT 

ABSTRACT 

Model transfer provides an alternative to undertaking complete data collection 
and model development in every planning context. The effectiveness of the 
transferred model in the application context can be improved by updating se­
lected model parameters by using limited data from the application context. The 
effect of model updating on the transferability of disaggregate travel choice 
models both within and between urban areas is examined. It is found that trans­
fer effectiveness improves with updating alternative specific constants and im­
proves further with updating the parameter scale for both intraurban and inter­
urban transfers. Further, the sample size necessary to obtain a substantial 
improvement in model transferability is a small fraction of that needed to 
estimate a complete model in the application context. Thus, it appears that 
model transfer with updating may be preferable to either full model transfer or 
new model estimation in situations of constrained resources. 

The transfer of a previously estimated model to a 
new application context can reduce or eliminate the 
need for a large data collection and model develop­
ment effort in the application context. However, the 
usefulness of a transferred model depends on the 
degree to which it can provide useful information 
about the behavior or phenomenon of interest in the 
application context. 

Models are not perfectly transferable between 
contexts. Thus, the general objective of model 
transfer is to obtain a model that reasonably ap­
proximates the behavior in the application context. 
The quality of this approximation can be improved by 
using available information about the application 
context to modify or update some or all of the model 
parameters. A wide range of updating procedures can 
be employed depending on the type of information 
available in the application context. Schultz and 
colleagues have employed updating by using transit 
corridor volumes and screen-line counts in Houston, 
Seattle, and New Orleans (1-3). 

This study examines the-effect of updating alter­
native specific constants and the scale of the model 
parameters on the transferability of disaggregate 
mode-choice models that use disaggregate data. This 
approach may be employed to facilitate the analysis 
process when a small sample of disaqqreqate data has 
been collected. Such an updating sample can be con­
siderably smaller than the sample that would be nec­
essary to calibrate a new model system. The approach 
is demonstrated and evaluated for both intraregional 
and interregional transfer of disaggregate models of 
mode choice to work. 

This paper is organized as follows. The sources 
of differential transferability of model components 
are identified and the procedure is described that 
is used for the adjustment of alternative specific 
constants and the scale of the transferred param­
eters. The research approach, including the data 
used, model specifications, and the model estimation 
results, is described next. Then the effect of model 
updating on intraregional and interregional model 
transferability is evaluated, and the final section 
sets forth conclusions and implications. 

PARTIAL TRANSFERABILITY AND MODEL ADJUSTMENT 

Model transfer is expected to be effective when the 
underlying individual travel choice decision process 

is the same in both the estimation and application 
contexts and the model specification is appropriate 
<il. Perfect transferability of models cannot be 
achieved because of behavioral differences between 
contexts and limitations in model specification. The 
behavioral differences and specification limitations 
may result in differential transferability of dif­
ferent model components. Updating procedures can be 
used to modify selected parameters of transferred 
models by incorporating available information about 
the application context. 

Sources of Differential Transferability of 
Model Components 

McFadden (_~) and Westin and Manski (.§_) identify 
three types of differences that may exist in models 
between estimation and application contexts. These 
are differences in the alternative specific con­
stants, in the sensitivity or scale of the model 
parameters, and in the relative values of variable 
coefficients. These differences in expected trans­
ferability result from the differential effect of 
model specification errors on these classes of model 
parameters. 

The impact of model specification Prror for t.hP. 
multinomial legit model can be seen from a review of 
the model derivation (similar results can be ob­
tained for the multinomial probit model). Consider a 
decision maker faced with the problem of selecting 
one of a set of available alternatives. It is as­
sumed that the decision maker will select that al­
ternative which has the highest utility to him or 
her. The utility Uit of an alternative i to an in­
dividual t includes deterministic (Vit) and random 
(Eitl components: 

(1) 

The derivation of the multinomial legit model is 
based on the assumption that the random components 
(Eitl are independently and identically Gumbel dis­
tributed over individuals and alternatives. Further, 
the systematic or deterministic portion of the util­
ity function is generally assumed to be linear in 
parameters so that 

(2) 
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where Xi t is a row vector of variables describing 
individual t and alternative i, and 8 is a column 
vector of parameters. Under these assumptions, the 
multinomial legit model has the form 

Pit= exp [(ni + Xit8)/wld exp [(nj + Xjt8l/w] (3) 
j 

This model has location parameters (nil, which repre­
sent the mode of the distribution of errors for each 
alternative; a scale parameter (w), which 'repre­
sents the variance of the distribution of the error 
terms; and attribute importance parameters (8), 
which represent the attribute weighting that the in­
dividual employs in evaluating alternatives. 

Tardiff (}) shows that the omission of explana­
tory variables will shift the mean of the error dis­
tribution represented in the model by nir increase 
the variance of the error distribution represented 
by w, and bias the estimates of parameters associ­
ated with included variables. When different con­
texts are compared that have similar behavior but 
incompletely specified models, it is expected that 
the differences in the mean values of the error dis­
tribution will be relatively large, the differences 
in the error distribution variance will be smaller, 
and the differences in behavioral parameters will be 
the smallest. Thus, efforts to improve the transfer­
ability of a model to a specific application envi­
ronment should emphasize adjustment of alternative 
specific constants first, parameter scale second, 
and relative parameter values last. Empirical re­
sults confirm the importance of adjusting alterna­
tive specific constants by using disaggregate data 
to improve the transferability of disaggregate 
choice models (~r2r!l· However, there is no reported 
study of the effect of scale adjustment on model 
transferability. 

Analytic For mulation of Updating Procedui:.es 

The parameters in Equation 3 are not uniquely iden­
tified and therefore cannot all be estimated. First, 
the n parameters can only be identified up to an 
additive constant. This limitation is dealt with by 
imposing an arbitrary constraint on one of these 
parameters (e.g., set 11k =OJ. Second, it is not pos­
sible to estimate w but only to estimate the ratios 
n/w and 8/w. Defining ratios of these parameters by 
µj = nj/ w, and a = 8/ w and restating the multinomial 
legit model in terms of these new parameters obtains 

exp [ µi + Xit a]/~ exp [ µj + Xj ta] 
J 

(4) 

where one of the µj is constra ined to zero. 
Updating procedures can be used to modify or re­

place selected parameters in this model. In this 
study, the effectiveness is examined of updating the 
location parameters (µ) and the scale of the re­
maining parameters by using a sample of individual 
observations from the application context. 

Parameter estimates for a choice model are ob­
tained with disaggregate data by maximizing a log 
likelihood expression of the form 

L = l l 6it ln Pit (Xtr µ, a) 
t i 

where 

(5) 

indicator variable set to 1 if indi­
vidual t chooses alternative i and 
to 0 otherwise, 
probability that individual t 
chooses alternative i, and 
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µ vector of alternative specific con­
stants. 

Embedded in the probability function in Equation 5 
are expressions for the deterministic component of 
utility for each alternative formulated as 

(6) 

The transfer of the parameters describing the effect 
of time, cost, and other variables on travel choice 
is based on some expected generality of these fac­
tors across estimation and application contexts. 
There is no comparable basis for transferring the 
constant terms because average differences in the 
excluded factors between contexts are expected. 
Therefore, it is appropriate to consider transfer­
ring the a parameters in Equation 6 to the appli­
cation context while obtaining a local estimate of 
the alternative specific constants. In this case, 
the a-parameters transferred to the application 
context are denoted with a subscript T (aT) and the 
transferred portion of the utility function is de­
fined as 

(7) 

where xtt is a vector of attributes of alternative i 
for individual t in the application context. The up­
dating of the alternative specific constants is ac­
complished by modifying the utility function in 
Equation 6 for the application context to 

(8) 

where 

vtt deterministic component of utility for al­
ternative i in the application context, 

µ~ updated alternative specific constant for 
alternative i in the application context, 
and 

ztt transferred portion of the utility function 
defined in Equation 7. 

The estimate of the updated alternative specific 
constants (µ~) consists of those values that maximize 
the log likelihood function: 

(9) 

where zt is a vector of variables defined in Equation 
7 for individual t in the application context for 
all alternatives and µA is a vector of alternative 
specific constants. The final utility function em­
ployed for transfer prediction becomes 

(10) 

which includes all the transferred slope parameters 
(aT) and locally estimated alternative specific 
constants (µtJ. 

The methodology just outlined can be extended to 
adjust the scale of the transferred parameters as 
well as the alternative specific constants. The co­
efficient of ztt in Equation 8 was restricted to 1 in 
the preceding approach. When the parameter scale is 
updated, that restriction is relaxed and a coeffi­
cient is estimated for ztt· The deterministic compo­
nent of utility becomes 

(11) 

where AA is the scaling parameter for the application 
context relative to the estimation context. 
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Updating the alternative specific constants and 
the parameter scale amounts to selecting values of 
µA and AA that maximize the log likelihood function: 

L 

The scaling parameter 
explanatory variables 
ative importance. The 
native utility becomes 

(12) 

(AA) adjusts the scale of the 
but does not affect their rel­
adjusted expression for alter-

(13) 

which differs from Equation 10 only by inclusion of 
the scaling constant (XA). 

Practical Application of Updating Procedures 

The updating procedures described can be readily im­
plemented in standard packages for logit model esti­
mation. The common application of such procedures 
includes the selection of variables to be included 
in the choice model. To use the same package for 
model updating, it is necessary to formulate the 
composite variable ztt by means of Equation 7 and es­
timate the new model with a full set of alternative 
specific constants. For updating alternative spe­
cific constants only, the parameter of the composite 
variable (Ztt> must be restricted to 1. For updating 
the alternative specific constants and the parameter 
scale, the parameter is unrestricted. This procedure 
can be employed with a disaggregate data set of any 
size for the application context. The same data can 
be used both to estimate parameter scale adjustment 
and to update the alternative specific constants. It 
is expected, and this empirical study confirms, that 
a substantially smaller data set can be used to ob­
tain satisfactory estimates of these parameters than 
would be necessary to estimate the complete model in 
the application context. 

RESEARCH DESIGN 

The analysis undertaken in the previous section sug­
gests that transferability will be enhanced by ad­
justment of alternative specific constants and pa­
rameter scale and describes procedures for making 
such adjustments~ However; the qualitative analysis 
does not provide information about the importance of 
these adjustments on transferability. An empirical 
exploration of these impacts is undertaken to in­
crease the understanding of the effectiveness of 
these adjustments. 

The research approach is to evaluate the trans­
ferability of models of mode choice to work within a 
single urban region and between urban regions. The 
intraregional transfers are among sectors in the 
Washington, D.C., metropolitan area. The interre­
gional transfers are among the metropolitan areas of 
Minneapolis-St. Paul, Baltimore, and Washington, 
D.C. Model transfer effectiveness is evaluated for 
full model transfer, model transfer with updating of 
alternative specific constants, and model transfer 
with updating of alternative specific constants and 
parameter scale. 

Data 

The intraregional transferability analysis is under­
taken by using Washington, D,C., data for those who 
reported traveling to work in the central business 
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district (CBD) by driving alone, shared ride, or 
transit. These records are grouped into three geo­
graphic sectors between which model transferability 
is evaluated. The interregional transferability 
analysis is undertaken among the regions of Minne­
apolis-St. Paul, Baltimore, and Washington, D.C. 
Differences among sectors in Washington represent 
real differences in sociodemographic characteristics 
and transportation service attributes. Differences 
among the three regions include these real differ­
ences as well as apparent differences due to incon­
sistencies in data collection procedures. Thus, the 
analysis of transferability within Washington and 
between regions provides some insight into the addi­
tional limits on transferability that may be attrib­
utable to differences in data collection and other 
conventions between study areas. 

Model Specification 

The specification employed in the Washington, D.C., 
intraregional transferability analysis includes 
three level-of-service variables, a car-per-driver 
variable applied separately to the drive-alone and 
shared-ride alternatives, and alternative specific 
constants. This model is in the mid-range of speci­
fications analyzed for transfer effectiveness by 
Koppelman and Wilmot (10). 

The specification employed in the three-city in­
terregional transferability analysis includes all 
the variables used in the intraregional transfer 
study with the addition of a variable that measures 
automobile access time to transit for zones in which 
automobile must be used to reach transit. The vari­
ables included in each transferability analysis are 
identified and defined in Table 1. 

TABLE 1 Variables Included in Analysis of Intraregional and 
Interregional Transferability 

Variable 

Dummy for drive-alone alternative (DAD) 
Dummy for shared-ride alternative (SRD) 
Cars per driver for drive-alone alternative 
(CPD DA) 

Cars per driver for shared-ride alternative 
(CPDSR) 

Out-of-pocket cost divided by income• 
(OPTr.TNr:) 

Total travel time• (TVTT) 
Out-of-vehicle travel time divided by 

distance• (OVTTD) 
Automobile access time to transit for 
zones not served by transit (AA TR) 

Study Type 

Intraregional Interregional 

x x 
x x 

x x 

x x 
x x 
x x 

x x 

x 
8Level-of-servke variables (OPTCINC, TVTT, and OVTTD) are based on the simple home­
work-home tour for the Washington, D.C., intraregional analysis and on the one-way home­
work trip for the interregional analysis. This difference in variable definition will modify 
the scale of these parameters by a factor of 2 but will have no other impact on estimation 
and transferabi1ity resu1ts. 

Disaggregate updating for both intraregional and 
interregional transfers is undertaken by using all 
available disaggregate data in the application envi­
ronment. The earlier study by Atherton and Ben-Akiva 
(_!!) used a subsample of the available data for up­
dating the alternative specific constants. Koppelman 
and Chu (11) show that the use of the full sample 
rather than a subsample will improve the precision 
of the obtained estimators but will not affect their 
consistency. 
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Evaluation of Transferability With and Without 
Parameter Updating 

Transfer effectiveness is evaluated by the degree to 
which the transferred model with or without updating 
predicts the observed behavior in the application 
environment. Four measures, formulated by Koppelman 
and Wilmot (_!) , are used to evaluate transfer pre­
dictive accuracy. The transfer likelihood ratio in­
dex, analogous to the commonly used likelihood ratio 
index (12) for evaluating model goodness of fit, de­
scribes the extent to which the transferred model 
explains observed individual behavior in the appli­
cation environment. The transfer index, a ratio of 
the transfer likelihood ratio index and the local 
likelihood ratio index, describes the degree to 
which the transferred model describes observed be­
havior relative to an identically specified local 
model. The root-mean-square-error measure is an in­
dex of the average proportional error in prediction 
of aggregate travel shares by any alternative. The 
relative root-mean-square error is the ratio between 
this measure and the corresponding measure for an 
identically specified local model. 

Each of these measures describes the transfer ef­
fectiveness of a single estimated model applied in 
another context. These measures can be pooled across 
multiple transfers (13) to provide an overall indi­
cation of the effectiveness of a specific type of 
transfer over multiple applications. 

Estimation Results 

The estimation results for the Washington, D.C., 
sectors and for three urban regions are reported in 
Tables 2 and 3, respectively, and the supporting 
statistics for Tables 2 and 3 are given in Tables 4 
and 5, respectively. The signs of all the estimated 
parameters are consistent with a priori expecta­
tions. The parameters for cars per driver and total 
travel time are significant in all cases. The other 
level-of-service parameters are significant in some, 
but not all, cases. 
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There are important differences in goodness of 
fit among sectors in the Washington region and among 
regions measured by the likelihood ratio index with 
either the equal-share or market-share reference. 
That is, models of identical specification are more 
able to explain the travel choices made in some con­
texts than in others. 

EVALUATION OF MODEL TRANSFERABILITY WITH 
DISAGGREGATE UPDATING 

The transferability of the estimated models within 
the Washington, D.C., region and among the selected 
regions is evaluated by using the four measures de­
scribed previously. These measures are pooled over 
the full sets of intraregional and interregional 
transfers to provide an average index of the effect 
of differences in updating procedures. 

Disaggregate Transferability Measures 

The pooled transfer likelihood ratio index values 
for intraregional and interregional transfers are as 
follows: 

Pooled Transfer Index Values 
Intraregional Interregional 

Adjustment Transfers Transfers 
None .092 .089 
Constants .101 .128 
Constants and scale .106 .136 
Local estimation .113 .167 

These values indicate that the adjustment of alter­
native specific constants and the additional adjust­
ment of scale produce a substantial improvement in 
model transferability. These adjustments result in 
transfer model goodness-of-fit values that are much 
closer to the corresponding local goodness-of-fit 
values than those for full model transfer without 
adjustment. The magnitude of improvement due to 
scale adjustment is somewhat smaller than that at-

TABLE 2 Mode-Choice Model Estimates for Washington, D.C., Sectors 

Sector 1 Sector 2 Sector 3 

Parameter Parameter Parameter 
Variable Value !-Statistic Value !-Statistic Value !-Statistic 

DAD -3.455 9.4 -2.018 5.9 -2.875 7.2 
SRD -1.937 9.6 -1.401 8.2 -l.382 5.3 
CPD DA 4.181 11.3 3.191 9.2 3.647 5.0 
CPDSR 1.964 7.1 1.743 8.3 l.544 5.0 
OPTCINC -0.0055 0.4 -0.0168 l.5 -0.0196 l.2 
TVTT -0.0423 7.0 -0.0148 3.2 -0.0229 4.7 
OVTTD -0.0276 0.5 -0.1029 1.7 -0.0281 0.4 

TABLE 3 Mode-Choice Model Estimates for Three Urban Regions 

Minneapolis-St. Paul Baltimore Washington, D.C. 

Parameter Parameter Parameter 
Variable Value !-Statistic Value !-Statistic Value !-Statistic 

DAD -2.387 8.0 -0.815 2.5 -2.799 11.5 
SRD -1.35 l 4.9 -1.776 6.5 -1.688 12.5 
CPD DA 3.017 9.9 2.313 6.3 3.478 14.4 
CPDSR 1.048 3.8 2.004 6.4 1.694 10.l 
OPTCINC -0.0967 6.7 -0.0313 l.l -0.0345 2.1 
TVTT -0.0595 9.1 -0.0159 2.3 -0.0558 8.0 
OVTTD -0.0961 4.7 -0.102 4.0 --0.130 1.6 
AATR -0.0701 1.2 -2.24 2.2 -0.129 3.8 
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TABLE 4 Supporting Statistics for Table 2 

Sector I Sector 2 Sector 3 

No. of cases 944 964 746 
No. of o bserva !ions 2,648 2,583 2,165 
Log likelihood 
At zero -962 - 933 -790 
At market shares -904 -898 -771 
At convergence -766 -813 - 705 

Likelihood ratio index (p 2 ) 

Equal-shares base 0.204 0.129 0.108 
Market-shares base 0.153 0.095 0.086 

TABLE 5 Supporting Statistics for Table 3 

Sector I Sector 2 Sector 3 

No. of cases 2,000 785 2,000 
No. of observations 5,814 2,416 5,568 
Log likelihood 

At zero -1,976 - 767.4 -2,022 
At market shares -1,772 - 713.4 -1,957 
At convergence 

Likelihood ratio index (p 2 ) 

-1,416 -556.6 -1,731 

Equal-shares base 0.285 0.275 0.135 
Market-shares base 0.202 0.220 0.116 

tributable to the adjustment of alternative specific 
constants. 

The values for the pooled transfer index for full 
model transfer and for partial model transfer with 
adjustment of alternative specific constants without 
and with scaling factors for both intraregional and 
interregional transfers are as follows: 

Pooled Transfer Index Values 
Intraregional Interregional 

Adj us trne n t Transfers Transfers 
None .sos .533 
Constante .890 .767 
Constants and scale .948 .814 

Both the adjustments in constants and parameter 
scale substantially improve transferability. The 
differences in transfer effectiveness between intra­
regional and interregional transfers presumably re­
flect regional differences in context similarity and 
in measurement procedures. 

Both pooled disaggregate measures of transfera­
bility give a strong indication of the eftectiveness 
of model updating. The pooled values indicate strong 
improvement obtained by adjustment of alternative 
specific constants and strong but smaller improve­
ments by the further adjustment of parameter scale 
in both intraregional and interregional transfer. 
Examination of the context pair transfer measures 
(not reported here) indicates some variability in 
transfer effectiveness. However, those results still 
support the overall interpretation obtained by anal­
ysis of the pooled values. Disaggregate transfer ef­
fectiveness can be substantially improved by adop­
tion of these adjustment procedures. 

Aggregate Transferability Measures 

The pooled root-mean-square errors for local estima­
tion and transfer prediction are as follows for both 
types of transfer: 
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Adjustment 
None 
Constants 
Constants and scale 
Local estimation 

Pooled Root-Mean-Square Errors 
Intraregional Interregional 
Transfers Transfers 
.277 .460 
.248 .369 
.242 
.231 

.340 

.321 

The adjustment of the alternative specific constants 
substantially reduces the pooled values of root­
mean-square error for both intraregional and inter­
regional transfers. The additional adjustment of 
parameter scale produces a small additional reduc­
tion in the root-mean-square error in both cases. 

Differences in the magnitude of the root-mean­
square error values for both types of transfer are 
largely attributable to the size of the prediction 
sample in the aggregate groups used in the two stud­
ies. Specifically, the use of large groupings in the 
intraregional analyses results in smaller errors in 
aggregate prediction (14). Thus, these measures are 
not directly comparable. 

The pooled relative aggregate transfer errors for 
intraregional and interregional transfers are as 
follows: 

Adjustment 
None 
Constants 
Constants and scale 

Pooled Aggregate 
Root-Mean-Sguare Errors 
Intraregional Interregional 
Transfers 
1.186 
1.074 
1.048 

Transfers 
1.433 
1.149 
1.059 

The aggregate prediction errors using transferred 
models are not substantially larger than those using 
local models for intraregional transfers but are 
much larger for interregional transfers. In both 
cases, the relative error is substantially reduced 
by adjustment of alternative specific constants with 
or without parameter scale adjustment. 

Thus, the pooled aggregate measures of transfera­
bility are consistent with the disaggregate mea­
sures. However, in this case, the individual context 
pair transfers (not reported here) show greater var­
iability in the effectiveness of the updating proce­
dure. Nevertheless, updating of alternative specific 
constants consistently reduced the aggregate trans­
fer error. However, the additional updating of pa­
rameter scale does, on some occasions, produce a 
small increase in aggregate transfer error. 

Sample Size f9r Tr ansfe r Model Updat i ng 

It is useful to obtain some estimate of the sample 
size required for model updating relative to that 
which would be required for full model estimation. 
An initial estimate can be obtained by comparison 
between the standard errors of estimate of the 
alternative specific constants for full model esti­
mation and those for model updating. The average 
estimation variance for both alternative specific 
constants over the three Washington, D.C., sector 
estimations and the six Washington, D.C., sector 
transfers is as follows: 

Alternative 
Specific 
Constant 
Drive alone 
Shared ride 

Full Model 
Estimation 
0.132 
0.046 

Transfer 
Model 
Upda ting 
0.010 
0.009 

These values indicate that when the full available 
sample is used, estimation precision is increased by 
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a factor of 13. 2 for the drive-alone constant and 
5.1 for the shared-ride constant. This suggests that 
sample sizes for model updating could be one-fifth 
or less than the corresponding sample size for full 
model estimation. 

Inte rpretation of Transfer Updating Tests 

The updating of alternative specific constants pro­
duces a substantial improvement in model transfera­
bility for both intraregional and interregional 
applications with respect to all four pooled mea­
sures and for each context pair transfer. Thus, ad­
justment of alternative specific constants appears 
to be a universally desirable procedure. The addi­
tional updating of model scale produces a smaller 
average improvement in all four pooled measures but 
results in a small increase in the aggregate, but 
not disaggregate, error measures in some cases. 
Thus, although parameter scale updating appears to 
be generally desirable, it may result in poorer 
model performance in some contexts. Further, the 
sample size required for model updating appears to 
be substantially smaller than that required for full 
estimation of a model in the application context. 

CONCLUSIONS 

This study examines the effectiveness of updating 
procedures to enhance model transferability. The 
study is undertaken in contexts where adequate data 
are available to estimate local models. The results 
obtained are used here to make inferences about the 
use of updating procedures in the application of 
these or other models to new contexts in which there 
are limitations on the availability of survey data. 

The results of this study indicate that full 
model transfer provides a substantial improvement 
over using market-share information only but is 
quite deficient relative to the estimation of a 
local model (average transfer indices of 0. 53 for 
interregional transfer). The use of updating proce­
dures substantially improves the expected level of 
model effectiveness (adjustment of alternative spe­
cific constants explains almost half of the defi­
ciency with respect to local models and adjustment 
of parameter scale provides a small incremental in­
crease in model effectiveness). Although there is 
some variability in the improvement attributable to 
model updating, every case examined showed a sub­
stantial improvement in transferability due to model 
updating. 

It is useful to think about the effectiveness of 
model updating relative to the extreme options of 
full model transfer without updating and estimation 
of new models in the application context. The ad­
vantage of full model transfer is the elimination of 
the need to collect any data on traveler behavior. 
The advantage of new data collection and model de­
velopment is to obtain the best possible model esti­
mation results. There is a clear trade-off between 
cost savings and model effectiveness. Adding the op­
tion of model updating offers the potential for ob­
taining a large portion of the potential improvement 
in model effectiveness for a small portion of the 
increased cost. These results indicate that almost 
one-half of the difference between full transfer and 
local estimation can be obtained by updating alter­
native specific constants and more can be obt.ained 
by updating constants and parameter scale. However, 
the amount of data needed for updating is less than 
one-fifth of that needed for full model development. 
Thus, it appears that model updating is a desirable 
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alternative to either full model transfer or new 
model development. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Development 
Models for 

and Calibration of Travel 
the Houston-Galveston Area. 

Demand 
Draft 

Report. Barton-Aschman Associates, Inc., Evans­
ton, Ill., Aug. 1979. 
Development and Calibration of Mode Choice 
Models--Seattle Urban Region. Draft Report. 
Barton-Aschman 
Ill., 1982. 

Associates, Inc., Evanston, 

Development of Travel Demand Model Set for the 
New Orleans Region. Barton-Aschman Associates, 
Inc., Evanston, Ill., Jan. 1983. 
F.S. Koppelman and C.G. Wilmot. Transferability 
Analysis of Disaggregate Choice Models. In 
Transportation Research Record 895, TRB, Na­
tional Research Council, Washington, D.C., 
1982, pp. 18-24. 
D. McFadden. Properties of the Multinomial 
Model. Working Paper 7617. Urban Travel Demand 
Forecasting Project, Institute of Transportation 
Studies, University of California, Berkeley, 
1976. 
R. Westin and C.F. Manski. Theoretical and Con­
ceptual Developments in Demand Modelling. In 
Behavioral Travel Modelling (D.A. Hensher and 
P.R. Stopher, eds.), Croom-Helm, London, 1979. 
T.J. Tardiff. Specification Analysis for Quan­
tal Choice Models. Transportation Science, Vol. 
13, No. 3, 1979. 
T.J. Atherton and M.E. Ben-Akiva. Transferabil­
ity and Updating of Disaggregate Travel Demand 
Models. In Transpor ta ti on Research Record 610, 
TRB, National Research Council, Washington, 
D.C., 1976, pp. 12-18. 
K.E. Train. The Sensitivity of Parameter Esti­
mates to Data Specification in Mode Choice 
Models. Transportation, Vol. 7, No. 3, Sept. 
1978. 
F.S. Koppelman and C.G. Wilmot. The Effect of 
Model Specification Improvement on Transfera­
bility. Transportation Research, Vol. 20, No. 
3, June 1986. 
F. S. Koppelman and C. Chu. Effect of Sample 
Size on Disaggregate Choice Model Estimation 
and Prediction. In Transportation Research Rec­
ord 944, TRB, National Research Council, Wash­
ington, D.c., 1984, pp. 60-69. 
D. McFadden. Conditional Logit Analysis of 
Qualitative Choice Behavior. In Frontiers in 
Econometrics (P. Zarembka, ed.), Academic 
Press, New York, 1973. 
F.S. Koppelman and G. Rose. Geographic Transfer 
of Travel Choice Models: Evaluation and Proce­
dures. In Optimization and Discrete Choice in 
Urban Systems (B. Hutchinson, P. Nijkamp, and 
M. Batty, eds.), Springer-Verlag, New York, 
1985. 
F.S. Koppelman. Aggregate Travel Prediction 
with Models of Individual Choice Behavior. 
Ph.D. dissertation. Department of Civil Engi­
neering, Massachusetts Institute of Technology, 
Cambridge, 1975. 

Publication of this paper sponsored by Committee on 
Passenger Travel Demand Forecasting and Committee on 
Traveler Behavior and Values. 




