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Probabilistic Assessment of the Failure of 

Laminated Timber Bridges 

LESLIE G. JAEGER and BAIDAR BAKHT 

ABSTRACT 

For a given loading, the ratio of the expected failure load of a laminated tim
ber bridge and the analytical failure load obtained by assuming the modulus of 
rupture (MOR) and modulus of elasticity (EL) to obtain their respective mean 
values, is called the reduction factor. The value of this factor is always less 
than 1.0, and depends on the transverse deflection profile of the bridge. A 
procedure is presented in this paper by which a realistic assessment of the 
reduction factor can be obtained by using test data for the MOR and EL for 
any species of wood. 

There are two properties of timber beams that have a 
marked effect on the distribution of live loads in 
laminated timber bridges and on the ultimate load
carrying capacity of such bridges i these are the 
modulus of elasticity (EL) and the modulus of rup
ture (MOR). 

'rhe EL and MOR vary widely from one timber beam 
to another. Figure l shows test values of EL and 
MOR on 70 Red Pine specimens. These values were 
originally given in an unpublished report of the 
Ontario Ministry of Transportation and Communica
tions, and were used recently in Bakht and Jaeger 
<.!.l • As will be seen from Figure 1, EL and MOR are 
strongly correlated, but not perfectly so. If they 
were perfectly correlated, all points in Figure l 
would appear on a single line. The variability in 
EL and MOR, and, more particularly, the variability 
in EL/MOR, has the effect of significantly reducing 
the ultimate load-carrying capacity of the bridge, as 
compared to what it would be if all beams had the 
same EL and MOR, equal to their mean values for 
the species concerned. This significant reduction 
can be related to the amount of scatter that is shown 
in Figure l. The reduction factor is also dependent 
on the deflection profile of a cross-section of the 
bridge. In this paper, only the estimation of the ex
pected load capacity is qealt with; estimation of the 
variance of this capacity is dealt with elsewhere. 

DERIVATION OF THE METHOD OF ANALYSIS 

As a first step, the values of EL and MOR given in 
Fi9ure l are replotted on axes of Er/(EL>mean ana 
MOR/(MOR)mean as shown in Figure 2. Then, for a given 
species of timber, the scatter of points can be ap
proximated as lying within an area bounded by r = 
r 1 and r = r 2 and by 8 =a and 8 = (90°-a), where r 
is a radial distance from the origin and 8 is an 
angle measured clockwise from the EL/(ELlmean axis, 
as shown in Figure 2. For Red Pine , the angle a is 
about 30°. It will be shown later that the limiting 
values r1 and r2 do not need to be estimated. 

The behavior depicted in Figure 2 may be con
trasted with that of Figure 3, which shows what hap
pens if the values of EL and MOR are assumed to be 
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FIGURE 1 Test data on 70 Red Pinc specimens. 
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perfectly correlated (i.e., if EL/MOR is assumed 
to be constant). It will be seen that the imperfect 
nature of the correlation that occurs with Red Pine 
results in a "fan" of points rather than a single 
line. 

The scatter of points over the area of Figure 2 is 
represented by a probability density function p(r,8), 
which satisfies the relationship 

(TT/2)-a r 2 

f f p (r, e) rdrd8 l (1) 
a r 1 

For simplicity, two further assumptions are made 
about the nature of the points in Figure 2. These 
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F1GURE 2 Data on Red Pine wood. 

FIGURE 3 Perfect correlation of EL and MOR. 

are that the probability distribution can be split 
up into "variation with 9" and "variation with r" 
and that the "variation with 9" is synunetrical about 
the line 9 = 45°. Both of these assumptions are rea
sonable in light of the observed test values for dif
ferent spec i e s of t imber. 

It is f or tunate f or the purposes of estimation of 
failure load that the analysis is not sensitive to 
the precise form of the probability function p(r,9) 
that is chosen. (This point will be returned to 
later.) The general nature of the probability dis
tribution p(r,9) is shown in Figure 4. Then, 

p(r,9) = f(r)4>(9) (2) 

where 

f:(r)rdr = 1 

and 

(ir/2)-a 

! 4> ( 9) d 9 .. 1 

MOR 

MORMEAN 

(3) 

(4) 

figure 5 shows the general nature of the prob
ability functions 410. This function must be zero 
o utside the range of values a and (90°-a) and be 
symmetrical about 9 • 45°. A su i table form for the 
purpose of analysis is 

4>(9) = c(sin 29 - sin 2a) (5) 
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F1GURE 4 The probability function p(r,IJ). 

REDUCTION FACTOR= 0.639 
if a= 309 

<P (8 ) = C (sin 28 - sin 2 a) 

for 

a < 6 < 90° - a 

c 
,P(8) 

0 

FIGURE 5 Plot of lf>( IJ ) against IJ . 

The constant c in Equation 5 is readily found by 
using Equation 4. In the case of Red Pine, taking 
a = 30° the following is obtained: 

$(6) a 21.488[sin 28 - (31/2/2)) (Sa) 

Having derived the necessary properties of the 
scatter of pairs of values of EL and MOR, an in
vestigation of ultimate failure loads for various 
patterns of transverse deflection can now be under
taken. For each pattern of deflection, the actual 
expected value of ultimate failure load is related 
to the deterministic failure load that is obtained 
by taking all beams to have the same EL and MOR, 
being the mean value for the timber species con
cerned. As a preliminary, it may be noted that the 
ultimate failure load, Mult• of a beam is directly 
proportional to its MOR. Hence, in Figure 2, the 
horizontal axis can be Mu1tl<Mu1tlmean as well 
as MOR/(MOR lmean• 

90 

THE CASE OF UNIFORM DEFLECTION 

The first pattern of transverse deflection that is 
examined is that of uniform deflection, shown in 
Figure 6. If all beams are taken to be identical, 
then as the uniform deflection increases, the bend
ing moments accepted by the beams increase until all 
beams simultaneously reach (Mu1tlmean• Hence, in 
the deterministic approac h , the total ultimate bend
ing moment capacity of the bridge is simply 

(6) 

When the scatter of values of EL and MOR is taken 
into account, a different behavior emerges. The beams 
do not fail simultaneously. Because all beams deflect 
equally, the moment accepted by a beam is propor
tional to its own EL, and its ability to withstand 
moment is proportional to its own value of MOR (or, 
alternatively, its own value of Mu1t>. The first 
beams to fail, therefore, are those with the lowest 
value of MOR/EL. Figure 7 is a repetition of Figure 2 
with the addition of a failure boundary at s = s. As 
the uniform deflection shown in Figure 6 increases, a 
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F1GUR.E 6 Uniform deflection across a bridge cross-section. 

FIGURE 7 Failed zone. 

radial line (starting at the vertical axis) rotates 
clockwise in Figure 7. For a certain deflection, all 
of those beams to the left of the boundary in Figure 
7 have already failed, although those to the right 
have not. Similarly, in Csagoly and Taylor (~) , it 
is assumed that when a beam's ultimate moment capac
ity has been reached, the beam fails and its moment 
carrying capacity falls to zero. 

The total bending moment being accepted by those 
beams that have not yet failed is readily found. The 
small element r6r69 shown at the point S in Figure 7 
is considered. The number of beams expected in this 
area is NP(r,e)r6r69. These beams are not yet at 
their failure moments, however; they are, in fact, 
taking a fraction (NP/NS) of their failure moments, 
with the notation of Figure 7. This follows because 
all beams having the same value of EL take the 
same moments as one another until failure. Using th e 
notation shown in Figure 7, 

NP = rcos etana (7) 

The bending moment accepted by the beams in the 
shaded area r6r69 is 

FAILURE BOUNDARY 8=(3 

/ 

/ 
/ 

/ 
/ 

/ 

6M = {Np(r,e)r6r6e}rcosetana(Mu1t>mean (8) 

Using Equations 2-4, and 6, and integrating Equation 
8 

(11/2)-Q 

M f(r)r 2 dr f COS9ij>(9)d9 

which is conveniently written as 

where 

k (a l = tans 
(11/2)-Q 

f(r)r 2 dr J cos8c\>(9)de 
B 

(9a) 

(9b) 

(9c) 

The calculation of k(S) using Equation 9c is 
s traightforward and is greatly simplified by the fact 
that the function f(r) does not need to be found ex

r2 
plicitly. In fact, the value J f(r)r 2 dr can be 

r l 
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determined from knowing the position of the center 
of gravity of the probability distribution. (Details 
of the evaluation of Equation 9c are given in Jaeger 
and Bakht (3) and an eva l uation is s hown in Figure 8. 

It is also shown in Jaeger and Ba kh t (3) that the 
expression for k(S) can be simplified,-on elimi
nating the inteqral with respect tor, to 

[ (11/2)-a] 

k (8) (2 tan B [ cos B $(8) dB 

[ (11/2)-a] f (sin B + cos B) $ (B) dB} (9d) 

where k(S is readily evaluated from) Equation 9d for 
any assumed $( 6). 

Although the details of the mathematics may not 
be of much interest to engineers, the underlying 
physics of how the collapse builds up certainly are. 
Referring again to Figures 6 and 7, for small values 
of deflection, the boundary a = B does not go through 
the area defined by the scatter of points. As deflec
tion continues to increase, and the radial line con
tinues its motion, a stage is reached at which the 
radial line reaches the angular position a of Figure 
7. From that point on, the most vulnerable beams 
(i.e. , those with the smallest values of MOR/EL) 
begin to fail . For a time, increa s ing values of de
flection, and the corresponding increases in the 
angle S, are accompanied by further increases in 
the load-carrying capacity, but the rate of increase 
decreases steadily. Eventually, a value of B is 
reached for which k(S) is a maximum, after which it 
reduces. The maximum value of k(S) gives the failure 
state of the bridge, in accordance with Equation 6. 

The equation for k(S) is given as 

k (S) 30.588 tanS(2/3 cos's 
+ 31/2;2 sins - 5/6) (10) 

for values of B greater than 30° for Red Pine (3). 
Figure 9 is a graph of ultimate load factor k(S) 

plotted against the angle s. The maximum is reached 
when B is 0.62 radians (i.e., 35.52°), at which 
point k( S) has the value 0.639. Hence, for Red Pine 
in uniform deflection, 

M 0.639 ~ 

N (0.639(Mu1t>mean > (11) 

From Equation 11, the ultimate failure load of the 
bridge is reduced (because of the scatter of values) 
to 0.639 of what it· would have been if all beams had 
had the same Mult--that is, if all had had 
<Mu1t>mean• and the same value of EL--that is, 
(ELlmean· It should be emphasized that the reduction 
in the ultimate failure load as estimated by Equation 
11 is not brought about by having beams that are, on 
the aver age, weaker than usual. The beams are taken 
to have an average strength that is entirely normal, 
and it is the scatter of (MOR/EL) above and below 
the mean that gives rise to the progress ive failur e 
of the bridge and the reduction in its ultimate load
carrying capacity as compared with the "no scatter" 
situation. 

The reduction factor of 0. 639 that appears in 
Equation 11 is derived from the probability dis tr i
bution of the quantity (MOR/ EL) , and the ultimate 
failure moment M given by Equation 11 is, in fact, 
the mean value (i.e., the expectation) of a random 
variable. The derivation of a failure load for de
sign purposes also requires the determination of the 
standard deviation of this random variable. That 
determination is given in Jaeger and Bakht (.2_). It 
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FIGURE 9 Plot of k ((3) against (3. 

is sufficient to note here that for laminated timber 
bridges, the Number (N) of beams is large and, hence, 
the variability of the ultimate failure load about 
the mean value given by Equation 11 is small. It is 
instructive to repeat the preceding analysis for 
other assumed probability distributions. Fortunately, 
the reduction factor is found to be not sensitive to 
such changesi for example, if the function ~(9) is 
assumed to be constant for values of e between a and 

"' 45° 
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36° 38° 

(90°-a) as shown in Figure 10, even this quite marked 
change only has the effect of lowering the reduction 
factor to about 0.577 when a= 30°. 

Figures 5, 10, and 11 clearly bring out one impor
tant point. This is that the shift from the perfect 
correlation case of Figure 11 to either Figures 5 or 
10 gives a change in reduction factor from 1.00 to 
0.639 or 0.577, which is much larger than the differ
ence between the latter two. This confirms that a 

REDUCTION FACTOR= 0.577 
if"'= 30° 

</J({}) = c 

90°-"' 

FIGURE 10 An extreme assumption for </>(8). 

REDUCTION FACTOR= 1.00 

</>18) 

45 8 

FIGURE 11 The plot of </>(8) for perfect correlation of EL and MOR 
showing an indefinitely high spike of vanishing width-Dirac Delta 
Function. 
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FIGURE 12 Linear deflection across a bridge cross section . 

fairly good estimate of the reduction factor can be 
obtained by taking a reasonable representation of 
the scatter with respect to a. 

THE CASE OF LINEARLY VARYING DEFLECTION 

The adoption of a completely uniform deflection 
pattern across a transverse cross-section is, of 
course, a highly idealized case, which can be re
garded as one extreme. For purposes of comparison, 
the second deflection pattern considered is that of 
Figure 12, in which the deflection is assumed to vary 
in a straight-line manner from zero at one side of 
the bridge to a maximum value at the other. If all 
beams are taken to be identical with (ELlmean and 
ultimate moment (Multlmean• then failure is reached 
when the deflection of the right-hand end reaches the 
value that gives <Mu1tlmean at that end. 
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Again, in making the assumption that the moment of 
resistance of a failed beam falls immediately to 
zero, it is readily seen that attainment of 
(Mu1tlmean at the right-hand end leads at once to the 
collapse of the bridge and that 

MT= O.SN (Mu1t>mean (12) 

In Equation 12, the factor 0.5 arises from the linear 
variation of deflection across the cross-section. The 
estimation of total failure moment for this deflec
tion pattern [taking into account the scatter in 
values of (MOR/EL)] follows the same general line 
as that for the uniform deflec tion cases, except 
that now each element of the cross-section has its 
own deflection and, hence, its own radial line on 
the plot of Figures 2 and 3. Figure 13 shows the 
situation in which the deflection of the right-hand 
end gives the radial line 0 a a. Then, a width 
B (tana/tanal of the cross-section is known to be 
still unfailed, although the right-hand portion of 
the cross-section is composed of elements that have 
increasing probabilities of failure as one moves 
from left to right. [Details of the estimation of 
the ultimate failure moment are given in Jaeger and 
Bakht (~).] In the case of Red Pine, the result is 

M = 0.415 N (Mu1tlmean (13) 

In this case, it is seen from Equations 12 and 13 
that the reduction factor in ultimate load-carrying 
capacity is 0.830, as compared to 0.639 in the case 
of a uniform deflection. This relatively better per
formance is entirely to be expected because with the 
pattern of deflection now assumed, a fairly large 
fraction of the cross-section is known to be not 
involved in the initiation of failure, so that the 
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FIGURE 13 Identification of failure zone. 
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FIGURE 14 A nonuniform deflection pile. 

influence of the scatter of values of (MOR/EL) is 
much reduced. 

The procedure for estimating ultimate moment ca
pacity for any general deflection pattern, such as 
that shown in Figure 14, follows the same steps. The 
maximum deflection of the cross-section corresponds 
to a radial line e = a in the plot of Figure 7. 
Any other point on the cross-section has a radial 
line e = A where (tanA/tana) is the ratio of deflec
tions for the two points concerued. Estimation of the 
ultimate moment capacity then follows using the meth
od given in Jaeger and Bakht (3). In practice, the 
reduction factor for a uniform deflection, which is 
0.639 in the case of Red Pine, is found to be the 
lowest reduction factor that occurs. 

CONCLUSIONS 

The failure loads of laminated timber bridges cannot 
be safely estimated by treating all of the beams as 
having the same (average) EL and MOR. For Red Pine, 
a safe estimate of failure load is about 60 percent 
of the failure load obtained in that way. The esti
mate of failure load is not sensitive to the prob
ability distribution that is assumed1 provided that 
this distribution is fairly near the truth, the re
duction factor that is due to the progressive nature 
of collapse can be predicted with reasonable ac
curacy. It is noted that this paper deals with esti
mation of the expectations of failure load (i.e., 
with estimation of the mean value of a random vari
able) • The estimation of the standard derivation of 
this random variable is outlined elsewhere Cl>· 

NOTATION 

Following is a list of definitions for the variables 
used in this paper. 

EL = modulus of elasticity of a tim
ber beam in the longitudinal di
rection: 

Transportation Research Record 1053 

(~lmean a mean value of EL for the 
species of timber concerned1 

MOR = modulus of rupture of a timber 
beam: 

(MORlmean mean value of MOR for the 
species of timber concerned: 

ELf(ELlmean = coordinate axes for representa
tion of probability distribution 
of a given species of timber1 

MOR/(MORlmean = coordinate axes for representa-

Cr ,e) 

p (r ,e) = 

ll 

f(r), ~(8) = 
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tion of probability distribution 
of a ~iven Rpe~iPR of timhPr1 
polar coordinates in the plane 
of EL/(EL>mean and 
MOR/ (MOR) mean, with e bei ng 
El/ (EL) mlla n I 
a probability distribution1 
minimum value of e for which 
the probability function p(r,e) 
has non-zero values1 
variations of p(r,e) in the 
r and e directions, respec-
tively: 
the value of e corresponding 
to the maximum deflection in the 
cross-section of a bridge: that is 
the maximum value of Al and 
the value of e corresponding 
to the deflection of a representa
tive point on the cross-section of 
a bridge. 
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