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It is clear from both of these figures that a sub
stantial increase in longitudinal cracking can be 
obtained by reducing the standard deviation (see the 
examples in Figures 4 and 5 shown by a dotted line 
for a depth ratio = 0. 75). This indicates that rea
sonable control of the quality of this construction 
material (concrete), pavement thickness, and saw-cut 
depth, all combined, can contribute to a reasonable 
saw-cut depth. 

CONCLUSIONS 

The results of this study can be summarized as fol
lows: 

1. The development of longitudinal cracks in a 
saw-cut groove can be explained by a model using the 
concepts of variability in concrete strength and 
thickness of pavement sections. 

2. The model developed for this study is sensi
tive to the construction quality of pavement. An im
provement in construction quality can result in 
reduction of saw-cut depths. The reliability of lon
gitudinal cracks (being confined to saw-cut groove) 
is also improved. This can save construction costs 
as well as future maintenance and repair costs. 

3. Figures 3-5 show that it is possible to in
duce any desired amount of longitudinal cracking 
along the saw-cut groove if an appropriate saw-cut 
depth is provided. 

4. The aggregates used in concrete affect the 
development of longitudinal cracks along a saw-cut 
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groove. This finding is based on a study of two ag
gregates (river gravel and limestone). 

ACKNOWLEDGMENTS 

The authors are pleased to acknowledge the combined 
efforts and support of the Center for Transportation 
Research at the University of Texas at Austin and 
the Texas State Department of Highways and Public 
Transportation, in cooperation with the FHWA, U.S. 
Department of Transportation. 

REFERENCE 

1. J.R. Benjamin and C.A. Cornell. Probability Sta
tistics and Decision for Civil Engineers. 
McGraw-Hill Book Company, New York, 1970. 

The contents of this paper reflect the views of the 
authors, who are responsible for the facts and the 
accuracy of the data presented herein. The contents 
do not necessarily reflect the official views or 
policies of the Federal Highway Administration. This 
paper does not constitute a standard, specifica
tion, or regulation. 

Publication of this paper sponsored by Committee on 
Rigid Pavements. 

Westergaard Solutions Reconsidered 

A. M. IOANNIDES, M. R. THOMPSON, and E. J. BARENBERG 

ABSTRACT 

The pioneering analytical work of Harold Malcom Westergaard (1888-1950) has 
been at the heart of slab-on-grade pavement design since the 1920s. Every code 
of practice published since then makes reference to the "Westergaard solu
tions." These solutions are only available for three particular loading condi
tions (interior, edge, and corner) and assume a slab of infinite or semi-infi
nite dimensions. Since their first appearance, beginning in the early 1920s, 
Westergaard equations have often been misquoted or misapplied in subsequent 
publications. To remedy this situation, a reexamination of these solutions 
using the finite element method is described in this paper. A number of inter
esting results are presented: (a) Several equations ascribed to Westergaard in 
the literature are erroneous, usually as a result of a series of typographical 
errors or misapplications, or both. The correct form of these equations and 
their limitations have now been conclusively established. (b) Westergaard' s 
original equation for edge stress is incorrect. The long-ignored equation given 
in his 1948 paper should be used instead. (c) Improved expressions for maximum 
corner loading responses have been developed. (d) Slab size requirements for 
the development of Westergaard responses have also been established. 
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The pioneering analytical work of Harald Malcom 
Westergaard (1888-1950) has been at the heart of 
slab-on-grade pavement design since the 1920s. Every 
code of practice published since then makes refer
ence to the "Westergaard solutions." These solutions 
are only available for three particular loading con
ditions (interior, edge, and corner) and assume a 
slab of infinite or semi-infinite dimensions. In 
practice, the slab size required for the development 
of Westergaard responses is determined empirically, 
Several investigators, however, have noted repeat
edly that although the Westergaard solution agreed 
fairly well with their observations for the interior 
loading condition, it failed to give even a close 
estimate of the response in the cases of edge and 
corner loading. The time-honored Westergaard solu
tions deserve a thorough reexamination using the 
tool of finite element analysis now available. 

The highlights of an effort to reevaluate the 
Westergaard solutions (1) are presented. The form, 
theoretical background, limitations, and applicabil
ity of these equations have been examined, and what 
are considered to be the most accurate formulas are 
presented herein. Several empirical adjustments to 
the Westergaard solutions are also considered, and 
slab size requirements for the development of 
Westergaard responses are established. 

The basic tool for this study is the ILLI-SLAB 
finite element computer program developed and exlen
sively used at the University of Illinois (~). The 
ILLI-SLAB model is based on classical medium-thick 
plate theory, and employs the 4-noded, 12-degree-of
freedom plate-bending element, known in finite ele
ment literature as ACM or RPB12 (3). The Winkler
type subgrade assumed by Westergaarcf is modeled as a 
uniform, distributed subgrade through an equivalent 
mass formulation (_!) • 

INTERIOR LOADING 

As defined by Westergaard, this is the case of a 
wheel load at a "considerable distance from the 
edges," with pressure "assumed to be uniformly dis
tributed over the area of a small circle with radius 
a" (2_). After an extensive literature survey and 
comparisons with finite element results (6), the 
following interior loading equations are considered 
to be in their most general form. 

Maximum bending stress, cri 

Ordinary theory BSIOT= j[3P(l +µ)]/27rh 2
} [Qn (2£/a) 

+ 0.5 - 'Y] + BSI20T (la) 

Special theory BSIST = j[3P(l + µ)] /27Th2 f [Qn (2£/b) 

+ 0.5 - 'Y] + BSI2ST (lb) 

For square BSISQ = j [3P(l + µ)] /27rh 2 f [Qn (2£/c') 

+ 0.5 - 'Yl + BSilSQ (le) 

Supplomcnlary, <1 2 BSI20T = j [3P(l + µ)] /64h2
} [(a/£)2

] (Id) 
(ordinnry theory) 

Supplementary, <12 BSI2ST = j [3P(l + µ)] /64h2
} [(b/£)2

] (le) 
(special theory) 

Supplementary, a2 BSI2SQ = j [3P(l + µ)] /64h2
} [(c' /£)2] (If) 

(for square) 

Maximum deflection, .Si 

Circle DEFIC = (P/8kQ2 ) j 1 + (l/27T) [Qn (a/2£) 

+ 'Y- 5/4] (a/£)2 f (lg) 
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where 

P total applied load; 
E slab Young's modulus; 
µ slab Poisson's ratio; 
h slab thickness; 
k modulus of subqrade reaction; 
a = radius of circular load; 
c = side length of square load; 

£' {Eh'/[12(1 - µ 2 )k]} which is radius of rela
tive stiffness; 

b [ (l.6a 2 + h 2
)

112 J - 0.675h 
if a < 1. 724h 

~ a if a > l.724h; 
c' (err/4-1;21/2)c; and 

y Euler's constant (= 0.577 215 664 90). 

These equations have been incorporated into WESTER, 
a computerized compendium of closed-form solutions 
for slabs on grade, developed in the course of this 
research (!) • 

Equation la follows from Equation 50 given in 
1939, with the term [£n (U/a) - y] replacing the 
term [1n (2£/ya)] used by Westergaard (]). Note that 
the symbol y as used in Equation la is the Euler 
constant, whereas Westergaard uses this symbol to 
denote the antilog of the Euler constant. 

Equation la also includes supplementary stress, 
a2 , first derived by Westergaard in 1939. This is 
calculated according to Equation ld, which is the 
same as Equation 6 in "Stresses in Concrete Runways 
of Airports" (].). This additional term was intro
duced to account for the effect of the finite size 
of the loaded area and is "satisfactorily applicable 
when a does not exceed 1" (7). Its contribution is 
usually small, but it is i~cluded because of its 
rigorous analytical nature. The effect of the size 
of the loaded area will be discussed further here
after. 

Equation lb employs Westergaard's "special 
theory," first proposed in 1926, in which radius b 
replaces Lhe true radius, a, of the loaded area. 
This was introduced to account for the effect of 
shear stresses in the vicinity of the load, which is 
neglected in the "ordinary theory" of medium-thick 
plates. As Westergaard stated, "the effect of the 
thickness of the slab is equivalent to a rounding 
off of the peak in the diagrams of moments" (~), To 
determine the relation among h, a, and b, Wester
gaard (5) performed "numerical computations ••• in 
accordance with an analysis which is due to A. 
Nadai." Results were fitted with a hyperbola, the 
equation of which may be written in the form pre
sented earlier, "which is suitable for numerical 
calculations" (5). The validity of Westergaard's 
semiempirical adjustment and of the resulting "spe
cial theory" has been debated by various investiga
tors [see, for example, Scott (~)], but a full dis
cussion of this issue would be beyond the scope of 
this paper. The authors recommend, however, using 
"ordinary theory" when comparisons with finite ele
ment results are made. 

To obtain the interior stress in the case of a 
square loaded area, radius a is replaced in Equation 
1-c by a constant, c', related to the length of the 
side of the square, c, as follows: 

c' = (e"/4 - 1 /2%) c = 0.573804 ... c 

The resulting expression is not stated explicitly by 
Westergaard, but follows directly from his theory 
(9,10). Timoshenko and Woinowsky-Krieger (11) ,pro
vid-;- a theoretical justification for this substitu
tion by showing that, loaded by the same total load 
P, a square side c and a circle radius a give the 
same maximum interior stress. 
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In 1948 Westergaard presented an equation for the 
stress under an elliptical loaded area [Equation 3 
in "New Formulas for Stresses in Concrete Pavements 
of Airfields" (10) I. Setting both axes of the el
lipse to a, th~ equation can be compromised with 
Equation la provided that the following assumption 
is made. 

Qn 2 + 1/2-'Y ~ l/4Qn 12(1-µ 2
) 

For µ = 0.15, this assumption gives 

0.6159316 ""0.6155374 

This indicates that the term 0.6159 in Equation 9 in 
"Stresses in Concrete Pavements Computed by Theoret
ical Analysis" (5) is a truncated form of the term 
involving Euler 1 s constant, not slab Poisson's 
ratio, µ. Equation la is, therefore, more general 
than the 1948 equation. 

Equation lg follows from Equation 51 in "Stresses 
in Concrete Runways of Airports" (7) , described pre
viously, with the introduction of-Euler's constant. 
This form is more general than the one obtained from 
Equation 5 in "New Formulas for Stresses in Concrete 
Pavements of Airfields" (10), which makes the ap
proximation noted in the previous paragraph. 

Westergaard also presented an equation for sup
plementary stress, a3, to account for "the ef
fects of a plausible redistribution" of subgrade 
reactions (12, 7). This was a semiempir ical adjust
ment to reduce calculated stresses so that they 
agreed better with the 1932 Arlington tests (13). 
Bergstrom et al. (14) note that "it appears advis
able to neglect a3in design," because it is diffi
cult to evaluate and causes considerable reduction 
in stress. Further discussions of this term are pre
sented by Bradbury (15) and Kelley (16) • 

Slab Si~e Requirements for the Development of 
Interior Loading Westergaard Responses 

As mentioned earlier, the closed-form Westergaard 
solutions assume a slab of infinite dimensions, al-
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though in practice empirical guidelines have been 
developed for the least slab dimension, L, required 
to achieve the Westergaard "infinite slab" condi
tion. In this section, analyses will be presented to 
establish similar guidelines using the finite ele
ment method. A slab with a radius of relative stiff
ness, 9-, of 23.16 in. was used with a mesh fine
ness ratio (2a/h) of 1.8. An earlier study (&_) 
indicated that this ratio of element size, 2a, di
vided by slab thickness, h, must be about 0.8 for 98 
percent accuracy. 

ILLI-SLAB results from this investigation are 
shown in Figure 1. Both maximum deflection and bend
ing stress converge to large slab values. The con
vergence of deflection is from above, indicating 
that a smaller slab settles more than a bigger one 
in a "punch-like" fashion. Bending stress converges 
from below, as expected. The rate of convergence, 
defined as the slab size at which the solution is 
essentially that for an infinite slab, is different 
for deflection (L/9- = 8. 0) than for bending stress 
(L/9- = 3.5). Surprisingly, deflection appears to 
be much more sensitive to slab size changes for 
(L/9-) values of less than 3, because of the previ
ously mentioned punch-like effect. The limit value 
approached by maximum deflection is the Westergaard 
solution (Equation lg). The value to which bending 
stress converges when slab size is expanded is 
slightly lower than Westergaard' s (Equation la) due 
to the coarseness of the mesh used. 

Effect of Size of Loaded Area 

In his attempt to develop equations for a loaded 
area of finite size, Westergaard used an approach in 
which a solution for a point load is first derived. 
Then, the loaded area is split into a number of 
small subareas, and each subarea is replaced by a 
statically equivalent point load acting at its cen
ter. A summation is performed over these subareas. 
In the limit of refinement, this summation tends to 
an exact integration (17). Westergaard suggested 
that his equations were valid for any size of loaded 

k = 12 h . 

+ = 0.216 
...... _ 
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FIGURE 1 Effect of slab size on maximum interior loading responses. 
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area and that his "New Formulas" (10) assume that 
"the average width and length of the footprint of 
the tire is greater than the thickness of the slab 
in all significant cases." 

Losberg (18) showed that the stress and deflec
tion equatioM presented by Westergaard are only the 
first one or two terms of a rapidly converging infi
nite series. Westergaard's supplementary stress, a2, 
mentioned previously, for example, is an additional 
term of this series. The rate of convergence can be 
expected to vary depending on, among other things, 
the size of the loaded area. 

Timoshenko and Woinowsky-Krieger (11) state that 
the equations apply only when the radius of the 
loaded area is "small in comparison with t ." Scott 
(~) attributes this restriction to the fact that "in 
the derivation of the equation a term of approximate 
value 0.1 a 2/R. 2 was omitted." This cannot be the real 
cause of the restriction imposed by Timoshenko and 
Woinowsky-Kr ieger, because in most cases (even when 
the radius of the loaded area, a, is not "small in 
comparison with R.") this term is, indeed, negli
gible. 

In this study the effect of the size of the 
loaded area was investigated using the finite ele
ment method. To eliminate s lab s i ze , mesh fineness, 
and element aspect ratio effects, a large (L/R. = 
9.33) and fine (2a/h = 0.6) mesh, which consisted of 
square elements (aspect ratio = 1.0), was used. The 
results are plotted in Figure 2. 

It is observed that Westergaard stress values 
(Equation la) agree with finite element results for 
a loaded area whose side length, c (if square), is 
about 0.2 times the radius of relative stiffness, 
R.; if the load is circular, its radius, a, must be 
about O.lR.. As (c/R.) or (a/R.) increase, finite ele
ment stresses become progressively higher than 
Westergaard's. Therefore the consequences of Wester
gaard's truncation, mentioned previously, must be 
borne in mind when attempting such comparisons. The 
results in Figure 2 also suggest an effect related 
to the internal finite element discretization of the 
applied load. This is discussed in more detail else
where <.!l· 

EDGE LOADING 

Westergaard defined edge loading as the case in 
which "the wheel load is at the edge, but at a con-

115 

11 0 

~ 
0 
0 

"' ~ 105 Q) 

iii 
Q) 

3: 

~ 100 

95 

0. 1 0.2 

Transportation Research Record 1043 

siderable distance from any corner." The pressure is 
assumed to be "distributed uniformly over the area 
of a small semi-circle with the center at the edge" 
(~). Equations for a circular load at the edge were 
first presented in 1948 (10). The most general forms 
of the edge loading formulas follow. 

Maximum bending stress, ae 

Ordinary theory 
(semicircle) 

Special theory 
(semicircle) 

"New" formula 
(circle) 

"New" formula 
(semicircle) 

Simplified "new" 
formula (semicircle) 

Simplified "new" 
formula (circle) 

BSEWOT = 0.529 (1+ 0.54µ) (P/h2 ) [log 1 0 (Eh3 

+ka~)- 0.71) (2a) 

BSEWST = 0.529 (I + 0.54µ) (P/h2
) [log 10 (Eh 3 

+kb~)-0. 71 ] (2b) 

BSEIC= [3(1 +µ)P/rr(3 +µ)h 2 ) jQn(Eh3 /100ka4
) 

+ 1.84 - 4 µ/3 + [(J - µ)/2 ] 

+ 1.18 (I+ 2µ)(a/Q) f (2c) 

BSEIS = [3(1 + µ)P/71(3 + µ)h 2 ) [Qn (Eh3 /!00ka~) 

+ 3.84 - 4µ/3 + 0.5 (I + 2 µ) (a2/Q)) (2d) 

BSELS = (-6P/h2
) (I + 0.5 µ) [0.489 log1 o (a2/Q) 

- 0.091 - 0.027 (a2/Q)] (2e) 

BSELC = (-6P/h2 )(1 + 0,5µ) [0.489 log10 (a/.1') 

- 0.012 - 0.063 (a/Q)) (21) 

Maximum defl ection, 6e 

Original formula DEFEW = (1 /6'h) (I + 0.4µ) (P/kQ2) (2g) 

"New" formula DEFEIC = ( j P[(2 + l.2µ)v, ) f / [(Eh 3 k)y' J) [ l 
(circle) - (0.76 + 0.4µ) (a/Q)) (2h) 

"N ewu formula DEFEJS =(j P[(2 + J.2µf'lf / [(Eh 3k)y, J) [ l 
(semicircle) - (0.323 + 0.17µ) (o2 /Q)) (2i) 

Simplified "new" DE FELS= (1 /6'1' ) (I + 0.4µ) (P/kQ2) [ 1 
formula (semicircle) - 0.323 (1 + 0.5µ) (a2 /.1')) (2j) 

Simplified "new" DEFELC = (1/6"') (I+ 0.4µ) (P/kQ2 ) [l 
formula (circle) - 0.760 (1 + 0.5µ)(a/.1')) (2k) 

2ha = 0.6 

i = 9_33 

0.3 0.4 

c 
T 

FIGURE 2 Effect of size of loaded area on maximum interior loading responses. 
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where 

a2 radius of semicircle, 
b 2 [(l.6a2 + h 2 ) 112J - 0.675h 

if a 2 < 1. 724h 
a2 if a 2 > l.724h, and 

other symbols are as defined for Equations 1 . 

Equation 2a is identical to Equation 3 in "Ana
lytical Tools for Judging Results of Structural 
Tests of Concrete Pavements" (g). Equation 2b em
ploys the "special theory," which is also used for 
interior loading. In his 1948 paper, Westergaard 
(10) presented generalized solutions for maximum 
stress and deflection produced by elliptical and 
semielliptical loaded areas placed at a slab edge. 
Setting the lengths of both the major and minor 
semiaxes of the ellipse to a or a 2 leads to the 
corresponding solutions for a circle radius, a, or a 
semicircle radius, a2, given by Equations 2c and 
2d. 

Losberg (_~) presented simplified versions of 
these solutions by introducing "simplifications of 
the same type as Westergaard (19) himself introduced 
in his original formula for the case of edge load
ing" to eliminate the "complicated functional rela
tionship" in which µ appears in these equations. 
Losberg (~) stated that his simplified equations 
"are well applicable, for the small µ-values here 
concerned." These are Equations 2e and 2f. Compar
isons made during this study show that Losberg's 
simplified equations lead to results that are typi
cally about 1 percent greater than those obtained by 
the general Equations 2c and 2d. 

Equation 2g is Westergaard's original equation 
for edge deflection (~),and Equations 2h and 2i can 
be obtained from his 1948 paper (!Q), as indicated 
previously. The corresponding Losberg formulas (18) 
are given by Equations 2j and 2k. Setting the radius 
of the loaded area to zero, these formulas reduce to 
Equation 2g. 

Alternative Westergaard Solutions 

It was pointed out earlier, as well as by other in
vestigators (14,18), that in the case of interior 
deflection and stress, as well as edge deflection, 
when the "new" formulas are specialized for a circu
lar (or a semicircular) loaded area, they become 
identical to the corresponding original (5,12) equa
tions. Results from this study show, however, that 
edge stresses calculated from the "new" formula are 
considerably different than those computed using the 
original formula. A number of alternative Wester
gaard solutions are considered in this section, in 
order to determine which one, if any, agrees best 
with finite element results. 

TABLE 1 Alternative Westergaard Solutions 

Deflection, De (mils) 
k h 
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In Table 1, five different Westergaard solutions 
are compared. In all of these, total applied load, 
P, and applied pressure, p, are matched in the 
Westergaard and finite element analyses. A previous 
study (6) confirmed that this is an appropriate rep
resentation of the square loaded area used in the 
finite element solution. The solutions given in 
Table 1 are code named WES! through WESV and were 
obtained using WESTER, which incorporates Equations 
2. 

The range of results in Table 1 is extremely 
wide. Therefore careful use of Westergaard' s theory 
cannot be overemphasized. The most obvious effect is 
that the "new" formulas typically lead to stresses 
55 percent higher and deflections 8 percent lower 
than the values obtained using the original formulas 
(compare WESIV with WESIII). 

A comparison of WESIV and WESV indicates that the 
semicircular load is more severe than the circular 
load (i.e., leads to higher stresses and deflec
tions), as expected. If both the circular and the 
semicircular loads are reduced to an equivalent 
point load acting at the respective center of grav
ity, this expectation is shown to be justified be
cause the center of gravity of the circle is further 
toward the interior of the slab than is that of the 
semicircle. 

This argument also leads to the conclusion that 
the difference in response from a circular and a 
semicircular load should be fairly small and propor
tional to the difference in the distance between the 
respective centers of gravity and the slab edge. The 
difference between WESIV and WESV stresses is about 
1 percent, and deflection difference is about 5 per
cent. These differences are much more compatible 
with expected values than is the stress difference 
obtained using the original equation (compare WESI 
and WESIII). 

Table 2 gives a comparison of WESV, ILLI-SLAB, 
and H-51 results. The latter is a computerized ver
sion of the Pickett and Ray (20) chart for edge 
loading (21). Stresses exhibit almost perfect agree
ment even at low (L/~) values. Deflections are 
more sensitive to slab size effects, as shown in 
Figure 3. This graph shows that an (L/~) value of 
about 5.0 is required for the development of Wester
gaard stresses and about 8.0 is required for Wester
gaard deflections. The trends shown in Figure 3 are 
similar to those observed for the interior condi
tion. Note, however, that the requirement for the 
development of maximum edge stress (L/l = 5.0) is 
higher than for maximum interior stress (L/~ = 3.5). 
The excellent agreement between ILLI-SLAB and H-51 
results and the "new" formula confirms Losberg's ob
servation that "the original formula for edge load
ing according to Westergaard (5) is, at least from a 
theoretical viewpoint, completely erroneous." 

Bending Stress, De (psi) 

Run No, (psi/in,) (in,) WES! WESI! WESIII WESIV WESV WES! WESII WESIII WESIV WESV 

I 50 12 112.7 104,8 99 .7 758 661 638 992 980 
2 200 12 56,4 50,8 47.3 638 541 519 831 822 
3 500 12 35 ,7 31,3 28.4 559 462 440 726 720 
4 50 16 73 ,2 Same as WES! 69.0 66.4 468 413 401 615 607 
5 200 16 36,6 33.7 31.8 401 346 334 524 517 
6 500 16 23.2 20.8 19.4 357 302 289 464 459 
7 50 20 52.4 49.8 48.2 320 281 277 422 417 
8 200 20 26.2 24.4 23.3 277 238 234 363 359 
9 500 20 16.6 15.2 14.3 249 210 206 325 321 

Note: WESI = Westergaard's original equations for circular "ordinary" theory, WESII = Westergaard's original equations for semicircular ''special" theory, 
WESIII = Westergaard's original equations for semicircular "ordinary" theory, WESIV ="New" formulas for semicircular "ordinary" theory, and WESV ="New" 
formulas for circular "ordinary" theory. See Table 2 for other parameters used. 
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TABLE 2 Comparison with "New" Edge Loading Formulas 

Deflection, lie Bending Stress, Ge 

k h WESV ILLI-SLAB ILLl-SLAB WESV ILLI-SLAB H-51 IL LI-SLAB 
Run No. (psi/in.) (in.) (L/Q) (mils) (mils) WESV (psi) (psi) (psi) WESV 

I 50 12 4.84 99.7 109.7 1.10 980 974 951 0.99 
2 200 12 6.85 47.3 49.2 1.04 822 813 808 0.99 
3 500 12 8.61 28.4 29.3 1.03 720 705 711 0.98 
4 50 16 3.90 66.4 78.5 1.18 607 593 591 0.98 
5 iuu 16 5.52 31.8 34.1 1.07 517 515 504 1.00 
6 500 16 6.94 19.4 20.2 1.04 459 454 452 0.99 
7 50 20 3.30 48.2 63.3 1.31 417 395 396 0.95 
8 200 20 4.67 23.3 25.8 1.11 359 356 348 0.99 
9 500 20 5.87 14.3 15.1 1.06 321 319 317 0.99 

Note: For the lLLI-SLAB solution: slab= 25 x 25 ft, (L/Jl) = 3.30 to 8.61, E = S x 106 psi,µ= 0,15, P = so,ooo lb, p = 222.2 psi, and A= 15 x 15 in . 
(edge). For the Westergaard solution (WESV), "New" formulas, circular load, "ordinary" theory: p = 222.2 psi, E = 5 x 106 psi, andµ= 0.15, For 
the H-51 solution: SO points arc used to approximate tire print. 
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FIGURE 3 Effect of slab size on maximum edge loading responses_ 

The Pickett and Ray charts (20) for the edge 
loading condition on a dense liquid subgrade are 
based on a pair of integral equations identical to 
those presented by Westergaard (10). The results 
from these charts, therefore, agree with the "new" 
formulas, as indicated by H-51 results in Table 2. 
It is interesting to note that, although in several 
design codes reference is made to the original equa
tion, the fact that multiple wheel loads are often 
considered implies that design charts in these codes 
have been obtained using the Pickett and Ray charts 
(i.e., the "new" formulas). 

The question of the source of the discrepancy be
tween Westergaard's original and new formulas for 
edge loading remains unanswered. It is too early to 
dismiss the original formulas as altogether false 
and useless. Bergstrom et al. (14) reported that 
values calculated using these equations are "in rel
atively close agreement with test results." They 
furthermore suggested that there are "no reasons to 
use the new formula for edge loading." On the other 
hand, Scott (.!!,) suggests that "experimental indica
tions are that the edge stresses experienced in 
practice are higher than the Westergaard (original) 
equation indicates." Laboratory model tests by 
Carlton and Behrmann (22) produced edge stresses 10 
to 12 percent lower than the new formula predicts, 
reinforcing the expectation that in situ values 
probably lie between the two Westergaard equations. 

The theoretical background for the original edge 
stress equation is also open to debate. The deriva
tion of this equation is not presented in any of 
Westergaard' s papers. Attempts by Losberg (18) to 
arrive at this formula through integration of the 

expressions for the concentrated load (19) did not 
produce agreement with Westergaard's result. If the 
probability of a gross theoretical blunder by such a 
meticulous investigator as Westergaard can be cast 
aside, for the time being, a possible explanation 
for this discrepancy is some assumption regarding 
subgrade support at the slab edge, which is implicit 
in the original formula but is never explicitly 
stated. 

CORNER LOADING 

Of the three fundamental cas es of loading investi
gated by Westergaard, corner loading is undoubtedly 
the most obscure and debatable. The theoretical 
background for maximum corner deflection and stress 
equations is particularly weak. Their semiempir ical 
and approximate nature has led to numerous revi
sions and modifications in the years since their 
original publication, in an attempt to reconcile 
observed slab behavior with theory. These are dis
cussed by Kelley (16) and Pickett (23) and are sum-
marized as follows;-- -

Deflection 

Westergaard (5) 

Stress 

<le= (3P/h2 ) Goldbeck (25), Older (26) 

<le= (3P/h2) [1- (ai/Q)0 •
6

] Westergaard (5) 

(3a) 

(3b) 

(3c) 
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Uc= (3P/h2
) [I - (a/Q)0

·
6

] Bradbury (15) (3d) 

u0 = (3P/h2
) [I - (ai/Q)l. 2

] Kelley (16), Teller and Sutherland(J3) (3e) 

u0 = (3.2P/h2
) [I - (ai/Q)] Spangler (28) (31) 

u0 = (4.2P/h 2
) (I - j [(a/Q)v'] /[0.925 + 0.22 (a/Q)] f) Pickett (23) (3g) 

Distance to point of maximum stress along corner 
angle bisector 

Westergaard (5) (3h) 

where 

a = radius of circular load tangent to both edges 
at corner and 
distance to point of action of resultant 
along corner angle bisector 
(21/2)a. See Equations 1 for other symbols. 

In the early 1920s a short and simple piece of 
analytical work was heralded as "the most important 
single step in the investigation of the mechanics of 
road slabs" (£!). This was the first attempt to 
solve the problem of the "corner break" by two prom
inent engineers of the day working independently, 
A.T. Goldbeck of the Bureau of Public Roads and 
Clifford Older of the Illinois Highway Department. 
By assuming that in the corner region the slab acts 
as a cantilever of uniform strength (i.e., that in 
this region the subgrade reaction is negligible com
pared to the applied load), Equation 3b was pro
posed for the maximum stress, ac, due to a concen
trated load, P, acting at the corner of a slab, of 
thickness h (3 .. ~ .. ~) • 

A few years later, Westergaard (~) took up the 
problem again, trying to account for the effect of a 
load distributed over some area, the resultant of 
which could be represented by a point load P acting 
at a small distance a1 from the corner, along the 
bisector of the corner angle. Using a "simple ap
proximate process" involving the use of the prin
ciple of minimum potential energy ( 27) he hoped to 
achieve an "improved approximation" of corner 
stress. Thus he first arrived at Equation 3a for 
corner deflection. He considered this equation "ap
proximately applicable for plausible ranges of a1 
and Jl" (presumably (a1/Jl) is not much greater than 
O. l] • From this, he obtained bending moments by in
tegration and concluded that the maximum stress 
"would be represented with satisfactory accuracy" by 
Equation 3c. Furthermore, the distance to the point 
of maximum stress along the corner angle bisector 
was found to be given "roughly" by Equation 3h. 

Equations for the Corner Loading Condition Based on 
the Finite Element Method 

In this section, ILLI-SLAB is used to establish a 
set of equations that would accurately predict the 
response of a slab, in full contact with a Winkler 
foundation, to a single load distributed over a 
small area at its corner. Equations 3, proposed by 
previous investigators, suggest that, from a theo
retical viewpoint, the parameters involved in the 
determination of slab response can be lumped into 
three nondimensional ratios to be investigated, 
namely, (6ckll 2/P) (ach'/P) and (a/Jl) or (a1/Jl) for a 
circular, or (c/Jl) for a square load. 

The results obtained from several ILLI-SLAB anal
yses are plotted in a nondimensional fashion in Fig
ures 4 and 5. Other available closed-form solutions 
are also shown in these figures for comparison. The 
latter were obtained using a circular load of the 
same area as the square one in ILLI-SLAB but are 

1. 20 

1 .. 10 

1 .. 00 

Westergaard : 

F.E. Results: 

8,= k:' {1.205 - 0.69 <f >} 

( ...£...) 
R 

FIGURE 4 Comparison of ILLI-SLAB and Westergaard corner 
deflections. 
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plotted with the corresponding (c/Jl) values along 
the ordinate. Though not mathematically rigorous, 
this facilitates direct comparison of the results. 
ILLI-SLAB stresses are values of the minor (tensile) 
principal stress occurring at the top fiber of the 
slab. The maximum normal stress obtained from finite 
element analysis (P. Frey, "Development of a Finite 
Element Based Expression to Predict Maximum Corner 
Loading Stresses in a Uniformly Supported Rigid 
Pavement on an Elastic Subgrade," University of Il
linois, Urbana, 1983) significantly underestimates 
the critical stress. 

Curves were fitted to ILLI-SLAB data with a spe
cial effort made to keep the general form of the 
equations the same as that of the Westergaard formu
las. Thus a straight line may be used to describe 
corner deflections, 6c, obtained using the finite 
element method (Figure 4). This line has the follow
ing equation: 

60 = (P/kQ2
) [1.205 - 0.69 (c/Q)] (4) 

where c is the side length of square loaded area. 
The similarity to westergaard's equation indi

cates that Westergaard's approximation was fairly 
good. The finite element results obtained are typi
cally about 10 percent higher than those predicted 
by Westergaard. A small par,t of this discrepancy is 
due to the lack of a theoretical solution for a 
square loaded area, as well as limitations of the 
finite element solution with respect to mesh fine
ness and slab size. 

In the case of ILLI-SLAB maximum corner stresses, 
ac, curve fitting suggested the following equation: 

(5) 

The Goldbeck-Older equation is obviously a rough 
approximation of the theoretical solution, much more 
so at high values of (c/Jl). This is expected, in 
view of the Goldbeck-Older assumption of a concen
trated load acting on a cantilever. Assuming that 
finite element results give a fairly accurate pie-
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FIGURE 5 Nondimensional maximum bending stress for corner loading. 

tllre of the theoretical sollltion, the Westergaard 
eqllation represents a considerable improvement over 
the Goldbeck-Older one. The finite element method 
gives reslllts that fall between those predicted by 
Westergaard (5) and those predicted by Bradbury 
(15). Note that the empirical modifications to the 
wE;;tergaard formllla proposed in the last 60 years-
with the exception of BradbtJry's--have tended to in
crease the discrepancy between calclllated and theo
retical stresses. These modified expressions are 
mllch closer to the Goldbeck-Older eqtJation than to 
the theoretical sollltion. Scott (~) points ollt that 
"experimental indications are that the corner stres
ses experienced in practice are higher than the 
Westergaard eqtJation indicates." Note, however, 
that, in the model tests mentioned previotJsly, mea
Sllred maxi mum corner stresses "were only 65 to 75 
percent as great as those determined from the 
Westergaard equation" (2 2). The very significant 
limitations of the Winkler-sllbgrade idealization for 
corner loading are reflected in Figure 5. As a re
sult, discrepancies between measured responses and 
theory may be expected. In the absence of more con
clllsive field data, it is prlldent to design for a 
higher corner stress than indicated by Westergaard's 
formllla (Equation 3c). 

Location of Maximum Stress 

The results from a selected number of ILLI-SLAB runs 
are given in Table 3, where X1 as obtained from 

TABLE 3 Location of Maximum Corner Stress 

Equation 3h is compared with the location of the 
minor (tensile) principal stress given by ILLI-SLAB. 
This shows that ILLI-SLAB llsually gives a somewhat 
greater distance than Westergaard. On the other 
hand, model tests suggest values about 85 percent of 
Westergaard's (~).Curve fitting throllgh the values 
of x1 obtained by extrapolation from ILLI-SLAB, 
resulted in the following equation: 

(6) 

This best-fit eqtJation indicates that the inflllence 
of the radills of relative stiffness, JC, is much 
greater than that of the size of the loaded area. 
Westergaard' s equation suggests that these two pa
rameters contribllte equally to the determination of 
X1• 

Slab Size Requ irements f or Corner Load ing 
Westergaard Responses 

The pertinent results from this study are shown in 
Figure 6, in which ILLI-SLAB deflections and stres
ses are shown as percentages of the values given by 
the best-fit eqtJations. The validity of any conclu
R ions drawn from such a r:omparison is not r:onsidP.rP.d 
to be greatly affected by the numerical acctJracy of 
the proposed formulas. The patterns observed in Fig
llre 6 are the same as those observed for the other 
loading conditions. Once again, stresses converge 
faster, requiring a minimum (L/1 ) value of about 

Location of Uc, X1 (in.) 

lLLl-SLAB 
Q c Equivalent a 

Run No. (in.) (in.) (in.) Equation 3h At Node By Extrapolation Proposed Equation 

COOl 3 J.07 2.5 1.41 15.74 18.03 18.50 18.33 
C002 31.07 5.0 2.82 22.26 25.50 22.93 22.88 
C003 31.07 7.5 4.23 27.27 30.41 26.00 26.05 
C004 36.95 5.0 2.82 24.28 25.50 25.45 25.34 
coos 26.13 5.0 2.82 20.42 20.62 20.67 20.66 
C006 22.92 5.0 2.82 19.12 18.03 19.11 19.12 
COO? 38.56' 5.0 2.82 24.80 25.50 26.10 25.99 
COil 31.07 5.0 2.82 22.26 25.50 22.93 22.88 
CT3 31.07 10.0 6.56 33.96 28.28 28.42 28.56 

Note: Equivalent a = (c/rry2
), Equation 3h: X l = 21(a 1 12)

112 J. a 1 = (2
1
/a) a, and proposed equation: X 1 = 1.80 c 0· 
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FIGURE 6 Effect of slab size on maximum corner loading responses. 
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4.0, and are less sensitive to changes in {L/lt) 
than are deflections. The latter are extremely sen
sitive even to small changes for {L/lt-), smaller 
than about 3.0. Infinite slab deflection requires an 
(L/lt) ratio of at least 5 .o. Slab size require
ments established during this study are summarized 
in Table 4. 

Figure 7 shows finite element corner loading re
sponses as a function of {c/lt), where c is the 
side length of the applied square load. Responses 
are normalized with respect to the values obtained 
using proposed Equations 4 and 5. 
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TABLE 4 Slab Size Requirements for Westergaard 
Responses Based on the Finite Element Method 

Load Placement 

Interior 
Edge 
Corner 

(L/Q) Values for 

Maximum Deflection Maximum Bending Stress 

8.0 3.5 
8.0 5.0 
5.0 4.0 

Note: L == least slab dimension and~== radius of relative stiffness. 

0 

Bending Stresses I 
(t)=773 

( 2ho) = 2.00 

0.1 0.2 
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Bending Stresses 

( i ) = 7. 72 

Deflections 

(t) = 7.72 or 7.73 

( 
2
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0 

) = 0.5.6 or 2.00 
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FIGURE 7 Effect of size of loaded area on maximum corner responses. 

0.5 



22 

Deflections are not very sensitive to changes in 
(c/Jt), but stresses diverge from the "theoretical" 
values as (c/Jt) exceeds about 0. 2. The trend ex
hibited by corner stresses is the reverse of that 
for interior loading. The effect of (c/Jt) on cor
ner stresses is less pronounced than on interior 
stresses. Comments made earlier with respect to this 
effect are also generally applicable to corner load
ing. 

CONCLUSION 

Since their first appearance, beginning in the early 
1920s, Westergaard equations have often been mis
quoted or rnisftpplied in subsequent publications. To 
remedy this situation, a reexamination of these so
lutions using the finite element method has been 
presented. This exercise yielded a number of inter
esting results: 

1. Several equations ascribed to Westergaard in 
the literature are erroneous, usually as a result of 
a series of typographical errors or misapplications, 
or both. The correct form of these equations and 
their lirni tat ions have now been conclusively estab
lished (Equations 1-3). 

2. Westergaard' s original equation for edge 
stress (2_) is incorrect. The long-ignored equation 
given in his 1948 paper (!Q) should be used instead. 

3. Improved expressions for maximum corner load
ing responses have been developed (Equations 4-6). 

4. Slab size requirements for the development of 
Westergaard responses have also been established 
(Table 4). 

ACKNOWLEDGMENTS 

The investigations for this paper were conducted 
under a research project (grant AFOSR-82-0143) spon
sored by the Air Force Office of Scientific Research 
(AFOSR), Air Force Systems Command, Bolling Air 
Force Base, District of Colunl!Jia. Lt. Col. L.D. 
Hokanson was the Program Manager. 

REFERENCES 

1. A.M. Ioannides. Analysis of Slabs-on-Grade for 
a Variety of Loading and Support Conditions. 
Ph.D. dissertation. University of Illinois, Ur
bana, 1984. 

2. A.M. Tabatabaie, E.J. Barenberg, and R.E. 
Smith. Longit~dinol Joint Systems in Slip
Forrned Rigid Pavements, Vol. II: Analysis of 
Load Transfer Systems for Concrete Pavements. 
Report FAA-RD-79-4, II. U.S. Department of 
Transportation, Nov. 1979. 

3. O.C. Zienkiewicz. The Finite Element Method. 
3rd ed. McGraw-Hill Book Company, New York, 
1977. 

4, D.J. Dawe. A Finite Element Approach to Plate 
Vibration Problems. Journal of Mechanical Engi
neering Science, Vol. 7, No. 1, 1965. 

5. H.M. Westergaard. Stresses in Concrete Pave
ments Computed by Theoretical Analysis. Public 
Roads, Vol. 7, No. 2, April 1926. Also Proc., 
5th Annual Meeting. HRB, National Research 
Council, Washington, D.C,, 1926, as Computation 
of Stresses in Concrete Roads. 

6. M.R. Thompson, E.J. Barenberg, A.M. Ioannides, 
and J .A. Fischer. Development of a Stress De
pendent Finite Element Slab Model. Report TR-
83-1061. U.S. Air Force Office of Scientific 
Research, Air Force Systems Command, Bolling 
Air Force Base, Washington, D.C., May 1983. 

7. H.M. Westergaard. Stresses in Concrete Runways 
of Airports. Proc., 19th Annual Meeting, HRB, 

Transportation Research Record 1043 

National Research Council, Washington, D.C., 
1939. Also in Stresses in Concrete Runways of 
Airports. Portland Cement Association, Chicago, 
Ill., Dec. 1941. 

8. R.F. Scott. Foundation Analysis. Prentice-Hall, 
Inc., Englewood Cliffs, N.J., 1981. 

9. H.M. Westergaard. Stress Concentrations in 
Plates Loaded over Small Areas. ASCE Transac
tions, Vol. No. 108, 1943. 

10. H,M, Westergaard. New Formulas for Stresses in 
Concrete Pavements of Airfields. ASCE Transac
tions, Vol. 113, 1948. 

11. S. Tirnoshenko and S. Woinowsky-Kr ieger. Theory 
of Plates and Shells. 2nd ed., McGraw-Hill Book 
Company, New York, 1959. 

12. H.M. Westergaard. Analytical Tools for Judging 
Results of Structural Tests of Concrete Pave
ments. Public Roads, Vol. 14, No. 10, Dec. 1933, 

13. L.W. Teller and E.C. Sutherland. The Structural 
Design of Concrete Pavements, Part 5: An Exper
imental Study of the Westergaard Analysis of 
Stress Condition in Concrete Pavement Slabs of 
Uniform Thickness. Pubic Roads, Vol. 23, No. 8, 
April-June 1943. 

14. S.G, Bergstrom, E. Frornen, and S. Linderholm. 
Investigation of Wheel Load Stresses in Con
crete Pavements. Proceedings 13. Swedish Cement 
and Concrete Research Institute, Royal Insti
tute of Technology, Stockholm, 1949, 

15. R.D. Bradbury. Reinforced Concrete Pavements. 
Wire Reinforcement Institute, Washington, D.C., 
1938. 

16. E.F. Kelley. Application of the Results of Re
search to the Structural Design of Concrete 
Pavement, Public Roads, Vol. 20, No. 5, July 
1935; Vol. 20, No. 6, Aug. 1939. 

17. G. Pickett, M.E. Raville, W.C. Janes, and F.J. 
McCormick. Deflections, Moments and Reactive 
Pressures for Concrete Pavements. Bulletin 65. 
Engineering Experiment Station, Kansas State 
College, Pittsburg, Oct., 1951. 

18. A. Losberg. Structurally Reinforced Concrete 
Pavements. Doktorsavhandlingar Vid Chalmers 
Tekniska Hogskola, Gotesborg, Sweden, 1960. 

19. H.M. Westergaard. Orn Beregning af Plader paa 
elastik Underlag med saerlight Henblik paa 
Sporgsrnaalet om Spaendinger i Betonveje (On the 
Design of Slabs on Elastic Foundation with Spe
cial Reference to Stresses in Concrete Pave
ments). Ingenioren (Copenhagen), Vol. 32, 1923. 

20. G. Pickett and G.K. Ray. Influence Charts for 
Concrete Pavements. ASCE Transactions, Vol. 
116, 1951. 

21. w.c. Kreger. Computerized Aircraft Ground Flo
tation Analysis--Edge Loaded Rigid Pavement. 
Research Report ERR-FW-572. General Dynamics 
Corp., Fort Worth, Tex., Jan. 1967. 

22. P.F. Carlton and R.M. Behrmann. A Model Study 
of Rigid Pavement Behavior Under Corner and 
Edge Loadings. Proc., 35th Annual Meeting, HRB, 
National Research Council, Washington, D.C., 
l'lS6. 

23. G. Pickett. Concrete Pavement Design, Appendix 
III: A Study of Stresses in the Corner Region 
of Concrete Pavement Slabs Under Large Corner 
Loads. Portland Cement Association, Skokie, 
Ill., 1946, reprint 1951. 

24. H.M. Westergaard. Theory of Stresses in Road 
Slabs. Proc., 4th Annual Meeting, HRB, National 
Research Council, Washington, D.C., 1925. 

25. A.T. Goldbeck. Thickness of concrete Slabs. 
Public Roads, Vol. 1, No. 12, April 1919. 

2 6. C. Older. Highway Research in Illinois. ASCE 
Transactions, Vol. 87, 1924. 

27. H.M. Westergaard. What is Known of Stresses. 
Engineering News Record, Jan. 1937. 



Transportation Research Record 1043 

28. M.G. Spangler. Stresses in the Corner Region of 
Concrete Pavements. Bulletin 157. Engineering 
Experiment Station, Iowa State College, Ames, 
1942. 

The contents of this paper reflect the views of the 
authors who are responsible for the facts and the 

Establishing Load Transfer 
. 
Ill 

Jointed Concrete Pavements 

WOUTER GULDEN and DANNY BROWN 

23 

accuracy of the data presented herein. The contents 
do not necessarily reflect the official views ·or 
policies of the U.S. Air Force. This paper does not 
constitute a standard, specification, or regulation. 

Publication of this paper sponsored by Committee on 
Rigid Pavements. 

Existing 

ABSTRACT 

In this paper are described the results of a research project that had the ob
jective of developing construction procedures for restoring load transfer in 
existing jointed concrete pavements and of evaluating the effectiveness of the 
restoration methods. A total of 28 test sections with various load transfer de
vices were placed. The devices include split pipe, figure eight, vee, double 
vee, and dowel bars. Patching materials used on the project included three 
types of fast-setting grouts, three brands of polymer concrete, and plain port
land cement concrete. The number and spacing of the devices and dowel bars were 
also variables in the project. Dowel bars and double vee devices were used on 
the major portion of the project. Performance evaluations were based on deflec
tion tests conducted with a 20,000-lb axle load. Horizontal joint movement mea
surements and visual observations were also made. The short-term performance 
data indicate good results with the dowel bar installations regardless of 
patching materials. The sections with split pipe, figure eight, and vee devices 
failed in bond during the first winter cycle. The results with the double vee 
sections indicate the importance of the patching material to the success or 
failure of the load transfer system: some sections are performing well and 
other sections are performing poorly with double vee devices. Horizontal joint 
movement measurements indicate that neither the dowel bars nor the double vee 
devices are restricting joint movement . 

Many miles of Interstate pavement have been con
structed using plain jointed concrete pavements of 
various thicknesses and joint spacings. The presence 
of a joint is a discontinuity that causes higher 
stresses and deflections in the pavement especially 
in the outside corner area. Many designs of jointed 
concrete pavement relied on aggregate interlock to 
provide for the transfer of the load across the 
joint, thereby reducing stress concentration and de
flections under load, Laboratory studies conducted 
by the Portland Cement Association (PCA) found that 
the effectiveness of load transfer from aggregate 
interlock depended on load magnitude, number of rep
etitions, slab thickness, joint opening, subgrade 
value, and aggregate angularity (1). It was also 
found that the effectiveness decreased with cumu
lative load applications. 

The variability of the amount of load transfer 
available from aggregate interlock created by 
changes in joint openings points out the need to 
provide for a more positive means of load transfer. 
In Georgia, and in many other states, dowel bars are 
placed in newly constructed pavements. Many older 
concrete pavements do not have the dowel bars and 
this absence of a posit i ve means of load transfer is 
a factor that contr i butes to the deterioration of 
these pavement sections. Faulting measurements made 
in Georgia in 1972 on projects that contained both 
doweled and nondoweled joints indicated that the 
presence of dowels reduced the rate of faulting (2) , 

The distress found in plain jointed concrete 
pavements in Georgia generally has been caused by 
the presence of an erodible base or subgrade, infil
tration of surface water into the pavement system, 


