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Estimating Highway Speed Distributions From a 

Moving Vehicle 

JON D. FRICKER and HUEL-SHENG TSAY 

ABSTRACT 

The question of how to develop a distribution of speeds for vehicles passing 
and being passed by an observer car in the vehicle stream has attracted the 
interest of several mathematicians, but their published work has not gone beyond 
the theoretical stage. In practice, the theoretical expressions that have been 
developed do not permit the construction of an accurate speed distribution from 
actual data gathered from an observer car. The standard deviation of the dis
tributions they construct are accurate, but their inability to process a few 
discrete data points causes errors in estimating the mean speed of the traffic 
stream. An observer car was operated over Bl 7. 9 mi of Interstate highway, 
gathering actual data for use in this study. A simulation program was written 
to help test an empirical method for constructing a speed distribution. The 
simulation revealed that the empirical method predicted the mean speed well, 
but estimated the standard deviation poorly. Furthermore, it illustrated why 
these inaccuracies resulted. Finally, a practical method was produced by which 
anyone can determine good estimates of both the mean and standard deviation of 
the speed distribution without special equipment. 

In order to avoid losing certain federal-aid highway 
funds or to qualify for incentive grants, each state 
must compile annual speed compliance data. If more 
than 30 percent of the vehicles on a representative 
sample of highways in a state exceed 55 mph, that 
state may have 10 percent of its federal-aid highway 
funds withheld. If fewer than 20 percent exceed 55 
mph, the state can claim an incentive grant <.!>. 
Often, as one is driving on an Interstate highway, 
it is difficult to believe that sufficient compliance 
is actually taking place. This paper presents a 
practical method of approximating, not only the mean 
speed of traffic, but the distribution of speeds in 
the stream of traffic surrounding a vehicle driven 
by an individual who is curious about speed com
pliance levels on a given highway section. This 
method describes the speed of vehicles throughout 
the traffic stream, not just at isolated speed moni
toring stations. 

A THEORETICAL BASIS FOR THE MODEL 

A Mathematical Model 

The authors are interested in the amount of accurate, 
useful information an individual in traffic can 
easily collect. (This person's vehicle shall be 
called the "observer car" in this paper.) What in
formation must be collected or inferred in order to 
adequately describe the distribution of vehicle 
speeds? One way to answer this question is to build 
a mathematical representation of the traffic stream 
and the observer car's relationship to other vehicles 
in it. Employing a mathematical model usually re
quires the adoption of simplifying assumptions such 
as 

1. Each driver in the traffic stream chooses a 
speed, v, and drives constantly at this speed. 

2. If the observer car approaches a slower vehi-

cle ahead of it, the observer car overtakes it with
out delay (i.e., there is no interaction between 
cars). 

3. The traffic has reached "steady state." 
4. Vehicles entering the highway follow a homo

geneous Poisson process. 

The following parameter definitions pertain to Equa
tions 1-5: 

q 

Vo 
F(v) 

the flow of vehicles past a point on the 
highway (vehicles per hr); 
the speed of the observer vehicle; 
the probability that the speed of a 
vehicle selected at random passing a 
certain point on the highway is smaller 
than v. F(v) = Pr(V < v). The random 
variables V are independently and identi
cally distributed; 
the number of vehicles overtaken by 
the observer vehicle (vehicles per hr); 
and 
the number of vehicles that over-
take the observer vehicle (vehhicles per 
hr). 

From References 2 and 3, the following equations can 
be assembled: 

Vo 
).+(v0 ) = q J [ (v0 - v)/v] dF(v) 

0 

).-(v0 ) • q f [(v - v0 )/v] dF(v) 
Vo 

From (1) 

Vo 

).+(v0 ) ~ qv0 J F(v)dv/v 2 

0 

(1) 

(2) 

(3) 
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Then 

(4) 

Equation 3 shows thut A+(v0 ) is an increasing func
tion of v. For specified values of the parameters, 
Equation 4 estimates the ratio of the number of cars 
the observer car will pass to the number it will 
observe. Thus, if a driver travels for sufficiently 
long periods of time , periodically assumes d i fferent 
(but constant) speeds, and counts the number of cars 
overtaken (or that overtake him), the speed distri
bution and the traffic flow can be estimated (2,3). 
To use Equation 4, the difference between the number 
of vehicles overtaken by the observer car at speeds 
v 1

0 and v 2
0 needs to be determined. If the number of 

cars overtaken at speeds v 1
0 and v' 0 are A+(v 1

0 ), and 
A+(v 2

0 ), respectively, then Equation 4 can be used in 
the following discrete form: 

F(v 2
0 ) = l/q {v 2

0 [A+(v 2
0 ) 

- A+(v 1
0 )1/(v' 0 - v 1

0 )} 

- A+(v' 0 ) (5) 

For example, if the traffic flow (q) is 750 vehicles 
per hr, the observer car passes 15 vehicles while 
moving at 57.6 mph, and passes none at 52.8 mph, 
Equation 5 becomes 

F(57.6) 1/750(57.6(15 - 0)/(57.6 - 52.B)) - 15 
0.22, 

where 52. 8 is the estimated speed of the slowest 
vehicle on the highway section of interest. Repeat
ing this equation for four higher speeds (as shown 
in the following calculations) allows for creation 
of the plot in Figure 1. 

F(61.4) = 1/750 (61.4(29 - 15)/(61.4 - 57.6)) 
- 29 = 0.263 

F (62.4) 1/750 (62.4(38 - 29)/(62.4 - 61.4)] 
- 38 = 0.69 

F (64.3) 1/750 (64.3(56 - 38)/(64.3 - 62.4)] 
- 56 = 0.74 

F (66.2) 1/750 (66.2(79 - 56)/(66.2 - 64.3)] 
- 79 = 0.96 

The A+(v0 ) and A-(v0 ) values in Equations 1, 2, and 5 
come from counting the number of vehicles that over
take and are overtaken by t he observer car. 

F(v) 

1.00 

0.75 

0.50 

0 . 25 

55 60 65 70 

FIGURE 1 CDF of vehicle speeds from mathematical 
model. 
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Real traffic flow is not as well-behaved as the 
simplifying assumptions would indicate. Equations 4 
and 5 are intended for use with small differences be
tween v 1

0 and v' 0 and with A+(v0 ) values that in
crease monotonically with v0 • Neither requirement is 
likely to be met in practice, however. It would not 
be practical to collect A+(v0 ) and A-(v0 ) counts for 
1 mph increments of v0 • Secondly , t here is no gua r 
antee that A+ (v 2

0 ) will be greater than A+ (v 1
0 ), just 

because v' 0 is greater than v 1
0 • Finally, Equation S 

is sensitive t o slight variations in >.+ (v0 ) . When 
v0 = 62. 4 mph, >.+ (62.4) • 38, wh i ch gives F (62 .4) ~ 
0.69. For >.+ (62 .4) = 37, F (62.4) becomes 0.61 ; f or 
A+(62.4) = 39 , F(62.4) rises to 0 . 78. These factors 
explain why the real-life observations that formed 
the basis for Figure 1 put a point at v0 = 62.4 
mph, F(v0 ) = 0.263, well away from an otherwise 
fairly consistent set of points. 

The curve in Figure 1 is, of course, a cumulative 
distribution function (CDF). From this CDF, the pro
portion of vehicles that are overtaken by t he ob
server car can be estimated for any speed v0 • Fur
thermore, having a CDF makes it possible to convert 
it into the corresponding probability density func
tion (PDF) that defines the speed distribution sought 
by the authors. 

Reflections on the Mathematical Model 

Clearly, the four simplifying assumptions are not 
strictly correct. The extent of their departure from 
reality has implications for our study as follows: 

1. Drivers maintain constant speeds. Each driver 
has a speed he or she finds comfortable and would 
prefer to maintain (_!).This speed is a function of 
that individual's driving attitude, ability, and 
experience. It is also influenced by the charac
ter is tics of the vehicle being dr iv.en: type (car, 
truck , etc.) , size, handling, performance at certain 
speeds, and so forth. These factors support the first 
assumption, if driving conditions remain constant. 
But they do not. Furthermore, a driver cannot always 
drive at his or her "preferred" speed. Physical ter
rain (hills and curves) may be a limiting factor. So 
might vehicle densities, if they become great enough. 
Even at low densities, two or three cars properly 
positioned may be enough to impede or "push" a 
driver. Thus, even cruise control does not guarantee 
keeping to a preferred speed. Besides being boxed 
in, some drivers tend to adopt the speed of the 
vehic le just ahead, s ubst i tuti ng the p.refe.renc:e of 
the lead driver for their own. The adopted speed may 
be faster or slower than their own preference, but 
presumably the difference is not great. And, of 
course, the ultimate tempering influence on preferred 
speeds is the speed limit. An associated influence 
is the driver's perception of the enforcement level. 
What is the probability that one's speed will be 
detected? How much above the posted speed limit may 
one drive without being cited by the authorities? A 
final complicating influence may be the miscalibra
tion of a vehicle's speedometer. Many speedometers 
read 2-8 percent high, that is, the speed shown may 
be 1. 02-1. 08 times the actual speed. For example, a 
car equipped with a speedometer that reads 65 mph, 
but reads 5 percent high, is actually traveling 
65/1.05 = 61.9 mph. This 3 mph difference is often 
not explicitly known by the driver, who instead 
either (a) guesses at this value or (b) simply as
sumes a comfortable position in the traffic stream, 
which includes all the tempering factors mentioned. 

2. No interaction between vehicles. Of course, 
vehicles in close proximity often do influence each 
other. One can be boxed in, be pushed to higher 
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speeds by a tailgating car or truck, or follow a 
lead car in a "platoon• of vehicles. Should this 
bother us in our study? Not really. If our central 
question is "How fast are vehicles moving?" it does 
not matter why they have a certain speed. Neither 
does it matter to the states' speed monitoring pro
grams and the federal government, unless the speeds 
are so high that "corrective action• must be taken. 

3. and 4. Traffic has reached steady state, in 
which entering vehicles follow a homogeneous Poisson 
process. The first half of this statement says that 
there is no abrupt change in the flow, such as there 
would be when a road reopens following a blockage. 
The second half says that Poisson distribution is 
appropriate for describing discrete random events. 
When traffic is light and when there is no obvious 
disturbing factor such as a traffic signal, the be
havior of traffic may appear to be random, and the 
Poisson distribution will give satisfactory results 
(~) • Neither of these assumptions is seriously in
correct. Traffic varies over the course of a day, 
but the transitions between high and low arrival 
rates are gradual enough to accept these assumptions 
for periods of analysis that are not long enough to 
include a significant change in arrival rates. 

While none of the four assumptions are absolutely 
correct representations of reality, the real ques
tion is how well do they approximate the traffic 
stream being modeled. This can only be answered by 
gathering data on the phenomenon being described, 
which is what we describe next. 

DATA COLLECTION 

A more direct approach to characterizing the speed 
distribution is to drive at a variety of constant 
speeds for known distances, and record the number of 
vehicles that you pass (p') and that pass you (p). 
This was done with a cruise-control-equipped car on 
817.9 mi of Interstate highways in the Midwest. Ex
cept where construction zones or impeding traffic 
prevented it, the car was operated at a constant 
speed between 52.8 and 69.l mph for 5-mi segments. 
(Actually, the speedometer was read to the nearest 
integer mph, but timing the vehicle between mile
posts determined that the observer car's actual speed 
was 0.960 times the speedometer reading. This is the 
reason for the unusual speeds used in the Equation 5 
example calculations earlier and throughout this 
paper.) An overtaken vehicle was not added to the p' 
count if it was in the process of entering or exit
ing the main travel lanes of the Interstate, either 
using the on/off ramps or the shoulder. As soon as 
the observer car was able to resume the desired speed 
after a construction zone, speed trap, or rest break, 
data collection resumed. The validity of these data 
is analyzed later in this section. 

Vehicle densities were estimated by counting the 
number of vehicles between the observer car and a 
distinctive landmark ahead, then measuring the dis
tance to that point. Typical observed densities 
ranged from 10 to 40 vehicles per mile for two-lane 
(in each direction) Interstate highways. 

There are several reasons why the observations 
could not be taken from a strictly homogeneous popu
lation of vehicle speeds. 

1. variations in terrain and roadway geometry. 
2. Variations in percentage of heavy vehicles in 

the traffic stream. 
3. Variations in vehicle density. 
4. The "environment" of the highway: urban versus 

rural. 
5. Enforcement of speed limits: visibility or 

reputation of the law enforcement agency. 
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The number of observations (p + p') made in a seg
ment is a function of the observer car's speed, the 
segment length, and the density of traffic. As we 
shall show, if the distribution of vehicle speeds on 
a highway section is approximately normal with mean 
µ, p + p' should decrease as lv0 - µI gets smaller. 
It is obvious that p + p' will increase if segment 
length increases, density increases, or both. The 
influence of densities and segment length on the p 
and p' counts can be eliminated by converting them 
to ratios as follows 

p = p/(p + p'); p' = p'/(p + p'); p + p' = 1.00 

These ratios are summarized in Table 1, with rural 
Interstate segments shown in a separate column. As 
expected, p' tends to be smaller at most observer 
car speeds in rural areas than in the overall data
set. The other sources of heterogeneity are not so 
easily eliminated, and we may not want to. We could 
decide to take p, p' counts only when certain condi
tions (e.g., level terrain, low densities) were met, 
or we could identify and separate our segments into 
hilly, level, urban, and rural groups. The roads 
traveled by the observer car were predominantly rural 
with gentle hills, but even the urban and hillier 
sections were not drastically different. (Observa
tions were halted during a heavy thunder storm, how
ever.) In this paper, an attempt is made to estimate 
the speed distribution on all Interstate sections 
for which reliable data exist. 

TABLE 1 Speed Data from 
Observer Car 

Speed (mph) 
Vo 

54.7 
56.6 
57.6 
58.6 
59.5 
60.5 
61.4 
62.4 
63.4 
64.3 
65.3 
66.2 
68.2 
69.l 

Rural 
p 

0.00 
0.02 
0.20 
0.50 
0.27 
0.20 
0.45 
0.69 
0.71 
0.72 
0.82 
0.95 
0,92 
1.00 

Total" 
p' 

0.05 
0.02 
0.20 
0.50 
0.42 
0.20 
0.53 
0.69 
0.75 
0.72 
0.83 
0.95 
0.92 
1.00 

a Includes rural, urban, and suburban 
segments. 

What are "reliable data"? For instance, it is 
correct for our purposes to take p, p' counts soon 
after a construction zone? Table 2 shows the summary 
of p, p' counts for the 16 segments that followed a 
construction zone. One would expect a noticeable 
increase in p + p' in these segments. Vehicles that 
eventually would have been seen from the observer 
car would pass or be passed by the observer car 
sooner, since construction zones tend to cause the 
formation of platoons. One would not necessarily 
expect a bias in the r' value, which is the p'/(p + 
p') value for these particular segments. Faster cars 
behind the observer car in the construction zone 
platoon may find some slower vehicles blocking them 
in the next open segment, but this is typically a 
2-lane segment with at least twice the capacity of a 
1-lane construction zone. The open segment was also 
5 mi long in 14 of the 16 cases. The results of a 
chi-square test applied to the r' and p' columns 
in Table 2 support the hypothesis that the r' after 
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TABLE 2 Data Collection After Construction Zones 

Vo p p r p' (all) r'-p 

56 .6 2 0 0.00 0.02 - 0.02 
57.6 15 2 0.12 0.20 -0.08 
59.5 3 2 0.40 0.42 -0.02 
61.4 6 18 0.75 0.53 +0.22 
62.4 1 9 0.90 0.69 +0.21 
64.3 3 3 a.so 0.72 -0.22 
65.3 2 16 0 RQ 0 R3 +0,01' 
66.2 0 13 1.00 0.95 +0.05 

Total 32 63 

Note: r'= p'/p + p'. Observation rate = 95 vehicles/76.9 mi= 1.235 vehicles per mile (not 
a standard density), 

construction zones is not biased at the 95 percent 
confidence level. Furthermore, the expectation that 
more vehicles will be observed in these segments is 
also realized: 1.235 per mile versus 0.948 overall. 

Should observations made in the presence or after
math of highway police surveillance be included in 
our data base? Table 3 is similar in structure to 
Table 2, but involves only 5 segments over 13. 75 mi. 
A significantly lower r' than p' would be expected 
in this case, but the data are too meager and con
tradictory to draw such a conclusion. These data 
were not discarded. 

TABLE3 Data Collection After Police Sighted 

Vo p p r p' (all) 

59.5 s 0 0.00 0.42 
62.4 1 7 0.88 0.69 
63.4 2 0 0.00 0.75 
64.3 0 4 I.DO 0.72 

Plotting the (v0 ,p'} values from Table l results 
in the points shown in Figure 2. Fitting a smooth 
curve through these points produces an "empirical" 
CDF much like that of Figure 1. This CDF can be used 
to test the fit of any distribution that is proposed 
as a model of the actual speed distribution along the 
highway. 

The Two Approaches 

In both the mathematical model and the empir i cal 
method described previously, the counts of vehicles 

p' 

1.00 

0.75 

a.so 

0.25 

55 60 65 70 

FIGURE 2 CDF of vehicle speeds from observer 
car data. 
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(p, p') over a range of speeds have been converted 
into proportions or ratios, which, in turn, have 
been plotted in CDF--Pr(V ~ v0 )--form. The resulting 
s-shaped curves (Figures l and 2) are "similar," 
based on goodness-of-fit tests at the 95 percent 
confidence level. Thus, our data collection effort 
seems to validate the mathematical model's ability 
to describe the distribution of speeds, despite our 
critique of its simplifying assumptions, and subject 
to the limitations on the differences in v 0 already 
discussed. The model's F(v0 ) values closely match the 
p' (v0 ) values generated for Table 1, except at v 0 = 
61. 4 mph. What remains is to devise a procedure to 
convert either of the CDFs to the PDF of vehicle 
speeds and then test the results for accuracy. 

TESTING THE METHOD 

How do we test the model's ability to estimate the 
actual distribution of speeds in the highway section 
of interest? Ideally, radar could be used to record 
the exact speed of a vehicle at the time of observa
tion, but this involves more expense or effort than 
is desired. Besides, there are complicating factors 
to consider. If a radar-derived speed is assigned to 
each vehicle, that speed ignores the variation of 
speeds a vehicle assumes as it reacts to different 
roadway geometry, traffic conditions, and driver 
behavior. A stationary radar site removes the vari
able of geometry, but at the moving observation post, 
vehicles are being viewed under a full range of con
ditions, which gives (theoretically) a better sample 
of overall vehicle speeds in the total traffic 
stream. However, the authors propose to limit the 
data collection to the simple question "When a vehi
cle is observed, is it passing or being passed?" 
Nothing can precisely be said about the other vehi
cle's speed, v, except v > v 0 or v < v 0 • The differ
ence is speeds may be 1, 5, or 20 mph. The observer 
can only guess, but need not (if the authors' method 
succeeds) even try. 

Can a speed distribution be effectively recon
structed from this limited information? Equally im
portant, against what can the estimates be compared? 
Speed monitoring data are usually gathered at a few 
fixed locations. Although care is taken to disguise 
the sites and to establish them in places unaffected 
by merging maneuvers and other factors, they are 
constrained to level highway sections where access 
to the recorders is easy and where protection of the 
equipment (e.g., by guardrails) is possible. Each 
location used probably has some bias as a cesult of 
prevailing vehicle mix, variations in vehicle den
sities, weather conditions, and other factors. If 
one is interested in what speeds exist in the entire 
traffic stream during a particular trip, only a con
siderable number of perfectly disguised recording 
stations along the route could give the desired dis
tribution. For reasons of economy and reproducibility 
of results, a simulation model was developed. 

The Simulation Model 

The authors wished to sample speeds of vehicles in 
the traffic stream by observing whether the driver 
is passing them (v0 > v) or they are passing the 
driver (v > v0 ). Then this sample and a constructed 
PDF of speeds are compared with the "actual" speed 
distribution for the traffic stream in which the 
authors were traveling. For reasons already men
tioned, the actual distribution is not possible to 
accurately describe. But, for these testing pur
poses, it is not really necessary to know the exact 
distribution of an actual traffic stream. If one 
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could create an exact distribution, pretend not be 
know its shape, then sample from it to generate an 
estimated distribution, one would have the basis for 
testing the authors' method. A simulation model can 
create such distributions. 

Steps in Simulation Program 

1. Reading input values that include the follow-
ing; 

a. Parameters of distribution describing ve-
hicle speeds; 

b. Traffic density (vehicles per mile); 
c. Speed of observer car (v0 ); 

d. Termination criteria as follows; 
• Length of observation section, 6x 

(mi), 
• Length of time that v0 will be main

tained (min) , and 
• Minimum number of observations k* to 

be made at v0 mph; 
e. Speed for random number generator. 

2. Increment count of vehicles observed, k = k + 
1. 

3. Generate the location xk of the kth vehicle 
with respect to the observer car (x0 = O) at the 
start of the observation period, sampling from a 
uniform distribution. 

4. Generate the kth vehicle's speed, vk, using 
the hypothesized distribution. 

5. If xk > x0 , go to s t ep 6. If xk .5_ x0 , calcu
late whether the kth veh icle will overtake the ob
server car before the observation period terminates. 
If so, p = p + 1. Go to step 7. 

6. Calculate whe ther the observer car will over
take the k th vehicle before the observation period 
terminates. If so, p' = p' + 1. 

7. If the observation period has not ended, re
turn to Step 2. 

8. Stop simulation. Pr i nt summary of observa
tions made. 

The most interesting product of the simulation 
program is the plot (Figure 3) of the distribution 
of speeds for the vehicles that were seen from the 
observer car. These speeds are not known to the ob
server, except to the extent that they make up the p 
and p' counts, but their distribution is at once 
fascinating and important to the estimation method. 

fy(v) 

0.250 

0. 125 

(a)~/ 
l'a = 61 mph / 

<73 = 6.25 mph / 

I 
I 

I 

,,,.-
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Figure 3 illustrates how the actual distribution of 
vehicle speeds (dashed curve) is distorted when 
viewed from a moving vehicle. The reason for the dip 
in curve (b) near v0 is easy to understand. 

• For a vehicle with speed vk not much dif
ferent from v0 , its initial location must be rela
tively close to Xo to expect meeting the observer 
car during the study period. 

• For a given v0 , the probability of the kth vehi
cle meeting the observer car during the study period 
increases as 1vk - v0 1 increases, especially as vk 
moves in the direction of the mode of the speed dis
tribution. 

• However, as vk begins to take on extreme 
values (in the tails of the speed distribution) that 
are less likely to occur, this decreases the prob
ability of a vehicle with such speed even existing 
to meet the observer car. 

Note that both curves in Figure 3 are drawn as PDFs. 
Each encloses an area of 1. 00, based on their re
spective definitions of an event. However, the speed 
dis tr ibu tion of the population (the dashed curve) 
represents a greater number of vehicles in the study 
section, since a majority of these vehicles will 
never meet (be sampled or observed from} the observer 
car. The standard deviation for curve (b) is greater 
than that for (a) because there are fewer speeds 
observed near the mean for curve (b) • 

HOW TO USE THE METHOD 

The task before us is to take a few p, and p' counts 
and convert them into an estimate of the speed dis
tribution's parameters. The authors are only con
cerned with putting each observed vehicle into one 
of two categories: v< v0 or v > v0 • 

At each v0 , the data collected will be used to 
locate a point on a CDF such as in Figure 2. The 
accuracy of that point's location p' (v0 ) with re
spect to its correct location should improve with an 
increase in the length of time at v0 , since p' (v0 ) 

will be based on a larger sample size, p + p'. How
ever, each time the v0 is changed, a new "view" of 
the distribution is obtained, which the authors are 
trying to reproduce. Because each view is so limited 
(either v0 > vk or vk > v0 ), the greater the number 
of v0 's that are adopted, the better the CDF's shape 

(b) v 0 = 55 mph 

llb = 6·1.5 mph 

<7b = 7.38 mph 

45 50 55 50 (),) 70 75 80 

SPEED DISTRIBUTIONS OF (a) ALL VEHICLES AND 

(b) THOSE VEHICLES SEEN FROM OBSERVER CAR 

F1GURE 3 Speed distributions of (a) all vehicles and (b) those vehicles 
seen from observer car. 
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is likely to be approximated. For a trip of moderate 
length, say 100 mi, a trade-off occurs. One can 
travel at two different speeds for 50 mi each, or at 
10 different speeds for 10 mi each, or any other com
bination of distance (t.x) and number of different 
speeds (n) whose product does not exceed 100 mi. The 
first strategy would seem to provide two points of 
high quality, while the second approach gives ten 
fewer reliable points through which to fit a CDF. 

Converting a CDF to a PDF 

Say, for example, that one chose to travel at a v0 
of 55 mph for 50 mi, and that the simulation program 
reported that p' (55) = .104. This means that Pr(vk < 
55 mph) = .104. Because the CDFs from both the mathe
matical model and the empirical method (Figures l 
and 2) resemble a CDF derived from a normal distri
bution, one is justified in assuming a normal dis
tribution. Branston (~) supports this choice of dis
tribution. Thus, we seek the standard normal deviate 

that causes ~ (z) .104. This is represented by 
~- 1 (.104), the solution to which can be found in a 
CDF table of the standard normal distribution. Here, 

41- 1 (.104) = -1.26 = (v0 - u)/a = (55 - u)/a (6) 

with u and a being the two parameter values to 
be solved for. Equation 6 can be rearranged to be 

A 

\l - l.26 a = 55 

Driving at a different v0 , 

p I (65) 0.787. This becomes 
and, in a few steps, 

\l - 0.795 a = 65 

say, 65 mph, 
t- 1 (.787) 

(6 I) 

gives 
0.795 

(7) 

Solving Equations 6' and 7 simultaneously gives u 

61.l mph and a = 4.87 mph. Trying other v0 values 
gives an expanded number of pairs of values with 
which to find ~ and ~. Table 4 shows how these esti
mates will vary with choices of v0 pairs. Insuring 
that the number (n) of observer speeds (v0 ) exceeds 

two produces n!/2!(n - 2) ! solutions for~. ~to be 
examined for trends and clues, such as those solu
tions that should be discarded. 

TABLE 4 Solutions forµ., a 

v0 pairs µ a 

55 and 60 60.89 4.67 
60 and 65 61.0 5.08 
65 and 70 61.6 4.16 
55 and 65 61.1 4.87 
60 and 70 60.85 4.55 
55 and 70 60.77 4.59 
Avg. values 61.04 4.65 

Note: .O.x 0 =SO mi,µ= 61 mph, and 
a= 6.25 mph. 

At this point, the authors could select the "most 
central" of the six solutions in Table 4, say, u m 

60.89 with ~ = 4.67, adopt the average of the param-
A A 

eter solution values (µ = 61.04, a= 4.65), or use 
any legitimate variation. In this example, the esti-
mate of u would be quite accurate, but ; is consis-
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tently about 25 percent below the 6.25 value entered 
into the simulation program. Table 5 and Figure 4 
illustrate why this is so . 

The solid curve labeled "4> (z) • in Figure is the 
CDF for the normal distribution the authors are at
tempting to duplicate from the observed data. The 
curve with short dashes--"p' (v0 ) "--is the CDF 
constructed from the proposed method, with (t.x 
1, 000 mi) to ensure statistical stability. Note how 
it starts below the t (z) curve, crosses it at ap
proximately a.so, and finishes above it. The p' (v0 ) 

curve is "steeper" than the t(z) curve1 therefore, 
it will have a narrower PDF than t(z) 's target PDF. 

1.00 

0.80 

0 .60 

0 40 

0.20 

TABLES Comparison of CDF Values 

Yo : 

<fl(z) 
p'(v0 ) 

F(v0 ) 

R(v0 ) 

55 60 65 70 

0.1685 0.4364 0.7389 0.9251 
0.080 0.382 0.821 0.976 
0.044 0.244 0.554 0.816 
0.244 0.554 0.816 I.DO 

~/·--
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R(vol //';/~/ 
/,/ / ./ 

Y
' // 

y / 
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\ . /l z___ x / // F(v0
) 
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CUMULATIVE SPEED DISTRIBUTIONS: THREE METHODS 

FIGURE 4 Cumulative speed distributions: three methods. 

The • F (v 0 ) " curve is based on the use in Equa
tion 5 of the same data t.x m 1,000 mi) that went 
into the p' (v0 ) curve. Note how F(v0 ) is consistently 
lower than the desired ol>(Z) value. However, the F(v0 ) 
curve has one very desirable characteristic: its 
slope is much like that of the t (z) curve. On the 
theory that the F(v0 ) curve is too low because 
Equation 5 does not handle large changes in v0 
well, the authors rearranged that equation to get 

R(v 1
0 ) l/q {v 1

0 [A+(v 1
0 ) - A+(v 2

0 )] 

t (v 1
0 - v 2

0 ) - A+(v 1
0 )} (5') 

Because this is just Equation 5 with v 1
0 and v 2

0 re
versed (and with v 2

0 still greater than v 1
0 ), this is 

called the Reverse F(v0 ) Curve, denoted by R{v0 ). The 
R(v0 ) curve is consistently above ol>(z), but with a 
similar slope. The "average• of the F(v0 ) and R(v0 ) 
curves would approximate the ol>(z) curve quite 
closely. In addition, the common structure of Equa
tions 5 and 5' gives rise to a repetition of solu
tion values (see .244, .554, and .816 in Table 5), 
This allows for a check on the accuracy of calcula
tions or the elimination of the three redundant ones. 
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By using .5 [F(v0 ) + R(v0 )] as input to Equation 
6, the same procedure that built Table 4 provides the 
entries for Table 6. A highway section of 1,000 mi 
is too long to be realistic, but it is used here to 
guard against statistical aberrations in the p and 
p' counts that can occur with small samples (short 
sections) • The µ estimates are slightly high [since 
F(v0 ) and R(v0 ) are not quite symmetric about the 
~(z) curve], but a is close to the desired 6.25 value 
of a, thanks to the similarity in the slopes of the 
three CDFs involved. 

SUMMARY 

TABLE 6 Solutions forµ, a 
Using F(v0 ) and R(v0 ) Values 

v0 Pairs 

55 and 60 
60 and 65 
65 and 70 
55 and 65 
60 and 70 
55 and 70 

Avg. values 

61.58 
61.73 
62.18 
61.88 
61.60 
61.65 

61.77 

6.21 
6.80 
5.88 
6.49 
6.31 
6.27 
6.33 

Note: ~x0 = 1,000 mi,µ= 61 mph, and 
a= 6.25 mph. 

The method developed in this paper offers some ad
vances in the practical aspects of estimating the 
highway speed distribution from a moving vehicle. 
Mathematical models of the sort described by Equa
tion 4 call for a fully specified CDF in order to 
produce the PDF. This specification is seldom pos
sible. What is possible is a count of vehicles over
taken by (and overtaking) an observer car. Our first 
proposed method estimated µ well, but consistently 
underestimated a. The mathematical model's CDF was 
consistently low, but had the correct slope. Use of 

55 

this CDF and its "reverse" counterpart in a step 
preliminary to our method of solving simultaneous 
equations yielded good estimates of µ and a. 

The result is a description of highway speeds 
which, in some ways, is superior to the stationary 
speed monitoring summaries in that a more complete 
picture is obtained of the traffic stream under a 
variety of driving conditions. 
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