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Vehicle-Miles for a Freight Carrier with 

Two Capacity Constraints 

RANDOLPH W. HALL and CARLOS F. DAGANZO 

ABSTRACT 

The amount of freight that can be fit on a vehicle depends on the vehicle's 
weight capacity and volume capacity. In this paper mathematical equations are 
developed for evaluating the impact of weight capacity and volume capacity on 
total vehicle-miles. It is shown that the number of vehicle loads needed to 
carry a large amount of material is minimized when all vehicles are filled to 
the same capacity constraint. This is accomplished by mixing light items with 
heavy items in vehicle loads. Following this policy can reduce the number of 
vehicle loads and vehicle-miles. Under ideal circumstances, the reduction can 
be as large as 50 percent. Simple equations are provided for estimating the 
potential reduction in vehicle loads and vehicle-miles to be realized. 

The cost of transporting a large quantity of items 
from one location to another depends on the number 
of vehicle loads required to carry the material and 
the distance traveled per vehicle load. Decreasing 
either the number of loads or the distance traveled 
per load reduces total vehicle-miles (the total 
distance traveled by all vehicles) and the cost of 
transporting the material. 

The number of vehicle loads depends on the quan
tity of items that can be fit on a vehicle. Typi
cally, this quantity is determined by dividing the 
"capacity" of the vehicle by the "size" of each 
item. However, vehicle capacity and item size can be 
measured in more than one way. Most vehicles have 
both a weight capacity and a volume capacity. The 
vehicle is full when either capacity is reached. 
Depending on the type of items carried, some vehi
cles might be filled to the weight capacity, and 
others might be filled to the volume capacity 
(Figure 1) • 

In this paper equations are developed that readily 
show how the number of vehicle loads depends on the 
weight capacity and the volume capacity. These equa
tions are used to prove that the number of vehicle 
loads is minimized when all vehicles are filled to 
the same capacity constraint (that is, all loads are 
filled to the weight capacity, or all loads are 
filled to the volume capacity). To minimize the 
number of loads, items that have a low density 
(pounds per cubic foot) must be mixed with i terns 
that have a high density in vehicle loads (Figure 
2). There are several ways to mix low-density with 
high-density items in a vehicle load. If a supplier 
produces both low-density and high-density items, 
the different items can be loaded in the same vehicle 
on the loading dock. Alternatively, if different 
suppliers located in the same area produce low-den
sity and high-density items, the different items can 
be mixed by routing vehicles by both types of sup
pliers. Low-density items can also be mixed with 
high-density items at a transportation terminal. 

It is also demonstrated that standard vehicle 
routing methods do not minimize total vehicle-miles 
when some locations produce (or receive) items that 
have a low density and other locations produce (or 
receive) items that have a high density. Equations 
are provided to show when it is important to design 
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FIGURE 1 Light and heavy items shipped in 
separate vehicles. 

modified vehicle routes that result in all vehicles 
being filled to the same capacity constraint. 

Vehicle routing has been studied extensively 
during the last 25 years (1-3). For example, the 
vehicle routing problem <!> concerns routing a fleet 
of vehicles from a single terminal to a number of 
destinations so that travel distance is minimized 
and vehicle capacity constraints are not violated. 

Although the vehicle routing problem is neper 
complete (5-7) and difficult to optimize, many 
heuristics id~ntify close to optimal solutions. For 
example, simple heuristics for solving the closely 
related traveling salesman problem, such as the 
Clarke-Wright method (!!) locate solutions within 
about 7 percent of the optimal cost (2) • 
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FIGURE 2 Light and heavy items mixed in 
vehicles. 

Despite the many applications of this problem, 
and the research invested in developing efficient 
routing algorithms, many industries continue to route 
vehicles manually. There are many reasons for this 
including lack of data and inability of available 
algorithms to account for all the important factors 
that influence the cost of operating vehicles. 

The existence of two vehicle capacities (weight 
and volume) _is one factor that routing heuristics do 
not normally consider (although computationally 
impractical, a second capacity can be used in some 
of the optimization algorithms). Most vehicle routing 
heuristics group stops into routes according to 
geographic proximity (Figure 3). Although this ap-
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FIG URE 3 Possible vehicle routes when accounting for one 
capacity constraint. 

preach may m1n1m1ze the vehicle-miles traveled per 
load, it does not minimize the total number of loads 
and total vehicle-miles. Vehicles may have to travel 
"out of their way" to ensure that each load carries 
a mixture of low-density and high-density items 
(Figure 4). 

Although this paper is written in the context of 
vehicles picking up items from many different 
origins, the results also apply to delivering items 
to many destinations. The equations developed in the 
first section can also be used to analyze transport-
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FIG URE 4 Possible vehicle routes when accounting for two 
capacity constraints. 

35 

ing d ifferent types of i tems from a supplier or 
transportation terminal. 

NUMBER OF VEHICLE LOADS 

Consider a region in which vehicles pick up different 
items from many different locations. Items differ in 
weight, volume, and production rate, where 

Wi weight of item i (pounds), 
Vi volume of item i (cubic feet), 
Fi total production rate of item i in the 

region (items per week), and 
di material density of item i (Wi/Vi, 

pounds per cubic foot). 

The quantity of material that can be loaded onto a 
vehicle depends on the vehicle's weight capacity and 
volume capacity, where 

Cw vehicle's weight capacity (pounds) and 
Cv vehicle's volume capacity (cubic feet). 

The weight and volume capacity are dictated by 
vehicle design, risk of damage to cargo or to other 
vehicles, and ability of the guideway (road or 
tracks) to sustain the load. A weight capacity of 
80,000 lb and volume capacity of 4,200 ft ' are 
common for large trucks operating on U.S. highways. 

Suppose initially that each vehicle carries only 
one type of i tern. Then T, the minimum number of 
vehicle loads per week required to transport a large 
amount of material, is 

(1) 

Equation 1 is simplified by introducing the symbol d* 
to represent the material density that simultaneously 
fills the vehicle to both the weight capacity and 
the volume capacity. That is, 

(2) 

Also substituting Wi/di for vi, Equation 1 can 
be rewritten as 

(3) 
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If the density of an item is less than d*, the load 
reaches the volume capacity before the weight capac
ity. Otherwise, the load reaches the weight capacity 
first. The ratio d*/di is an adjustment factor to 
account for the actual weight of material that can 
be fit onto the vehicle, taking into account both 
the weight and volume capacities. 

Equation 3 can be expressed as a function of a 
few parameters that represent average item weights 
and densities. First, let F be the total number of 
items produced per week (the summation of Fil. Let 
a "light" item be an item with a density less than 
d* and a "heavy" item be an item with a density 
greater than d*. Also let L be the set of light 
items, H be the set of heavy items, and 

p proportion of items that are light 
I Fi/F 

iEL 

w1 average weight of the light items 
FiWi/I Fi 

i £L iEL 

d1 average density of the light items 
I (FiWil/I (FiVi) 

i£L iEL 

average weight of the heavy items 
FiWi/I Fi 

iEH i EH 

Equation 3 can now be written as 

Letting W be the average weight of all items [W = 
W1P + Wh(l-p)), Equation 4 becomes 

Equation 5 can be reduced further by introducing two 
new composite variabl es, Let 

P proportion of weight produced per week that is 
composed of light items = W1P/W and 

r = ratio of the average material density of the 
light items to d* = d1/d*. 

The minimum number of vehicle loads required per 
week can now be expressed as a function of just five 
parameters: 

T = (FW/Cwl [l + P(l-r)/r] (6) 

P and r must both be less than one and greater than 
zero. They must also satisfy the following in
equality: 

for d < d1/P. When d > d*, d* < d < d1/P. In terms of 
r and P, 

P < r if d > d* (7) 

If d < d*, P and r are only constrained to be be
tween zero and one. 

Returning to Equation 6, the first term gives the 
number of vehicle loads when accounting for the 
weight capacity alone. The second term is an adjust
ment factor that specifies the additional number of 
loads when accounting for both weight capacity and 
volume capacity. Notice that the adjustment factor 
must always be greater than one, and that it in
creases as the proportion of weight composed of light 
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i terns (P) increases, and increases as the average 
density of light items (rd*) decreases. 

LOADS CONTAINING DIFFERENT ITEMS 

Suppose now that vehicles carry different types of 
items with different weights and densities. Then the 
number of vehicle loads (T) is minimized when all 
loads are filled to the same capacity constraint. 
That is, all loads are filled to the weight capacity, 
or all loads are filled to the volume capacity. 

This statement can be proved by contradiction. 
Suppose that one load contains light i terns and is 
filled to the volume capacity and another load con
tains heavy items and is filled to the weight capac
ity. Then any arbitrary proportion of material can 
be exchanged between the two loads without violating 
a capacity constraint. 

Let w1, wz, v1, and vz be the respective weights 
and volumes of the light and heavy loads, where w1 < 
C~, v 1 = Cv, w2 = cw, and v 2 < cv. Let the circumflex 
( ) denote the weight or volume of a load after a 
proportion (q) of material is exchanged between 
loads. Then 

w1 w1(l - q) + wzq v1 v1(l - q) + vzq 

wz = wz(l - q) + w1q vz v2 (1 - q) + v1q (8) 

which can also be written as 

w1 wz - (wz - w1) (1 - q) < Cw 

v1 v1 - (v1 - vz)q < Cv 

wz wz - (wz - w1)q < Cw 

vz = v1 - (v1 - v 2J (1 - q) < Cv (9) 

Notice that exchanging any proportion (q) of mate
rial between the two loads reduces the weight and 
volume of both loads below the respective capacities. 
Therefore, a necessary condition for minimizing T is 
that all loads be filled to the same capacity con
straint. 

To minimize T it is not necessary that all loads 
carry exactly the same mix of different i terns or 
carry exactly the same weight and volume of mate
rial. For example, if all loads are filled to the 
volume capacity, it does not matter how much weight 
of material is loaded onto each vehicle. Thus the 
statement that all loads are filled to the same ca
pacity constraint is both a necessary and a suf
ficient condition for minimizing T. 

SAVINGS FROM COMBINING DIFFERENT ITEMS IN VEHICLE 
LOADS 

Whenever light items (di < d*) are shipped in 
separate vehicles than heavy items (d1 > d*), as 
is the case when vehicles contain only one type of 
item, the number of loads is given by Equation 6. 
Combining light with heavy items in vehicle loads 
always results in decreased loads. Let T* denote the 
number of loads when all vehicles are filled to the 
same capacity constraint (that is, when T is mini
mized). Then 

T* F{rnax [ (V/Cvl, (W/Cwl I} 
(FW/~) {max [ (d*/d), 1)} (10) 

where V is average volume of all i terns and d is 
average density of all items (W/V). 
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The first term of Equation 10 gives the number of 
loads when accounting for weight capacity alone, and 
the second term is an adjustment factor that spec
ifies the additional number of loads when account
ing for both capacities. If d*/d is greater than 
one, all vehicles are filled to the volume capacity 
and the adjustment factor equals d*/d. Otherwise, 
all vehicles are filled to the weight capacity and 
the adjustment factor equals one. Therefore the ad
justment factor is greater than or equal to one. 

T/T* is the ratio of the number of loads when 
light items are not mixed with heavy items to the 
number of loads when light and heavy items are mixed, 
and equals the ratio of Equation 10 to Equation 6: 

T/T* 
{

l + P(l-r)/r 

(d/d*) [l + P(l-r)/r] (llb) 

for d > d* (lla) 

otherwise 

Equation 11 can be used to estimate quickly the 
maximum reduction in vehicle loads from filling all 
vehicles to the same capacity constraint. 

Recall that P must be less than r when d/d* is 
greater than one. Equation lla is maximized when P 
equals r. Therefore substituting P for r in Equation 
lla, 

T/T* < 2 - P for d > d* (12) 

As a function of P, T/T* approaches two as P ap
proaches zero, and approaches one as P approaches 
one. Figure 5 plots Equation 12 as a function of p 

and plots Equation lla as a function of P and r. No
tice that T/T* increases both when P increases and 
when r decreases. Therefore, when d > d*, it is 
most important to combine light and heavy items in 
vehicle loads when a large proportion of the weight 
produced per week is composed of light i terns, and 
the average density of light items is much less than 
d*. 
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FIGURE 5 Ratio of loads per week without mixed 
loads to loads per week with mixed loads. 

Similar results occur when d < d*. T/T* also 
ranges between one and two, depending on P, r, and 
d. Tables 1 and 2 give sample data for Equation lla. 
Five suppliers located in the same city produce 11 
different parts. Parts are transported in 3,800-ft', 
70,000-lb capacity trucks. Hence, d* equals 70,000/ 
3, 800 = 18. 42 lb/ft'. The parts produced by Sup-

TABLE 1 Example Part Data 

Weight Volume Production Rate 
(lb) (ft3) (parts/week) 

Supplier 1 
Part A 1.0 1.0 1,000 
Part B 0.5 0.4 2,000 
Part C 0.8 0.2 1,000 

Supplier 2 
Part D 10.0 0.2 5,000 

Supplier 3 
Part E 0.1 0.01 50,000 
Part F 0.2 0.005 50,000 
Part G 5.0 0.1 50,000 
Part H 0.4 0.01 50,000 

Supplier 4 
Part I 5.0 10.0 1,500 
Part J 5.0 10.0 500 

Supplier 5 
Part K 2.0 0.1 10,000 

TABLE 2 Summary Data 

Production Rate Average 
Density Trucks 

Supplier lb/week ft 3 /week (lb/ft 3
) per Day 

1 2,800 2,000 2.8 0.53 
2 50,000 1,000 50,0 0.71 
3 285,000 6,250 45.6 4.07 
4 10,000 20,000 0.5 5.26 
5 20,000 1,000 20.0 0.29 

Total 367,800 30,250 12.2 < d* 

No 1e : I' ~ (2,800 + I 0,000)/367,800 ~.0348;d 1 = (2, 80 0 i 10, 000)/ 
(2, 000 .j. 2 0,000) = 0,5 82:r = d 1/d • = 0.0316; and T fT ' ~ l . J 6 . Vohlc le 
load tO n\parison: one rouu~ per supplic rt 10.86 tru cks per wcci k ; OM 
route for all suppliers, 7.96 trucks per week; saving, 2.90 trucks per week 
(27 percent). 
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pliers 1 and 3 have small densities and fill the 
vehicle to volume capacity. The parts produced by 
the other three suppliers have large densities and 
fill the vehicle to weight capacity. 

If each supplier shipped independently of the 
others, 10.86 truckloads, on average, would be needed 
per week. However, if the different parts were com
bined in the same vehicles, so that all vehicles were 
filled to the volume capacity, the number of truck
loads would drop to only 7. 96 per week (a reduction 
of 27 percent). Equation lla predicts that the ratio 
of T to T* should equal 1.36 for this example, which 
exactly matches the ratio of 10.86 to 7.96 • 

MODIFYING ROUTES TO REDUCE NUMBER OF LOADS 

Most vehicle routing heuristics group stops into 
routes according to geographic proximity and do not 
necessarily minimize total vehicle-miles (!!_,l.Q_,11). 
It is not unusual for geographic regions to contain 
many different companies engaged in the same industry. 
For instance, one region may contain a large concen
tration of plastic companies, and another may contain 
a large concentration of fastener (nuts and bolts) 
manufacturers. If vehicles are routed on the basis of 
geographic proximity alone, all the vehicles in the 
plastics region would be filled to volume capacity, 
and all the vehicles in the fastener region would be 
filled to weight capacity, resulting in as many as 
twice as many loads as necessary. 

Figure 6 shows a situation in which manufacturers 
in one city produce light items and manufacturers in 
another city produce heavy items. A fleet of vehicles 
picks up items at these two cities and delivers them 
to a common destination. If routed on proximity alone, 
each vehicle would visit only one of the two cities. 
However, to minimize the total number of loads (and 
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ensure that all vehicles are filled to the same ca
pacity constraint) vehicles must be routed through 
both cities. 

The total distance traveled on a vehicle route 
includes the local distance traveled to pick up items 
within the two cities and the line-haul distance be
tween the cities and the destination. The local d i s
tance depends on the total number of stops and the 
stop density [e.g., stops per square mile (12,13)]. 
Assuming that the two cities do not overlap, the local 
distance is nearly independent of whether all vehicles 
visit both cities or just one. Therefore only the 
line-haul distance is considered in the following 
analysis. 

The following equations apply to the situation in 
which d > d*. Following the same approach, it is 
not difficult to derive similar equations for the 
case where d < d*. Let 

D1 distance from city producing light items to 
the destination (miles), 

D2 distance from city producing heavy items to 
the destination (miles), and 

D3 distance between the two cities (miles). 

Assume initially that all vehicles return empty from 
the destination. Then, if all vehicles visit only one 
city, the number of vehicle-miles traveled per week 
(L1) is 

(13) 

Alternatively, if all vehicles visit both cities, 
the number of vehicle-miles is 

if d > d* (14) 

It is not necessary for all vehicles to visit both 
cities to minimize T. However, if d > d*, all 
vehicles visiting the "light" city must also visit 
the "heavy" city, and, if d < d*, all vehicles 
visiting the "heavy" city must also visit the "light" 
city. Equation 14 is an upper bound on total vehicle
miles with this type of coordination. Exact calcula
tion of total vehicle-miles is not complicated, but 
it does require detailed information on the densities 
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of all items. Therefore this calculation will not be 
performed. 

The ratio of L1 to L2 is 

L1/Lz = {2[D1(P/r) + D2(1-P)]} 
f (Dl + D2 + D3) if d > d* (15) 

If L1/L2 is greater than one, it is better to route 
all vehicles through both cities than through just 
one. This ratio ranges from zero (e.g., when D2 = 0 
and P = 0) to two (when D3 = O, P = r, and r = 0). 
Therefore routing all vehicles through both cities 
can reduce total vehicle-miles by as much as 50 per
cent. 

SPECIAL CASE: D2 = D1 + D3 

To facilitate interpreting Equation 15, two special 
cases will be examined. This section examines the 
case in which D2 = D1 + D3 (that is, the destination 
and the two cities fall on a line and the "heavy" 
city is farther from the destination than the "light" 
city). For this special case, the number of vehicle 
loads is minimized when all vehicles visit the 
"heavy" city, and Equation 15 is exact. In the fol
lowing section the case in which D1 = D2 (that is, 
the two cities are the same distance from the desti
nation) will be examined. All of the following equa
tions assume that d > d*. 

When D2 =Di + D3, Equation 15 can be reduced by 
substituting D2 - D1 for D3: 

L1/L2 = [2D1(P/r) + 2D2(l-P)] 
f2D2 ifD2=D1+D3 (16) 

Because the 2s cancel out in Equation 16, L1/L2 is 
the same whether or not vehicles must return empty 
from the destination. 

Let K equal the ratio of Di to D2 (K = D1/D2). K 
muot be between zero and one. Then 

(17) 

Because P must be smaller than r, and K must be less 
than one, L1/L2 must be less than or equal to two. 
Figure 7 shows plots of L1/L2 as a function of P and 
r, for a value of r = 0.5. Notice that this ratio in
creases as K increases. When K is greater than r, 
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FIGURE 7 Ratio of vehicle-miles when visiting both 
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L1/L2 also increases as P increases, but when K 
is less than r, L1/ Lz decreases as P increases. 
Therefore it is most important to route vehicles 
through both cities when K is large and a large por
tion of weight produced per week is composed of light 
items (provided - that K > r). The ratio also in
creases as r decreases. Therefore it is more impor
tant to route vehicles through both cities when the 
average density of light items is small than when it 
is large. 

The breakeven point between routing vehicles 
through both cities and routing through just one 
occurs when L1/Lz = l. 

l = K(P/r) + (1-P) 

or, more simply, when 

K = r (18) 

When r is less than K, it is better to route all 
vehicles through both cities than through just one. 
For example, if the average density of items produced 
in the "light" city is one-half d* (r = 0.5), vehi
cles should be routed through both cities when K is 
greater than 0.5; that is, the "heavy" city is less 
than twice as far from the destination as the "light" 
city. Because K approaches zero when r approaches 
zero, it can still be worthwhile to route all vehi
cles through both cities when the two cities are far 
apart. 

SPECIAL CASE: D1 = Dz 

For the special case in which D1 Dz, the two 
cities are the same distance from the destination. 
For this special case, it may not be necessary to 
route all vehicles through both cities to minimize 
the number of vehicle loads. Therefore L2 gives an 
upper bound on total vehicle-miles when the number 
of loads is minimized. Let D D1 Dz. Then 
Equation 15 becomes 

(19) 

The breakeven point between routing all vehicles 
through both cities and routing all vehicles through 
just one city occurs when Equation 19 equals one. 
That is, when 

(2D + D3)/2D = l + P(l-r)/r (20) 

Notice that the left side of Equation 20 is the ratio 
of vehicle-miles per route when vehicles visit both 
cities, to vehicle-miles per route when vehicle visit 
just one city. The right side of Equation 20 is the 
ratio of the number of vehicle loads when vehicles 
visit both cities, to the number of vehicle loads 
when vehicles vis it just one city (T/T*). Let Db 
be the vehicle-miles per route when vehicles visit 
both cities and D0 be the vehicle-miles per route 
when vehicles visit just one city. Then Equation 20 
can be rewritten as 

%/D0 = 1 + P(l-r)/r (21) 

When %/D0 is less than the right side of Equa
tion 21, fewer total vehicle-miles are required when 
vehicles visit both cities than when they visit just 
one. Otherwise, total vehicle-miles are minimized 
when vehicles visit just one city. 

Notice that the right side of Equation 21 is 
identical to the right side of Equation lla, which 
is plotted in Figure 3. Therefore the breakeven point 
between routing vehicles through both cities and 
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routing vehicles through just one increases as P 
increases and r decreases. 

Equation 21 also applies when vehicles do not 
return empty from the destination. Db would then 
be D + D3 (the length of two legs of the route) 
and D

0 
would then be D. For any given D and D3 , 

this ratio is larger when vehicles do not return 
empty than when vehicles do return empty. Therefore 
it is less advantageous to route vehicles through 
both cities when they do not have to return empty 
from the destination than when they do have to re
turn empty from the destination. 

Equation 19, which gives the ratio L1 to L2, 
can also be expressed as a function of Db/ D0 : 

(Z2) 

Equation 2Z is identical to the right side of Equa
tion lla (plotted in Figure 3), except that Equation 
22 is multiplied by the factor D0 /%· If the two 
cities are in opposite directions from the destina
tion, D0 /% can be as small as 0.5, and L1/Lz would 
range between 0.5 and one (i.e., it would always be 
better to route vehicles through one city than two). 
D0/~ can be as large as one if the two cities 
are located at the same place, in which case L1/L2 
would range from one to two (i.e., it would always 
be better to route vehicles through both cities than 
through just one). 

SUMMARY 

The impact of weight capacity and volume capacity on 
total vehicle-miles has been discussed. It has been 
shown that the number of vehicle loads is minimized 
when all vehicles are filled to the same capacity 
constraint (that is, all vehicles are filled to the 
weight capacity or all vehicles are filled to the 
volume capacity). This may be accomplished by mixing 
heavy items and light items in vehicle loads. 

Combining light items with heavy items in vehicle 
loads was shown to reduce the number of loads and 
vehicle-miles by as much as 50 percent. The exact 
reduction depends on two parameters. When the number 
of loads is minimized by filling all vehicles to the 
weight capacity, these parameters are (a) the ratio 
of d1 , the density of light items, to d*, the 
density of material that simultaneously fills vehi
cles to both the weight and volume capacities and 
(b) the proportion of weight produced per week that 
is composed of light items (P). A similar equation 
results when the number of loads is minimized by 
filling all vehicles to the volume capacity. 

It has also been shown that commonly used heuris
tics for routing vehicles can obtain solutions that 
are far from optimal when light i terns and heavy 
items are produced in geographically separated 
regions. Most heuristics group stops into routes 
according to geographic proximity. Although this may 
minimize vehicle-miles traveled per route, it does 
not minimize total vehicle-miles. If vehicle routes 
are designed to ensure that all vehicles are filled 
to the same capacity constraint, the number of vehi
cle loads (and vehicle-miles) can be reduced by as 
much as 50 percent. 

Considerable effort has been expended in the last 
25 years to improve the efficiency and effectiveness 
of algorithms designed to solve the vehicle routing 
problem. However, even straightforward heuristic 
(such as the Clarke-Wright method), can generally 
obtain solutions within 7 percent of the optimum of 
the vehicle routing problem. The evidence provided 
in this paper indicates that the savings from ac
counting for two capacity constraints can well ex
ceed 7 percent. 
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Urban Freight Practice-An Evaluation of 

Selected Examples 

PHILIP A. HABIB 

ABSTRACT 

A diverse group of urban good& movement projects and actions t11ken hy mnnici
pali ties are documented and the principal lesson or lessons derived from each 
project are highlighted. The research used the literature, field visits, inter
views, and independent research to formulate the presentation of the selected 
examples. The paper contains eight examples of municipalities that have imple
mented projects in curb space management, off-street facility planning, and 
zoning. Six examples are drawn from u.s. cities and two from Canada. An evalu
ation follows each example to highlight the positive and negative results of 
each as they might affect application elsewhere. This paper is drawn from re
search sponsored by the UMTA University Research Program and was conducted by 
the author while at the Polytechnic Institute of New York. 

This paper provides a detailed review of a selected 
number of actions taken by various municipalities to 
address urban freight transportation. The documenta
tion for several of these actions included field 
trips and interviews. The literature, plus the 
author's personal knowledge or involvement, provided 
the documentation on the other actions. 

The urban transportation planner's or the engi-

neer's justifiable preoccupation with the need to 
optimize the transportation infrastructure to move 
people has, to date, left a wide gap in professional 
skills necessary to foster successful urban freight 
project development and evaluation. The ability to 
draw on the work and experiences of similar projects 
has not only markedly facilitated people-transporta
tion project development but has also provided 




