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Exploring the Multiple Factor Concept for 

Bus Maintenance Using Simulation 

GEORGE LIST, MYSORE SATISH, and MARK LOWEN 

ABSTRACT 

The transit industry has clearly shifted to an emphasis on fleet maintenance, 
with operators trying to improve their control of this activity by using tools 
such as maintenance management information systems. One advantage of these sys
tems is their ability to put within reach a wide range of scheduling rules or 
algorithms. Explored in this paper are the benefits of a scheduling rule that 
relies on more than one independent variable or factor. It is based on a prem
ise that the failure distributions of vehicle components are functions of dif
r.,,urnl fdulo1s. All.,,1udllv"'ly, L11"' uompuu.,,ul.i a1"' .i"'u.illlv"' Lo ulrr.,,r.,ul me11-
sures of use. The benefits are clear. For systems where buses accumulate use at 
widely varying rates, one factor to another, or where the services are in a 
state of flux, multiple factor control provides much lower in-service failure 
rates than does single factor control. Moreover, sensitivity analyses indicate 
that the extent of these benefits is dependent on whether on-condition or 
planned replacement is employed and whether the component failure distributions 
are normal or exponential. 

The transit industry has clearly shifted to an em
phasis on fleet maintenance as a result of the re
cent federal austerity and state and local govern
ment belt tightening. Moreover, it appears that many 
operators are striving to improve their maintenance 
practices as well, as evidenced by the popularity of 
recent bus maintenance workshops. 

Operators are searching for better maintenance 
procedures, up-to-date training aids, solutions to 
specific problems, and better ways to manage the 
overall maintenance process--especially ways that 
take advantage or computerized tools such as mainte
nance management information systems (MMISs) • One 
advantage of an MMIS is its ability to put within 
reach a great number of maintenance activity sched
uling rules or algorithms. 

Although maintenance managers have previously had 
to rely typically on just one factor for practical
ity, an MMIS allows them to specify more sophisti
cated algorithms based on several factors, such as 
oil analysis results, hours, and stops, in addition 
to miles. But this raises the question as to whether 
such sophistication has significant value and, if 
so, when. This question is examined in this paper by 
analyzing the value of multiple factor control in 
situations where it is likely to prove useful, such 
as systems whose routes are different from one an
other (e.g., in terms of average speed or stopping 
frequency) or systems whose routes are in a state of 
flux (e.g., expanding or contracting). 

THE MULTIPLE FACTOR CONCEPT 

The multiple factor concept states that the failure 
distributions of the vehicle's components may be 
functions of different independent variables or fac
tors. Alternatively, its components are sensitive to 
different measures of use. For example, lights and 
other electrical equipment may be sensitive to hours 
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of use, air conditioners may be sensitive to equiva
lent full-load hours, and brakes may be sensitive to 
the number of stops made. Hence, the vehicle's over
all reliability is a function of a vector of fac
tors, not just one. The concept also states that 
these factors may themselves be functions of other 
factors (e.g., engine wear may be a function of both 
miles and hours). 

Under these conditions, a maintenance program 
based strictly on one factor will have significant 
shortcomings compared to one that uses a vector of 
factors unless the buses "age" at proportional rates 
for all factors in the vector. If, for example, the 
buses accumulate mileage at rates that vary widely 
from one bus to another, even though they all oper
ate the same number of hours per day, then it will 
be important to include bus-hours along with bus
miles in the vector of factors. 

EVIDENCE OF THE USE OF MULTIPLE FACTORS 

The concept of using multiple factors was, at one 
time, quite popular and it is under consideration 
again today (_!) • Evidence of attempts to use the 
multiple factors concept can be found in the recent 
Bus Maintenance Workshop Proceedings (_~): 

• In Syracuse, New York, an inspection program 
is used that combines mileage and hourly factors; 

• In Los Angeles, California, it is predicted 
that on-board electronics will necessitate better 
monitoring of bus hours; 

• In San Antonio, Texas, it is preferable to 
schedule engine maintenance based on hours although 
there is a lack of confidence in hour meters; conse
quently, mileage is used; 

• In Cleveland, Ohio, hours are used (instead 
of miles) to schedule the city's preventive mainte
nance. 

Moreover, a recent TRB-sponsored study found that 
some bus property authorities think fuel consumption 
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could be useful as a basis for specifying engine, 
and perhaps other, component maintenance (d_). 

ANALYSIS OPTIONS 

Clearly, empirical data should be used for analyses 
whenever possible because actual situations tend to 
have features that model builders cannot, or fail 
to, account for, a criticism that can be lodged 
against the work presented here as well. But re
searchers have discovered that cross-sectional or 
time-series maintenance data are difficult to ob
tain. It seems the industry simply has not computer
ized its maintenance data and is only now making 
progress in that direction, which is due, in part, 
to the microcomputer (4). That bus maintenance data 
can be used to investigate specific issues has been 
illustrated by Maze, Dutta, and Kutsal, who sought 
to determine whether a technological fix to a trans
mission problem produced any quantifiable improve
ment in reliability (~). 

Section 15 data seem to be of some use, but 
Fielding, Babitsky, and Brenner clearly showed that 
many maintenance-related data items have either 
missing or ambiguous entries (~) • In their study, 
road calls had to be dropped from the analysis be
cause the variable's definition led to inconsistent 
entries, active vehicle count-related entries had to 
be deleted because they were ambiguous, and fuel had 
to be dropped because there was no obvious way to 
combine the data for the four different types of 
fuel in use. In a separate Section 15-based study, 
Foerster, Miller, Kosinski, and Rueda could not ob
tain a coefficient of determination (R2

) greater 
than O. 04 in their maintenance-oriented regress ion 
analyses <ll . 

Under these conditions, simulations can often be 
used to generate synthetic data. For example, Dutta 
(8) developed a simulation model, including resource 
allocation suboptimization routines, that allows for 
experimentation with radically different bus mainte
nance strategies. Maze, Dutta, and Kutsal (9) illus
trated the potential problem of maintenance demand 
peaking that can occur when all new buses are pur
chased. Muthukumaran, Miller, and Foerster (10) used 
MASSTRAM (11) to study optimal maintenance planning, 
and Sinha and Guenther (12) combined a maintenance 
planning model with an operations model using a de
pendability factor to study the impacts of mainte
nance strategies on service reliability. 

For purposes of this analysis, however, although 
each of these studies approaches the maintenance 
planning problem with a different methodological 
framework, they have one significant aspect in com
mon: they use just one variable, mileage, to deter
mine when a vehicle is going to fail and when it 
should be scheduled for maintenance. Hence, it was 
necessary to develop a simulation model that incor
porated this feature. 

THE MULTIFACTOR MODEL 

The multifactor bus maintenance model (13) provides 
a simple representation of a transit system's oper
ation, moving buses from one stage to another in a 
four-stage system as shown in Figure 1. The stages 
are as follows: 

• In storage, which is either overnight or as a 
service spare; 

• In service, which is differentiated by type 
(e.g., urban, suburban, or express); 

• Awaiting maintenance, which can be repair 
(high priority) or inspection (low priority); 

• In the shop (in the repair facility). 
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FIGURE 1 Structure of the simulation model. 

INITIALIZATION 

At the beginning of simulation, each bus is placed 
In Storage. Its components are assigned "times" to 
failure (e.g., miles, hours, or stops) by drawing 
values from failure distributions that use the ap
propriate causal factors as the independent vari
able. For example, if component X is sensitive to 
miles, it samples a distribution relating the prob
ability of failure to the number of miles traveled. 

MOVEMENT BETWEEN STAGES 

On each day of simulation, buses In Storage are 
placed In Service by filling route assignments on a 
random basis. After this process is complete, any 
buses still In Storage are left In Storage as spares 
for future assignment. 

Routes can be of various types (e.g., urban, sub
urban, or express) and can have different durations 
(e.g., peak or all day). Moreover, each one (e.g., 
an all-day urban route) has a set of probability 
density functions for the causal factors (e.g., dis
tributions for bus miles, hours, and stops per day). 
Hence, when a bus is assigned to a given route, 
these distributions are sampled to obtain a "use" 
vector for the day (e.g., the day's incremental 
miles, hours, and stops). 

If the day's use vector will push one of the com
ponents past its point of failure, the bus will have 
a breakdown while In Service. The bus accumulates a 
percentage of the use vector proportional to the 
component's point of failure, leaves the assigned 
route, records the failure as being peak or off-peak 
depending on when it occurred, and goes to the 
Awaiting Maintenance stage. 

Replacement buses are dispatched from In Storage 
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to fill vacancies created by the in-service fail
ures. Each one accumulates the remainder of the 
failed bus's use vector plus an increment to reflect 
travel (e.g., miles, hours, and stops) to the point 
where its service starts. If no replacement bus is 
available, the model records the lost hours of ser
vice, peak or off-peak . 

At the end of each day, buses In Service return 
to storage except when they are due for inspection, 
in which case, they go to the Awaiting Maintenance 
stage. Buses Awai ting Maintenance sit in queue until 
it is the ir tu r n to occupy a bay in the repair fa
cility. A bus needing repair has priority over one 
scheduled for inspection, and within each of these 
categories, buses are sequenced according to the 
time when they joined the queue. 

Once a bus is In The Shop, it is either repaired 
or inspected as appropriate . If it is to be fixed, a 
repair time distribution is sampled for the compo
nent being replaced to determine how long it will be 
In The Shop. Once this time has elapsed, the bus 
leaves the shop, releases the facility capacity it 
had employed, and returns to storage, to await its 
next service assignment. 

If the bus is In The Shop for a component inspec
t ion, a test is performed to see whether the compo
nent is still serviceable or needs replacement. 
Ideally, this test would be based on the probability 
that the component shows significant wear given its 
present age plus a conditional probability that the 
i nspec ting mecha ni c wil.l deci de to replace the c om
r,>onent given t his inf ormation. As a simple approxi
mation, t he model assumes t hat a t a g i ven point in 
time, expr essed a s a p ercent of the component' s t i me 
to failure (e.g., 85 percent of its life, measured 
on the basis of the factor that dictates failure), 
it will be obvious that the component needs to be 
replaced. Hence, if the component's percent of time 
to failure is beyond this point (e.g., less than 15 
percent of its life remaining), the bus will be 
s hopped (i.e., put in the Awaiting Maintenance 
q ueue) so that the component can be replaced; other
wise, it will be returned to the In Storage stage to 
await its next service assignment. 

THE BENEFITS OF USING MULTIPLE FACTORS 

To invest igate the benefits of multiple factor con
trol, a hypothetical transit system was developed 
that was assumed to have the following character
istics. 
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Its buses have three components, the first of 
which has a failure distribution dependent on miles; 
the second, hours; and the third, stops. Correspond
ing mean times to failure are 50,000 mi, 3,000 hr, 
and 200,000 stops, and the failure distributions are 
normal with a standard deviation equal to 20 percent 
of the mean (see later text for sensitivity analyses 
r ega rding these assumptions ). The number s are in
t ended to represent e ngine-transmission combina
tions, air conditioners, and brake systems, but 
there is no claim that the numbers are representa
tive of any specific system. [Note that Foerster et 
al. (11 did develop such statistics for several com
ponents based on miles, and the statistics used here 
are loosely related to these.) 

It is also assumed that three types of routes are 
being operated: urban, suburban, and express. The 
urban routes have 10 stops per mile and an average 
speed (Vavg ) of 1 0 mph ; the suburban , 1 stop per 
mile and Vavg = 20 mph ; a nd t he expr ess , one s top 
every 10 mi and Vavg " 30 mph. Fifty per cent of 
the routes are urba n, 30 pe r cent ar e s uburban, anCI 
20 percent are express. For all three types of 
routes, one-third of the assignments are all-day (16 
hr) and the remaining two-thirds are peak (3 hr in 
the morning and 3 hr in the evening). 

The maintenance schedule is based on planned re
placement, with an assumed MMIS being used to s ched
ule buses for component change-out s at mileages 
predicated on the last change-out. For example, the 
change-out interval for the hours-sensitive c ompo
nent might be set to 40, 000 mi. Every t ime the com
ponent fails or is changed-out, the mileage counter 
is reset, so that the next change-out will be sched
uled for precisely 40,000 mi after the preceding 
one. Figure 2 shows that this minimizes the number 
of component replacements required while still meet
ing a given in-service failure rate goal. 

The main quest i on i s whe t her a multifac t o r s t rat
egy woul d offer s ignifican t advantages ove r t he 
present sttategy. Consider t he situat i on where ser
vi c e cutbacks are pl a nned in the nea r f u t ure because 
of fiscal constra i nts . Assume one o f two scenar ios 
is most probable. Either the s uburban and urban ser
vices will be retained (Scenar i o A) or only the 
urban service will be kept (Scenario B), as shown in 
Table 1. 

The maintenance problem under both scenarios is 
to keep the in-service failure rate under control 
(e.g., below 20 percent) in spite of the drastic 
cha nges in service. This goal is diff icult to 
ach ieve because in both scenarios bus es will be 

400 

f 
Target 
In-service 

- - ~i2"1:.'.'. ~t.:_ 

600 
Total Inspections 

FIGURE 2 In-service failures and total replacements versus total 
inspections. 
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TABLE 1 Operating Environment by Scenario 

Characteristic Base Case 

Average speed (mph) 17 
Distribution of routes(%) 
Uroon•·b so 
Suburbanc.b 30 
Expressd,b 20 

Hours of service 
Peak periods 6 
All day 16 

~IO mph G\'Ctago $peed, IO stopr p1.1 r mile. 
Two-thirds pc:.k ho ur bu.sc.s, o ne thfrd all day. 
~20 mph llvctrngc.-. .$pt?e d, one i rop rcr mHe. 

30 mph t11vcmgc speed, o ne stop every 1 o miles. 

Scenario A 

13 

70 
30 

6 
16 

Scenario B 

10 

100 

6 
16 

accumulating hours and stops at faster rates per 
bus-mile than they are presently. Figure 3 shows 
that while the in-service failure rate in the base 
case is 20 percent for the hours-sensitive component 
(using a 40,000-mi change-out interval), it is 70 
percent in Scenario A and 90 percent in Scenario B. 

One potential solution is to identify a new 
change-out interval for each scenario. To stay at 20 
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percent in-service failures, Figure 3 shows that the 
interval should be set to 32,000 mi for Scenario A 
and 25,000 mi for Scenario B. But the problem is 
that this means a different change-out interval for 
each scenario, and new change-out intervals if other 
scenarios unfold. 

However, multifactor control produces much better 
results. As Figure 4 shows, a change-out interval of 
2, 400 hr yields failure rates under 20 percent for 
all three scenarios, meaning the mix of services can 
change constantly and yet the in-service failure 
rate will remain under control. 

SENSITIVITY ANALYSES 

A number of key questions can be asked about how 
sensitive the findings are to the underlying assump
tions. Most important, the questions deal with the 
failure distribution (e.g., type mean and variance) 
and the relative merits of planned change-outs ver
sus on-condition replacements [see Etschmaier (14) 
for a discussion of the relative merits of these two 
strategies]. The critical thing to focus on is the 
relationship between the maintenance interval 
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FIGURE 3 In-service failure trends for mileage-based component 
change-outs and time-dependent, normally distributed failure intervals. 
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FIGURE 4 In-service failure trends for hours-hued component change
outs and time-dependent, normally distributed failure intervals. 
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(planned replacement or inspection) and the in
service failure rate. As Figures 3 and 4 show, the 
key attributes are (a) the shape of the relationship 
and (b) the range of maintenance intervals over 
which the in-service failure rate undergoes signifi
cant change. Using Figure 4 as an example, the in
service failure rate increases monotonically as the 
maintenance interval widens, and the' failure rate 
undergoes its significant change as the maintenance 
interval rises from 1,000 to 4,000 hr. 

SENSITIVITY ANALYSES USING A NORMAL-BASED 
FAILURE DISTRIBUTION FUNCTION 

When the times to failure follow a normal dis tr ibu
tion, the effects of changes in mean and variance 
are clear. If the mean increases, the midpoint of 
the effective range of maintenance intervals in
creases but the range remains constant. For example, 
if, in Figure 4, the mean shifts to 4, 000 hr, the 
curve shifts to center on 4,000 hr, but the range of 
effective intervals remains plus or minus 1,500 hr. 
If the variance increases, as shown in Figure 5, the 
midpoint of the range remains fixed, but the width 
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of the range increases, proportional to the change 
in the standard deviation. 

Understanding the effects of a shift to on-condi
tion replacement is more complex. Remember that the 
model assumes there is a small window of time before 
failure (the near-failure window) when the component 
indicates replacement is required (e.g., within 15 
percent of the end of its life). For the on-condi
tion replacement strategy to be effective, the com
ponent must be inspected during this near-failure 
window. 

Figure 6 shows that the shift in strategy yields 
a complex relationship between the inspection inter
val and the in-service failure rate. Most impor
tant, the timing of the inspections is er itical. 
When the inspection interval is short, there is a 
high probability that an inspection will occur dur
ing the near-failure window and a low in-service 
failure rate results. As the interval widens, how
ever, the in-service failure rate rises sharply be
cause the last inspection before failure increas
ingly comes too early to be useful. In fact, at 
slightly below two inspections per expected life
time, the failure rate reaches a local maximum be
cause the synchronization between inspections and 
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FIGURE 6 On-condition versus planned replacement (change-outs), 
time-dependent, normally distributed failure intervals. 
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FIGURE 7 In-service trends for on-condition and planned replacement; 
time-dependent, exponentially distributed failure intervals. 

failures is poor. After decreasing slightly at one
half the expected lifetime, the in-service failure 
rate rises sharply again reaching a rate as high as 
that encountered when no inspections are conducted 
because the timing problem is most acute. At first, 
the problem is severe because there is a low prob
ability that any inspection will occur during the 
near-failure window. However, as the inspection in
terval widens still further, approaching the length 
of the expected lifetime, the in-service failure 
rate drops markedly because an increasing percentage 
of the inspections are occurring during the near
failure window. In fact, at intervals slightly 
smaller than the expected lifetime, there is a local 
minimum because the number of inspections during the 
near-term failure window reaches a local maximum. 
Once past this maximum, the length of the expected 
lifetime, on-condition replacement appears to be the 
same as planned change-out with a monotonically in
creasing in-service failure rate. 

SENSITIVITY ANALYSES USING AN EXPONENTIAL-BASED 
FAILURE DISTRIBUTION FUNCTION 

When the times to failure follow an exponential dis
tribution, the effects of planned change-out and on
condition replacement are reversed. A planned 
change-out strategy keeps the in-service failure 
rate high no matter what change-out interval is se
lected (with similarly large total replacements) 
while on-condition replacement produces small in
service failure rates, provided the inspection in
terval is kept short relative to the expected life
time. 

As Figure 7 shows, dropping the planned change
out interval from 4,000 hr down to 125 produces only 
an 8 percent drop in the in-service failure rate. 
Moreover, although not shown in the figure, the 
total replacements increase almost ninefoldl Switch
ing to an on-condition replacement strategy over the 
same range drops the in-service failure rate from 
100 percent to 13 percent. Moreover, although it is 
not shown in the figure, total replacements do not 
increase at all. The figure does show, however, that 
under these conditions shifts in the service char
acter is tics of the bus system are not as er i tical 
because a short inspection interval must be used to 
keep the in-service failures under control in any 
event. 

IMPLICATIONS FOR FUTURE RESEARCH 

There are many implications from this research, but 
four seem most important. First, the industry should 
try to determine whether, and to what extent, fac
tors other than mileage are critical in the failure 
distributions of various components. Second, when 
gathering historical maintenance data, analysts 
should strive to measure such things as bus-hours, 
fuel consumption, and stops, in addition to bus
miles so that these causal relationships can be 
identified. Third, analysts should also attempt to 
determine the precise nature of the failure distri
butions because this paper indicates that they are 
er i ti cal to the selection of an appropriate main
tenance strategy. Finally, there is a need to ex
plore further the issue of on-condition versus 
planned replacement using models such as the one 
that has been presented here. 
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Effectiveness of Improved Repair Scheduling in the 

Performance of Bus Transit Maintenance 

UTP AL DUTT A, T. H. MAZE, and ALLEN R. COOK 

ABSTRACT 

Described in this paper is a computer simulation model that is used to investi
gate the efficiency improvements that are possible through the scheduling of 
bus maintenance repairs through a maintenance shop. The scheduling rules that 
are investigated rank repair jobs in priority order according to the length of 
time the bus has been waiting for repair and the length of time the job will 
take. It is found that scheduling, as opposed to not scheduling, can make dra
matic improvements in the maintenance system's efficiency. Further, once sched
uling policies are identified that result in superior performance, it is found 
that these same policies are superior under a variety of system conditions. The 
conditions varied include the number of spare buses carried, the fleet size, 
the failure distribution parameters, mechanic labor availability, and the maxi
mum length of time a bus can wait for a repair. 

The general financial dilemma faced by transit oper
a tors is well documented in the literature (l-3). 
This condition is a result of escalating operating 
costs and efforts by the federal government to re
duce federal operating subsidies. This financial 
pinch is placing pressure un 111e11il.iers or the Lransil 
industry to strive to operate as economically as 
possible. Many have argued that cost efficiency 
gains are possible if transit agencies institute 
more effective fleet management principles <.!-.§). 

The purpose of this paper is to present computer 
simulation experiments used to determine the poten-

u. Dutta, Goodell-Grivas, Incorporated, 17320 West 
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ter, The University of Oklahoma, Norman, Okla. 73019. 
A.R. Cook, School of Civil Engineering and Environ
mental Science, The University of Oklahoma, Norman, 
Okla. 73019. 

tial for efficiency gains from improved fleet man
agement policies. The policies investigated deal 
with the effective use of maintenance activity 
scheduling. The scheduling rules rank in priority 
order the making of corrective repairs. For example, 
one slmple rule would be to schedule for repair 
first those jobs that require the fewest mechanic
hours to complete. Improved repair scheduling rules 
have been shown to result in better system perfor
mance for a fixed level of resources (labor, spare 
units, and repair facility resources) in other in
dustries (]). 

EXPERIMENTAL APPROACH 

To determine if similar efficiency gains are pos
sible in transit bus maintenance as a result of im
provements to repair scheduling, simulation exper i
ments are conducted. Simulation allows the analyst 
to build a symbolic model of a system on the com-


