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Distributing Nonstorable Items Without Transshipments 

ANTHONY F. W. HAN and CARLOS F. DAGANZO 

ABSTRACT 

The research reported in this paper attempted to find optimal strategies for dis
tributing items from one depot to many demand points without transshipments and 
within a limited amount of time. The objective was to find a near optimal parti
tion of the region supplied by the depot into districts (the zones containing the 
points visited by one delivery route) and corresponding shipment sizes and costs. 
Initially, the average distribution cost per demand point on a single delivery 
route was studied using expressions that relate route length to the dimensions of 
a delivery district. Two routing strategies were considered: one that generates 
tours with nearly minimal local distance per point and another that generates 
tours with nearly minimal line-haul distance per point. Formulas were derived to 
estimate the optimal shipment size, district shape, and cost when the strategy 
yielding the least cost per point is used. Finally, the results were applied to 
develop guidelines for partitioning a whole supply region into nearly optimal 
districts; an example is given. For a constant demand density, an optimal district 
partition of the supply region should have bigger and fatter districts near the 
depot and smaller and thinner ones along the boundary of the region. 

This research focuses on minimizing the cost of dis
tributing nonstorable items (goods that must be 
delivered within a limited amount of time) from one 
depot to many demand points without transshipments. 
The distribution costs considered include driver 
wages, vehicle depreciation, and operating cost. Ex
amples include not only per ishu.ble goodo ( fruito, 
vegetables, etc.) but also newspapers and parcels 
delivered through express mail or other express ser
vioeo. 

One-to-many distribution problems with multiple 
tours (routes) are usually known as "single depot 
vehicle routing" problems. Substantial literature 
exists on minimizing transportation costs for vehicle 
routing problems [see Turner, Ghare, and Fourds <!l 
and Golden, Magnanti, and Nguyen (2) for a review]. 
Existing vehicle routing methods include the savings 
algorithm developed by Clarke and Wright (1_), the 
"cluster first, route second" method by Tyagi (_!), 
the sweep algorithm by Gillett and Miller (2_), and 
the "seed first, route second" algorithm by Fisher 
and Jaikumar (&_) • These earlier works, however, are 
not concerned with the time required for delivery; 
they do not apply to the distribution of nonstorable 
items. 

This analysis starts with a single delivery dis
trict (i.e., the area containing all demand points 
served by a single vehicle route). The district is 
assumed to be rectangular. The spatial density of 
demand points rather than their exact locations is 
considered. This eliminates the need to specify a 
network and allows detailed routing arrangements to 
be ignored. 

The dual-strip strategy, a routing strategy that 
can generate tours of nearly minimal distances !ll, 
is considered first. For this routing strategy, the 
district dimensions and shipment size that minimize 
the average distribution cost per point are derived. 
The optimal cost per point consists of three compo-
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nents: first, the per stop cost; second, the average 
local operating cost, which depends on the local 
distance traveled per point; and third, the average 
fixed-plus-line-haul cost, which depends mainly on 
the distance from the district to the depot and on 
the shipment size (or the number of points served by 
the vehicle). Becauoe the dual-otrip routing otru.tegy 
yields a nearly minimal average local distance per 
point, it is appropriate for use when the local 
opP.rating cost is thP. major. compon.P.nt of thP. total 
delivery cost. 

An alternative routing strategy, the single-strip 
strategy, is also considered. Although this strategy 
yields longer distances, it allows a nearly maximal 
number of points to be served within a given amount 
of time and reduces the line-haul cost per point. 
Thus it is prefer:i;ed when the average fixed-plus-
1 ine-haul cost is the major component of the total 
delivery cost. 

Comparison of the delivery costs of the two rout
ing strategies shows that dual-strip routing should 
be applied when the delivery district is close to 
the depot (or, more precisely, if the local operating 
cost is larger than one-half of the fixed-plu~-line
haul cost). Otherwise, single-strip routing is pre
ferred. Then the overall optimum shipment size, dis
trict shape, and cost for the best of the two routing 
strategies in any given situation are derived. 

The results are applied to develop guidelines for 
partitioning a large region supplied by one depot 
into nearly optimal districts. An example, in which 
a circular region that contains more than 1,000 
points is partitioned into more than 100 districts, 
is given to demonstrate how the guidelines can be 
used. 

The formulas developed in this paper can be used 
for sensitivity analysis. This is illustrated in the 
final section in which the cost impacts of changes 
in available delivery time, vehicle speed, and 
vehicle capacity are analyzed and discussed. 

SINGLE DELIVERY DISTRICT 

Assume that on any given day items must be delivered 
to demand points (customers) that are independently 
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and randomly scattered in a region. On the next day 
(or after any other operation cycle), whether or not 
the number and location of the customers stay the 
same, service must be provided again. Distribution 
strategies are derived for one day; the strategies 
may or may not change daily. 

Situations in which the density of customers (6) 
varies spatially but is nearly constant within each 
delivery district are considered. Furthermore, it is 
assumed that the same number of items is required at 
all demand points and that the items to be distrib
uted on a given day become available simultaneously 
at the depot. At that time the locations of all the 
customers (for that day) are known and distribution 
begins. Each vehicle must visit all customers in its 
district within a limited amount of time (TQ) 

after the beginning of distribution. It is also as
sumed that vehicles are large enough to hold all the 
items that can be delivered in time TQ• Note 
that, although these assumptions appear to be 
restrictive, the results of this paper can be applied 
to situations that are more general than those de
scribed here. This will be discussed in the last 
section of the paper. 

Consider a rectangular district of sides l and 
l' (l' > l), as shown in Figure 1, where the distance 
between the depot and the gravity center of the dis
trict is p[p > (l'/2)]. Let 

c0 fixed cost (per day) of the delivery vehicle; 
Ca delivery vehicle operating cost per unit 

distance; 
L average route length (i.e., average total 

distance traveled per day by the delivery 
vehicle) ; 

D average distance traveled from the depot to 
the last delivery point; 

S time consumed at each demand point; 
U average speed of the delivery vehicle; 
x average number of demand points contained 

in a square with sides equal to l, x = 
61 2

; and 
N shipment size of the delivery vehicle in 

terms of the number of demand points visited, 
N = 6~1 1 • 

i---------- P---------< 

- District boundary 

x District center 

- Vehicle route 
• Demand point 

FIG URE 1 Delivery district with dual-strip route. 

For the time being, it is assumed that vehicles are 
large enough that N can be as large as desired, Note 
that the district dimensions, l and l', can be ex
pressed in terms of N and x [i.e., l = (x/6)1/2 and 
l' = N/(6x) 112J. N and x can be thought of as dimen
sionless indicators of district width and district 
area. The use of such dimensionless variables, as it 
will be shown later, allows the development of nu
merical figures or tables that are applicable to 
different situations. 

The design of the shortest route is not of con-
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cern; an attempt is made to find a near optimal par
tition of the region supplied by the depot into dis
tricts (the zones containing the points visited by 
one delivery route) and the corresponding shipment 
sizes and costs. Therefore expressions that relate 
route lengths (i.e., Land D) to district dimensions 
(in terms of N and xl will be used when nearly 
optimal routes are used. Unless otherwise specified, 
the Euclidean distance will be used throughout this 
paper. 

Early shortest tour length formulas (B,9) did not 
take district dimensions into account. Expressions 
that are sensitive to district shape have only been 
developed recently (7,10). 

The routing strategy used by Daganzo (7) , termed 
the "dual-strip strategy" in this paper, yi°E!lds tours 
such as the ones shown in Figure 1 in which the rec
tangular district is divided into two equally wide 
strips. In each strip the delivery vehicle visits 
demand points from one end to another without back
tracking. Daganzo C:Z.l has shown that the average 
route length (L) can be expressed as a function of N 
and x: 

L(N, x) ~ 2p +Nii-I'> c/>(x) p > Q' /2 (I) 

where 

<P(x) = (xy, /6) + (l/xy,) ( 4/(x/4)2 {[(I + (x/4)) log [l + (x/4)) 

-(x/4)}-1) (2) 

The two terms in Equation 1 represent the line-haul 
distance and the local delivery distance, respec
tively. 

Because the last demand point in the delivery 
district must be covered in time TQr the average 
distance (D) from the depot to the last delivery 
point has to be derived for the analysis. The dif
ference between D and the whole route length (L) , 
the back-haul distance, is approximately p - i'/2 = 

P - N/[2(6xll/2]. Thus, 

D(N, x) ~ L(N, x) - p +NI [2(/ix)Y' I p > £'/2 

= p +Nii -Y, i/l(x) p > Q' /2 (3) 

where 

(4) 

The object now is to minimize the average cost of 
serving one demand point, that is, 

c(N, x)= [Co+ CdL(N, x)]/N (5) 

Because this 
be chosen to 
assumed that 
however, the 
stops should 
constraint: 

expression decreases with N, N should 
be as large as possible. It has been 
vehicle capacity does not restrict N; 
time constraint does. The number of 
satisfy the following delivery time 

NS+ [D(N, x)] /U .;; ro (6) 

The left side of this inequality increases with N. 
Consequently, the optimum (minimum) cost (c*) is ob
tained when N is so large that no more demand points 
can be visited within time TQ• If N is approximated 
by a continuous variable, it should satisfy Equation 
6 strictly: 

NS+ [D(N, x)] /U = ro (7) 
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Thus substituting Equation 3 for D(N,x) in Equa
tion 7, and solving for N, the optimal shipment size 
(N) is obtained for a given zone width (x) : 

N(x) = (r0 - p/U)/ [S + 6-'h l/;(x)/U] P < Ur 0 (8) 

In this expression the numerator and the denominator 
can be interpreted, respectively, as the time avail
able for local delivery and the average time required 
to cover one demand point. 

Before expressing the cost (c) as a function of 
X• let us define the following dimensionless con
stant: 

p < Ur0 (9) 

The term UTo - p can be visualized as the maximum lo
cal distance that can be traveled within time TOl it 
will be called the local range. The parameter g thus 
can be interpreted as a ratio between the fixed-plus
line-haul cost and the operating cost required to 
cover the local range. If the fixed cost is con
sidered a part of the line-haul expenses, g can 
legitimately be called the line-haul-to-local cost 
ratio. Note that g increases to infinity as p ap
proaches UTo because then the local range (and 
the local cost) goes to zero. The line-haul-to-local 
cost ratio thus also indicates the district's dis
tance from the depot. 

The optimal cost per item [c(xll is obtained by 
replacing N in Equation 5 by Equation 8. It can be 
written as 

(JO) 

As shown by this equation, the average cost per item 
has three components. The first, CdUgS, is the 
portion of fixed-plus-line-haul cost per item acco
ciated with the time lost at one stopi fewer items 
can be carried in the time allowed because of this 
loot time. The oecond component, C~6-l/2$(x), in the 
local vehicle operating cost per point and is pro
portional to the local distance traveled per point, 
6-1/ 2 $ (x). The third cost term, c0 .s- 112911J (x), is sim
ilar to the firsti it is the portion of fixed-plus
line-haul cost per point that arises because vehicles 
do not travel infinitely fast and can only carry a 
finite number of items. 

The problem now becomes one that has a single de
cision variable, X• The optimal width, x*, is the one 
that m1n1m1zes c(x) in Equation 10 or, simply, 
f(x) = $(X) + gl!J(x). Let x1 and x2 be the solutions 
that minimize $(x) and ~(x), respectively: x1 = 6.7 
and x2 = 9.2. 

Although a delivery district with width l 
6.71/26-1/2 yields a nearly minimal local distance 
traveled per point (as well as a nearly minimal local 
vehicle operating cost per point) , a slightly wider 
district with l = 9.21/26-1/2 allows a nearly maxi
mal number of points to be covered within time 
Tol it yields approximately the lowest average 
fixed-plus-line-haul cost per point. For districts 
near the depot, x* would be expected to be closer 
to Xll and for remote districts, x* should be close 
to x2 • The following analysis confirms this expecta
tion. Because both ~(x) and ~(x) are convex, x*<[6.7, 
9.2] for O < g < oo. As the aggregate line-haul-t~
local cost ratio, g (i.e., the distance from the de-
pot), increases, x* moves from the left to the right 
in [6.7, 9.2]. As the district distance from the de
pot increases, the optimal district becomes gradually 
wider, allowing more demand points to share the ag
gregate line-haul cost, although yielding a somewhat 
longer local distance traveled per point. These ad
justments to district width are not very substantiali 
when g+oo, l is only 17 percent larger than when g+O. 
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The impact on cost of departures from the optimal 
l is examined in the next section. 

Because dual-strip routing can yield tours with 
nearly minimal local distances per point, it is ap
propriate for use when q is small and cost per point 
depends primarily on the local distance trav~led. 
When g is large, radically different routing strate
gies may be better. 

ALTERNATIVE ROUTING STRATEGY 

Let us now consider the single-strip routing strategy 
shown in Figure 2. This strategy allows the delivery 
vehicle to serve more demand points within a given 
amount of time and thus reduces the average fixed
plus-line-haul cost per point. [To see this, simply 
consider a district half as wide but twice as long 
as for dual-strip routing and with the same center 
of gravity. The distance traveled between points is 
the same (on average) in both cases, but for single
strip routing the distribution stage begins and ends 
sooner. Additional points can thus be served.] 
Single-strip routing can be appropriate when the 
line-haul-to-local cost ratio is high. A recent study 
(11) also shows that, for distributing valuable 
goods, the single-strip strategy is better than the 
dual-strip strategyi these authors used an L1 metric 
for their calculations. 

Depot 

P - District boundary 
X District cenler 
-- Vehicle route 

• Demand point 

FIGURE 2 Single-strip routing. 

Expressions for tour lengths, shipment size, and 
cost can also be derived for single-strip routing 
with a Euclidean metric (see the Appendix). An addi
tional subscript (s) is used to denote single-strip 
variables and functions. All have a form similar to 
that given previously. 
width (xl is given, 
cost [cs<xll are 

For example, when the 
shipment size [Ns (x) l 

zone 
and 
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N,(x) = (Uro - p )/[US+ I/I , (x)o-%] p < Ur0 (! 1) 

and 

(12) 

where 

<P,Cx) = (x'1'/3) + (1/x v' ) l (2 /x2
) [(l + x) log (1 + x)- xJ} 

and 

Note that cs<xl, like c(xl as given by Equation 10, 
also has three cost components: the cost per stop, 
the average local operating cost, and the cost of 
time constraint. 

Unlike dual-strip routing, however, the minimum 
of ~s<xl, 1.9, is smaller than the minimum of 's<xl, 
2.7. This happens because ~s<xl is obtained from 
's(X) by subtracting a decreasing function. Thus with 
single-strip routing an optimal district becomes nar
rower instead of wider as the distance from the depot 
(g) increases. 

Figure 3 shows how x; moves from 2.7 to 1.9 as g 
is increased; it compares x; and x* as well. The fig
ure also reveals that, when g ~ 2, x* = 4x;. That is, 
single-strip districts should be half as wide as 
dual-strip districts; both routing schemes should use 
equally wide strips. This is approximately true for 
all the g's that can occur in practice. Even in ex
treme cases, when g+O or g+ro, the optimal strip 
widths of the two routing strategies differ by less 
than 30 percent. 

10 
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FIGURE 3 Optimum solutions of two routing strategies. 

To compare the cost of the two routing strategies, 
f* and f; are plotted in Figure 4; they cross each 

other at the critical point gc ~ 2 (this is exact for 
the L1 metric). Thus the single-strip strategy 
should be applied when the aggregate line-haul-to
local ratio (g) is larger than 2 (this also implies 
that the strategy with the narrowest optimal strip 
is best). The farther g is from gc, the more im
portant it is to choose the proper strategy. For ex-

"' 0 
u 

e 

6 

E 4 

" E 
0. 
0 

00 

!*!dual-strip routing)// 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 1: (single· strip routing) 

/ 
.l 

t 4 6 8 
gc;; 2 g 

Aggregate Line· haul/ Local Cast Rotio 

FIGURE 4 Optimum costs of two routing strategies. 
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ample, if the per stop cost is ignored, single-strip 
routing can reduce the delivery cost of dual-strip 
routing by about 10 percent when g = 4 and by about 
24 percent when g > 100. For road transportation, 
g is most likely in the range of 0 < g < 50 (12). 

According to Equation 9, a switch should"""be made 
from dual to single-strip with dual-strip routing 
when the (critical) distance between the depot and 
the district center of gravity (Pel is 

Pc = (2 Uro - Co/Cd)/4 Pc ;;,, 0 (13) 

Note that Pc does not depend on s. For 0 < p < Pc• 
dual-strip routing should be used; beyond this range, 
single-strip routing is best. When the fixed cost 
(Col is zero, Pc= 0.5UTo (i.e., the critical dis
tance is half the distance that can be traveled in 
time TO). As Co increases, Pc decreases; the applica
tion region of dual-strip routing shrinks. When 
Co > 2UToCd, only single-strip routing should be 
used. Figure 5 illustrates these phenomena. 

OPTIMAL COST, SHIPMENT SIZE, AND DISTRICT 
DIMENSIONS 

Let us now examine in more detail the properties of 
the optimal solution. Let us first define the overall 
optimum cost; = min[c*, c;], which results from the 
best use of the two routing strategies considered. 
[Although hybrid strategies have dual-strips for only 
part of the way and strips of variable length can re-

duce the cost below c, these reductions appear to be 
insignificant (11); hybrid strategies are not con
sidered in this paper.] The circumflex is placed 
above any variable corresponding to ;. Let 

f= min [f*, f, ] ; that is, 

f=f" =f(x•) if g<2(o r p< pc) 

and 

f= i;' = f,(x:) if g > 2 (or p >Pc ) (14) 
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FIGURE 5 Application regions of two routing strategies. 

For any g, the functions f(x) and fs(X) are 

very flat around their minima . Thus x* and x~ do not 
need to be chosen very precisely (as in Figure 3) ; 
simpl er rules can be followed. For example, if dual
strip routing with x* = B.O is chosen when g < 2 and 

single-strip routing with x~ = 1.9 is chosen when 
when g > 2, the resulting values of f (x) and fs<xs> 

only deviate from f(x*> and fs<x~) by less than 0.5 

percent (see Table 1). These approximations <x* ~ B.O 

* and Xs ~ 1.9~ are reasonable; they will be used from 

now on. The f can be approximated as 

fo f(8.0) = 0.576 + 0.753g if g < 2 

"' f,(1.9) = 0.937 + 0.574g if g > 2 (15) 

and c can be written as foilows 

c(p)"' { [a, (Co + 2pCd)] /(Uro - p)} + 0.5760-V' Cd if p < Pc 

"' { [a2(Co + 2pCd)] /(Uro - p)} + 0.9378-V' Cd if p >Pc (16) 

where 

Cl'.1 =us+ 0.7538--'h (17) 

and 

TABLE 1 Percentage Errors in Optimum Cost 

CD Q) (i) - (2) x 100% 

* 
Q) 

g f(8) f 6% 

0 0.57599 0.57522 0.66 
1 1.3287 1.3287 0 
2 2.0815 2.0803 0.06 
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°'2 =us+ 0.5740-y, (18) 

Note that "l and e1 2 are the distances that 
the vehicle can cover during the time it takes to 
serve one point (US plus the local distance per 

point) • Figure 6 (bottom) shows how ~ depends on dis
tance; except at the critical point, where p = Per 

the optimum cost (~) increases at an increasing rate. 
This phenomenon does not occur for storable items; 
the cost of distributing storable items increases at 
a decreasing rate with distance (13). With storable 
items, inventory-plus-transportation cost is mini
mized when the largest loads are dispatched to the 
remotest districts. This cannot be done with non
storable items; when p increases, the local range 
decreases and fewer points can be covered • 

The overall optimum shipment size (N) becomes 

N(p) "' (Uro - P )/a1 if P <Pc 

and 

.,, (Uro - p)/e<2 if P > Pc (19) 

These expressions are reasonable; both represent the 
ratio of the local range to the distance spent per 

point. Figure 6 (top) shows plots of N(p). As was 

just discussed, N(p) decreases (linearly) with p, ex
cept at the point of discontinuity (p = Pel. The ve
hicle load can be increased at this point because the 
switch from dual- to single-strip routing advances 
the time of the last delivery. 

The variables Va and Vs, defined in Figure 6 
(top), repr:esenl Lhe ldtyt!i;L luau that li; carried 
with either routing strategy. There is no guarantee 
that Vs> Va (as in the figure). 

The optimal size and district dimensions as func
tions of the distance p can also be derived. Such 
expressions, as it will be shown later, are useful 
for partitioning a region into nearly optimal 

districts. The optimal district size (A) is 

A(p)=N(p)/8 p<liTo (20) 

A exhibits the same properties as N(p). 
The width of a delivery district is given by £ = 

<x/6)1/2. Thus similar to x* and x:, i remains con
stant when p < Pc and when p > Pc• The expressions 
are 

Q = 2.838-Y, if p <Pc 

and 

= 1.388-Y, if Pc< P < Uro (21) 

Districts are about half as wide when single-strip 
routing is used. In both cases the strip should be 
about 1.45-1/2 distance units wide. 

g,, 2 

g f,(1.9) f* s 6% 

2 2.0849 2.0803 0.22 
4 3.2331 3.2331 0 

10 6.6776 6.6733 0.06 
100 58.345 58.178 0.28 

1,000 575.02 573.19 0.32 
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FIG URE 6 Optimal shipment size and cost. 

The length of a delivery district is given by 1 1 

A/R,. Thus 

2'=(0.35) [(U7o -p)/0<iJ 8-Y, ifp <Pc 

and 

= (0.73) [(U70 - p)/0<2] 8-Y, if Pc< P < U7o (22) 

These expressions follow the same pattern as N(p). 
They decrease linearly with p, except ::or a jump 
when p = Pc• For a given distance, single-strip dis
tricts are 2.1 (a1/a2) times as long as dual-strip 
districts. 

The shape of a rectangular district can be repre
sented by the ratio of its width and length, S = 
R,/R,'. This ratio was called the slenderness factor by 
Daganzo C.Z.l • From Equations 21 and 22 

i(P)" 8.00<i/(U7o - p) if P <Pc 

and 

" 1.90<2/(UTo - p) if Pc< P < U7o (23) 

For storable items, S remained constant with dis

tance. Now, however, a(p) increases with p except, of 
course, when p = Pc• 

SERVING A REGION: AN EXAMPLE 

Consider now a region that contains many delivery 
districts and define the optimal district partition 
of the region as that which yields the minimum cost 
of serving the whole region. Although such a parti
tion is difficult to derive, its desirable properties 
can be explored. Imagine an ideal district partition 
that is character i.zed by the following two proper
ties: 

Pl. 

P2. 

It is feasiblei all 
the whole region, 
within time To· 
For each district, 
slenderness factor 

A = A and S = S) • 
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districts pack well, cover 
and each can be covered 

both the size (A) and the 
(S) are optimal (i.e., 

Although such an ideal partition usually does not 
exist, a district partition that closely follows its 
properties should yield a cost that is not much 
larger than the minimum. [Problems involving the 
determination of the location of, or the spacing be
tween, a set of points (depots, warehouses, bus 
stops, scheduled headways, etc.) usually have cost 
functions that are very flat near their optima (8, 
14,15) .J Therefore, in designing a desirable district 
partition, an attempt is made to follow Pl and P2 as 
much as possible. The following example shows how 
these guidelines can be applied. 

Consider a circular region with a radius R and 
the depot located at its center. For such a region, 
P2 can be approximated with a ring-and-radial parti
tion that satisfies Pl. Let m be the number of 
equally big districts in the ring defined by two 
concentric circles with radii ro and r1 that are 
such that r 1 > r 0~> O (Figure 7). Given r 0 or r 1 , the 

other radius and A can be determined from the previ

ously developed formulas. Specifically, 

(24) 

and 

A= [U70 - (r0 + ri)/2] /(0< 1 8) 

and 

(25) 

7T( ro+ r1) 

m 

FIGURE 7 Partition sector. 
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The number of zones in a ring is 

m = 11Cd - ra)/A (26) 

'I 
When the values i and i are calculated for p =(rn + 

r1J/2, Equation 24 yields 

r1 = ro + (Ur0 - r0 )k (27a) 

or 

r0 = (r 1 - Ur0 k)/(i - k) (27b) 

where 

and 

(28) 

These expressions are reasonable if the districts 
that result are approximately rectangular. For the 
first ring of districts, however, this is not the 
case. For storable items, first-ring districts should 
be approximately 40 percent longer than predicted 
for rectangular shapes (11); other rings do not need 
a correction. A similar phenomenon should occur now; 
it appears reasonable to increase r 1 = kUTo (see 
Equation 27a with r 0 = ~) by 40 percent while simul-

taneously maintaining N(p) and A(p) at the previous 
level (with p = kU<o/2) for the first ring of dis
tricts. The optimal radius of the first ring thus 
should be approximately l.4kUTo· 

Suppose that customers and vehicles ·have the 
following characteristics: UTo = 15, 6 = 4, and Co/ 
Ca • 10 and consider two cases for US = O and us = 1. 
For a circle of radius R = 13, there are more than 
2,000 customers. 

Table 2 <Jives numerical rPs11lts t .hnt. show how 
(starting with r 1 = 13 and proceeding inwards) the 
sequence of ring radii can be obtained for both cases 
by repeated use of Equation 27b. usually, as in the 
example, one of the innermost dual-strip rings will 
have r 1 ~ l.4kUT 0• Any rings inside this ring should 
be eliminated. The resulting partition should be 
nearly optimal, even when the first radius is sig
nificantly different from l.4kUTo; the first ring 
usually does not contain a large portion of all the 
customers, nor does it account for a large fraction 
of the vehicle-miles. Still, if desired, the boundary 
between the first and second rings can be shifted a 
little so that the inaccuracy in zone lengths i s 

TABLE 2 Numerical Results 

r, ro P = (r1 + ro)/2 

US= 0 (I.4kUr0 = 8.2) 

13 6.2 9.6 
6.2 0.8 3.5 
0.8 NA" 

US= 1 (l.4kUro = 2.5) 

13 12.3 12.7 
12.3 11.4 11.9 
11.4 10.2 10.8 
10.2 8.6 9.4 
8.6 6.5 7.6 
6.5 3. 7 5.1 
3.7 2.1 2.9 
2.1 0.3 1.2 
0.3 NA" 

a NA = no t applicab le (fo < O). 
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spread over two rings: Newell and Daganzo (11) a is
cuss this for storable items. Table 2 also gives the 
(unrounded) N, A, and ~ corresponding to each ring. 

Figures B and 9 show the districting patterns that 
result. Figure 10 shows the two typical routing pat
terns for P < Pc< Pc= 5) and p > Pc when US= O. For 
US = O, districts are larger and more elongated than 
for US = 1. Vehicles also make more stops. When US = 
1, more rings are needed to cover the same area than 
when us = o. 

In cases in which the average number of stops per 

district calculated for a ring (N) is not large (as 
with the outer rings for US= 1), the boundaries of 
the ring should be modified so that the resulting N 
is an integer. [Note in particular that an N smaller 
than 1 cannot be used. In some instances, the far
thest customers may receive individual service.] A 
similar modification is needed to make the number of 

districts in a ring (~) an integer when ~ is small. 
These modifications can be made as the calculations 
f or Table 2 are being done or can be lef t to experi
enced judgment. Human intervention is hard to avoid 
in any case (}) • For example, when customer loca
tions change daily, the most cost-effective way of 
defining the final routes is often through human 
dispatching. The dispatcher can follow the guide
lines, but he must ensure that districts pack, that 
the time constraint is not likely to be violated, 
and that routes are network feasible and balanced . 

DISCUSSION 

The example in the previous section illustrated how 
the rormulas developed in this paper can be u~eu fu1 
operational planning purposes. Although the example 
was idealized, it is not difficult to see how real
istic cases should be addressed. If the customer de
mand density varies, the district dimensions should 
chan11e with it; a districtin11 pattern that follows 
these dimensions closely, and yet fits within the 
irregular boundaries of a service region, can usually 
be found. [See Newell (.!_i), Clarens and Hurdle (.!_i), 
Daganzo (7), and Daganzo and Newell (16) for addi
tional aiScussion of this issue and~several ex
amples.] 

Seven properties of a near-optimal operations plan 
are 

1. Districts should be elongated toward the de
pot. 

2. Vehicles should cover districts near the depot 
with two laps (dual-strip routing) and districts far 

NCpl A(p) n, Routing 

18.9 4.7 87.2 Single-strip 
30.6 7.6 15.5 Dual-strip 

Dual-strip 

1.8 0.5 115.5 Single-strip 
2.4 0.6 108. l Single-strip 
3.3 0.8 98.5 Single-strip 
4.3 I.I 85.8 Single-strip 
5.8 1.4 68 8 Single-strip 
7 7 1.9 46.5 Single-strip 
8.8 2.2 13.0 Dual·strlp 

10.0 2.5 5.4 Dual-strip 
Dual-strip 
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FIGURE.8 District partition, US= 0. 

~ Dual-strip 
districts 

Single-strip districts 

FIG URE 9 District partition, US = 1. 

from the depot with only one outbound lap (single
strip routing). 

3. If the fixed-plus-operating cost of a vehicle 
is proportional to distance, dual-strip routing 
should be used for districts the center of which can 
be reached in less than one-half the time available 
for delivery. 

4. All districts of a given type, regardless of 
their locations relative to the depot, should have 
approximately the same width. Dual-strip districts 
should be about twice as wide as single-strip dis
tricts. 

5. The number of stops, length, and size of both 
single- and dual-strip districts, however, should 
decline with the distance from the depot. 

6. All else equal, an increase in the time needed 
per stop diminishes the size of the district that 

Subregion II 

Subregion I 

6 

District boundary 

Vehicle route 

Demond point 

FIGURE 10 Two typical routing patterns. 
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can be covered but does not change either its width 
or the type of routing that should be used. 

7. The cost per item increases at an increasing 
rate with distance. 

For land transportation problems, where the Eu
clidean metric with constant speed everywhere is not 
reasonable, these principles still apply, albeit in 
a somewhat modified fashion. For example, "elongation 
toward the depot" should be interpreted to read 
"perpendicular to the equi-travel time contours." 
Newell and Daganzo (11) refined the principles and 
formulas for the case of storable items; a similar 
refinement can and should be sought for nonstorable 
items. 

The formulas in this paper also quantify conven
iently the cost impact of changes in demand, vehicle 
operating character is tics, and the service standard 
of a time-constrained distribution system. Therefore, 
they can be used for strategic planning purposes. 
For example, take the available delivery time (TQ). 
Figure 11 shows how the entire cost curve shifts to 
the lower r fght when the available time increases 
from TQ to TQ• Vehicle speed (U) has a similar ef
fect on optimum cost. 

The capacity of the vehicles is another operating 
character is tic that affects cost. In this paper it 
was assumed that vehicles are large enough to hold 
all the i terns that can be delivered in time TQ. 
When this is not reasonable, the expressions should 
be modified (12). Then, as the number of stops that 
can be made by a vehicle is reduced, the size of the 
region where dual-strip routing is preferred and the 
cost both increase. This is logical. The attractive 
feature of single-strip routing--that more stops can 
be rnade--is negated when vehicles are not large 
enough to make all the stops. 

The results in this paper can be applied to sce
narios more general than those described at the out
set. For example, problems in which all the items 
distributed in one day are not produced simul
taneously can be studied. If the items are not des
tination specific, loads can be made as soon as 
batches of the right size become available; there is 
no need for inventories at the depot. When the items 
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FIG URE 11 Influence of available delivery time. 

shipped are perishable, the available delivery time 
for an item is measured from its time of production. 
Because all batches should be delivered in about the 
same amount of time, the strategies described in this 
paper apply verbatim. On the other hand, when the 
items have to be distributed to beat a deadline 
(e.g., newspapers and magazines as well as items 
taken to businesses that open and close at fixed 
hours), less time is available for the last batches 
that become available. In such cases the first 
batches should be sent to the remote!lt uhitrl<.:Ls dlld 

the last loads to the nearest customers. To apply 
the results of this paper, the time available for 
delivery to each ring of the service area should 
first be determined. This is possible because the 
production schedule is known, each ring has a known 
demand, and rings are served from the outside in. The 
formulas presented in this paper can then be used to 
determine the best way of supplying each ring. 

The research reported in this paper can be used 
as a building block for analyzing more complicated 
time-constrained distribution problems. Among pos
sible applications are 

• Determining either the optimal spacing be
tween two adjacent depots (production plants or 
transshipment terminals) or the optimal location of 
additional depots, given the cost of setting up a 
depot, and 

• Identifying optimal ways of distributing non
storable items through transfer points. 
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APPENDIX--Derivations Associated with Single
Strip Routing 

Let d be the average Euclidean distance traveled be
tween two succeeding points in the district. This 
distance is a function of strip width, which for 
single-strip routing is also the district width, t 
(10). 

(Al) 

where 

h(x) = (2/x2
) [(I + x) In(! + x)- xl (x = 6~2 as defined in the text) 

If the distances between the district boundary 
and the first and last points in the district are 
ignored, 
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L," N,d + 2p (A2) 

and 

D,"' N,d + p- (Q'/2) (A3) 

Substituting d in Equations A2 and A3 by Equation 

Al, and remembering that t' = Ns/(6x)l/2 and t = 
<x/6)1/2 yields 

(A4) 

and 

(AS) 

where 

and 

For single-strip routing, the time constraint is 

41 

N,S + (D,/U) =To (A6) 

Substituting Ds in Equation A6 by Equation AS gives 

N,(x) = (Ur0 - p)/[US + iJ;,(x)8-Y,] p < Ur0 (A7) 

Replacing L and N in Equation S with Ls and Ns, 
Equations A4 and AS, respectively, yield 

where g, as defined in Equation 9, is the line-haul
to-local-cost ratio. 

Equations A7 and AB are the same as Equations 11 
and 12, respectively. 
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