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Modeling the Relationship of Accidents to Miles Traveled 

PAUL P. JOVANIS and HSIN-LI CHANG 

ABSTRACT 

Consideration of highway safety studies in a time-space domain is used to in­
troduce the concept that different study designs result in different underlying 
probability distributions describing accident occurrence. Poisson regression is 
proposed as a superior alternative to conventional linear regression for many 
safety studies because it requires smaller sample sizes and has other desirable 
statistical properties. Models are estimated using accident, travel mileage, 
and environmental data from the Indiana Toll Road. A pooled model including all 
accidents revealed that accident occurrence increases with automobile vehicle 
miles of travel (VMT), truck VMT, and hours of snowfall. Segmentation of the 
data into subsets that describe different types of collisions revealed that 
automobile accidents are much more sensitive to environmental conditions than 
are truck accidents. Use of the segmentation technique allowed a much clearer 
understanding of the effects of travel mileage on accident occurrence than 
could have been obtained from the pooled data alone. 

It is generally recognized that the occurrence of 
accidents results from the complex interaction of 
characteristics of the driver, vehicle, roadway, and 
environment. The number of accidents (accident fre­
quency) is also clearly related to the amount of 
travel that occurs. Quantity of travel may be mea­
sured in any of several ~ays including hourly volume, 
average daily traffic, or vehicle miles of travel 
(VMT), among others. These measures of quantity of 
travel can be used to describe traffic conditions 
that exist during exposure to accident risk. A more 
precise definition of exposure is, " ••• the amount or 
opportunity for accidents which the driver or traffic 
system experiences" (_!). This broader interpretation 
of exposure has led some researchers to explore the 
effects on accident occurrence of environmental con­
ditions during which the driving occurred (~_). 

Previous studies relating accident occurrence to 
level of traffic have used a variety of measures of 
travel quantity. Belmont (3) found the accident rate 
(accident per million VMT) for two-lane sections 
almost linear with hourly traffic flow during day­
light. For four-lane divided sections, Leutzbach C!l 
and Gwynn (2) found that a U-shaped relation exists 
between accident rate and hourly traffic flow, where 
the minimum values of the accident rates happened at 
approximately 600 to 1300 vehicles/hr per two lanes. 
In another study the accident rate increased rapidly 
when the traffic volume was below 550 vehicles/hr 
per two lanes, but showed little variation beyond 
this flow value (&_) • 

Smeed Cl> considered the problem on a much broader 
scale, studying national yearly accident rates. He 
found that the total accident rate showed little 
variation with annual traffic volumes. When he 
separately considered single-vehicle and mutiple­
vehicle crashes he found that the single-vehicle 
accident rate decreased with annual traffic while 
the multiple-vehicle rate increased. 

Ceder and Livneh (~) used both time-sequence 
analysis and cross-sectional analysis to study 
single- and multivehicle accidents for a series of 
eight roadway segments over an B-year period. Ceder 
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<2) expanded on this work by considering accident 
rates in conjunction with free-flow and congested­
flow conditions. He found that the total accident 
rate versus hourly flow curve followed a U-shaped 
configuration for the free flow, which is the result 
of a convex downward and a convex upward curve for 
single- and multivehicle accidents, respectively. 
For congested flow, the accident rate for multivehi­
cle accldeuto lncu;aoeo r c1pillly wi Lb hourly traffic 
flow. 

A TIME-SPACE PERSPECTIVE ON ACCIDENT OCCURRENCE 

These studies can be considered as representing dif­
ferent areas in a space-time plane (see Figure 1). 
Smeed's research represents a very large area because 
he used national statistics on an annual basis (l) • 
The use of horizontal lines indicates that the anal­
ysis was cross-sectional, comparing the accident 
experiences of different countries (a spatial analy­
sis). Gwynn considered only one route but conducted 
his comparisons on an hourly basis in the time 
domain, so there are vertical lines within the domain 
defining his study (~).These areas are not drawn to 
scale but are used to illustrate how these two 
studies would be represented in the space-time plane. 

Different types of accident studies result in dif­
ferent shapes in the space-time plane. Each of these 
shapes can be linked to particular probability dis­
tributions that describe the probability of accident 
occurrence. For example, with a long time period and 
large study section it may be reasonable to approxi­
mate the occurrence of accidents by a normal distri­
bution. If the time and space domains are large, 
there is a very small likelihood of zero accidents 
in a time interval. The normal distribution will 
then have a large mean and a comparatively small 
variance that will make zero or negative values un­
likely. This appears to be a reasonable distribution 
to use in this context. 

The spatial and temporal aggregation required by 
these large time-space areas makes it difficult if 
not impossible to isolate the influence of driver 
and environmental characteristics. The normal dis­
tribution that is assumed in linear regression and 
analysis of variance (ANOVA) may be appropriate for 
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F1GURE 1 Space-time plane for highway accident study_ 

some specific comparisons (e.g., accident frequency 
on particular roadway segment) but controls for 
driver and vehicle factors must be carefully devel­
oped particularly for cross-sectional studies. Al­
though vehicle and driver characteristics may be 
known for accidents, these attributes may be very 
difficult to obtain for nonaccidents. 

At the other extreme of the time scale are analy­
ses that seek to explore accident occurrence as a 
series of "success" or "failure" trials in which 
success is the safe completion of a trip and fail­
ure is an accident. Over a period of time accidents 
can be considered as governed by this Bernoulli pro­
cess (10). At the level of individual trip success 
and failure trials, much detail can be retained about 
the driver and the vehicle. Although roadway and 
environment data are available at the accident scene, 
it is more difficult to obtain these data for the 
other portion of the trip. Data collection would 
have to be carefully managed as very large sample 
sizes may result. 

One extension of this representation as a Ber­
noulli process is the use of survival theory to pre­
dict the probability of having an accident at a 
particular time, given that the driver has survived 
until that time (11) • Survival theory also provides 
for inclusion of successful trips that are completed 
without an accident as exposure data. Although more 
res ear ch needs to be conducted to improve variable 
specifications, this model holds great promise in 
allowing improved representation of driver, vehicle, 
roadway, and environment in a consistent framework. 
A major potential disadvantage of the Bernoulli ap­
proach is that data collection and assembly may be 
expensive, particularly for exposure data. 

Intermediate between these two representations is 
the Poisson distribution, which allows for discrete 
outcomes that are strictly nonnegative. If the time 
and space domains are carefully defined, and the 
assumption about independence of events is satisfied, 
the Poisson distribution may be reasonable. 

OBJECTIVES 

The discussion of time-space domains for accident 
analysis introduces the concept that different study 
designs can lead to different underlying probability 
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distributions describing accident occurrence. The 
objective of this paper is to further explore this 
issue. If the true causes (and potential countermea­
sures) of accidents are to be identified, then sta­
tistical procedures must be used that accurately 
describe accident occurrence. In the remainder of 
the paper a model of accident occurrence that offers 
important advantages over conventional linear re­
gression methods is developed and tested. 

In the next section of the paper particular prop­
erties of accident occurrence that can complicate 
analysis are discussed. Poisson regression is sug­
gested as a means to overcome many of these compli­
cations. The analytical structure for Poisson re­
gression is described in a later section. Results 
and discussion of a model application are presented 
followed by conclusions. 

DISCRETENESS, NONNEGATIVITY, AND HOMOSCEDASTICITY 

Regression analysis has been widely applied in 
studies that seek to relate accident occurrence to 
traffic volume (~-~). Three particular properties of 
accident occurrence argue for care in the appli­
cation of linear regression to road safety studies. 
These properties are the existence of relationships 
between the mean and variance of accident frequency, 
nonnegativity of the dependent variable (either ac­
cident frequency or accident rate), and occurrence 
of nonnormal error term distributions. Each of these 
issues is discussed in detail in the paragraphs that 
follow. 

It is common to think of accident occurrence as a 
process that follows a Poisson or possibly a Ber­
noulli process (10) • Both of these processes imply 
that the variance of accident frequency is func­
tionally related to the mean (e.g., in Poisson pro­
cesses the variance is equal to the mean). If an 
attempt is made to regress accident frequency by 
vehicle miles of travel for an accident process that 
is actually Poisson, the results obtained might be 
similar to Figure 2. Because more accidents are 
generally likely to occur at higher traffic volumes 
(due to increased conflicts), a linear positive 
relationship would be expected to fit through such 
data. It can readily be seen from Figure 2, however, 
that as VMT increases so does the variance of acci­
dent frequency (the dependent variable). This condi­
tion clearly violates the homoscedasticity assumption 
(error term has equal variance for the entire range 
of the predictor variables) of linear regression 
(12). 
~Violation of the assumption of equal variance of 

the error terms will not affect the estimated param­
eters; it does affect the confidence intervals of 
the estimators, invalidating any hypothesis tests 
concerning the significance of the parameters. If 
the objective of a study is to determine the in­
fluence that particular predictor variables have on 
accident occurrence, the failure to properly test 
for parameter significance is a serious flaw. 

The use of accident rates (accidents and quantity 
of traffic) in the regression analyses may appear to 
overcome the problems with functionally related means 
and variances. Figure 3 shows a comparable regression 
line for accident rate regressed against VMT. Despite 
the transformation to a continuous dependent var i­
able, one can still sketch in contours of equal ac­
cident frequency per unit time (whatever the time 
dimension of exposure). This estimation still results 
in a violation of the homoscedasticity assumption of 
linear regression. 

Assume that accident frequency for a study section 
is governed by a Poisson process (mean = variance = 
;q and that the frequency will increase with in-
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FIGURE 3 Regressing accident rate and VMT. 

creasing VMT. The regression relationship represented 
in Figure 2 can be written as 

where 

a 

accident frequency in period of time, t; 
VMT during time t; 

(l) 

error term, assumed to be distributed normal 
(o, cr~); and 
regression parameter. 

If accident occurrence is a Poisson process, then 
the variance of Ut will be related to the VMT 
through the Poisson parameter A' which will in­
crease with increasing VMT. Therefore 

(2) 

This problem can be corrected 
stabilizing transformation 
dividing Equation l by (xtll/2. 

then 

Var(u~) 

by using a variance 
(13); specifically, 
This yields 

(3) 

(4) 

(5) 

Therefore error terms of equal variance will result 
for the case when Equation l is divided by (xtll/2. 
If Ytixt (accident ratei is regressed with Xt, the 
result will be narrower variance at higher levels of 
VMT. This is shown in Figure 3 by a smaller variance 
as VMT increases. 
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These variance-stabilizing transformations are 
useful, but when the response variable has been re­
expressed, the predicted values are in the. trans­
formed scale. It is often necessary to convert the 
predicted values back to the original units. Unfor­
tunately, applying the inverse transformation di­
rectly to the predicted values gives an es~imate of 
the median of the distribution of the response in­
stead of the mean (_!i). 

The s econd problem, nonnegativity of accident 
occurrence, also imposes restrictions on the appli­
cation of linear regression. The restriction is ap­
parent in Figures 2 and 3 for both discrete and con­
tinuous dependent variables. If either regression is 
conducted for a set of data with high accident fre­
quency or accident rate, respectively, then the pre­
diction of "negative " accidents is much less likely. 
The requirement for either high frequency or high 
rate carries obvious implications for study design 
(particularly in the time-space plane of Figure 1). 
Restricting cases to those with high accident fre­
quency may also increase study costs by requiring a 
larger sample of data. 

A number of analytic methods are available to 
deal with these estimation problems. The method of 
least squares subject to a priori constraints can 
overcome the problem of negative-value prediction, 
but it will lead to biased estimates of model coef­
ficients (15). Nonlinear models are also used to 
avoid the ~gative-value prediction problem, and a 
least squares estimation procedure based on the 
linearization of the nonlinear form (such as loga­
rithm) can be applied to estimate the parameters. 
However, the logarithm of zero is not defined, and a 
zero accident observation therefore cannot be in­
cluded in the investigation. One alternative for 
dealing with this problem is to omit the zero obser­
vations, but this is undesirable because the traffic 
situations in which no accidents occur are obviously 
important. The other alternative is to add a small 
number (e.g., 0.04) to all observations of the de­
pendent variable (16). Such pretreatment of observa­
tions can greatlY- affect the estimation and is 
therefore undesirable. 

A third problem occurs when the error terms are 
not normally distributed due to the character is tics 
of nonnegativity and small value of discrete depen­
dent variable (see Figure 2). Under these conditions 
the correct confidence intervals will not be obtained 
for estimated parameters, and tests of parameter 
significance are again i nvalid. 

The Poisson regress ion model, which assumes that 
the occurrence of the dependent variables follows 
the Poisson distribution, can effectively overcome 
most of the problems caused by discrete and nonnega­
tive values of observations in normal linear regres­
s ion analysis. Poisson regression techniques were 
used for the analyses of accidents in The Netherlands 
( 17) • Each accident was assigned to a category de­
fined by different ranges of independent variables. 
For example, Hamerslag specified 4 classes for motor 
vehicle volume and 4 classes for motor bicycle vol­
ume, obtaining 16 categories of accidents through 
the combination of those two independent variables. 
The expected annual accident frequency for each 
category was assumed to be a function of its respec­
tive classes of independent variables. The number of 
accidents that occurred within a given time interval 
for each category was assumed to be Poisson-distrib­
uted with the mean equal to the predicted accident 
frequency for that category. 

Aggregating information in the specification of 
the independent variables by range hinders the abil­
ity to explore the risk factors for traffic opera­
tion. Furthermore, if the number of independent 
variables is large, a huge sample size of data is 
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required in order to obtain statistical power. The 
authors' research model is an attempt to apply the 
Poisson model to a more disaggregate analysis of 
highway accidents, to better identify some of the 
factors contributing to highway operating risk. 

POISSON REGRESSION MODEL 

The Poisson distribution was first considered in the 
context of regression analysis about two decades ago 
C!.§.l. It assumes that the dependent variables in a 
regression analysis are counts that follow the Pois­
son distribution, and that the observations are in­
dependent with the expectation as defined by the 
following equation: 

i 1,2 ..•.••••• ,n. 

j 1,2 ••.••••••• ,mi. (6) 

where ~i = (xn,xi 2, ...... ,xikl is the ith set of 
values of the k independent variables, mi is the num­
ber of replications of the ith experimental condi­
tion, a = <Jti •B2 , .••• •• Bpl I is a p-d imensional vector 
of unk nown parameters , and (Yij l is a particular 
realiza tion of the e x per iment (15). It is further as­
sumed that some general form of the model is known 
and f(~ 1l) is a differentiable function of!· Then n 
values of the independent variables are selected by 
the experimenters or specified by the situation. The 
number of n is supposed to be sufficiently greater 
than p to ensure estimability of the parameters. 
Three different methods are available to estimate 
the parameters of the Poisson regression model. They 
are maximum likelihood, weighted least squares, and 
minimum chi-square estimation. Maximum likelihood 
estimation has been widely accepted in past applica­
tions because of its convenience. 

The occurrence of highway accidents can be rea­
sonably described by the nonstationary Poisson pro­
cess if the study system (or area) is adequately 
selected. According to the basic assumptions of the 
Poisson process, it is assumed that the number of 
accidents occurring within each observed time in­
terval is independent, with the expectation defined 
as in Equation 6. This expectation of the number of 
accidents in each time interval is a function of 
traffic volume, road and weather conditions, and so 
forth. Hence the expected values of accidents are 
different from time interval to time interval, and 
this is the so-called nonstationary Poisson process. 
The model is set as 

wher e 

Ai expected value of accident frequency for 
ith time interval, 

J!. = the vector of parameters to be estimated, 
and 

(7) 

~i the vector of independent variables for ith 
time interval. 

The probability of k accidents occurring in t inter­
vals is represented as 

(8) 

However, because only the accidents occurring in 
each time interval (t=l) are considered, Equation 8 
becomes 

(9) 
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Then a set value of S that maximizes the 
likelihood value (L) T s sought: 

L(S) ~ IT Pi(k)Dik 
i=l k=O 

following 

(10) 

where Dik is the dummy variable for the number of 
accidents that occur in the ith time interval: 

Dik 1, if k accidents occurred in ith time 
interval, 

Dik O, otherwise. 

For convenience, a logarithm transformation of Equa­
tion 10 is taken and called the log-likelihood value 

[LL(~)]: 

LL(S) 

n 

l Dik log [Pi(k)] 
i=l k=O 

(11) 

LL(c) is also defined as the log-likelihood value of 
the model in which only the constant term is used. 

The value of 2[LL(S)-LL(c)] is distributed as x'-dis­
tribution with p-l degrees of freedom. It is a sta­
tistic for testing the significance of all explana­
tory variables included in the model. p 2 , defined as 

1-[LL(S)/LL(c)], is an informal goodness-of-fit mea­
sure a~d is analogous to R2 used in regression. 

DATA COLLECTION AND MODEL FORMULATION 

Data Collection 

The data used in this study were collected on the 
Indiana Toll Road in 1978. The Indiana Toll Road is 
an east-west road 157 mi long. It transverses mustly 
open flat country. There are no steep grades or sharp 
horizontal curves. Daily VMT data were derived from 
the toll collection system. All drivers entering the 
Indiana Toll Road receive a ticket that records the 
designation of the particular interchanges of entry 
and the date on which the vehicle entered the toll 
road. The toll is collected when the vehicle leaves 
the tollway, and the vehicles are then classified 
according to the toll schedules' list of vehicle 
classes. Because a vehicle can only enter and leave 
the tollway at a limited number of interchanges, 
these facilities are closed systems where VMT can be 
easily calculated and recorded by mechanized card­
reading procedures. Thus, the precise daily automo­
bile and truck VMTs are available. 

Data describing all toll road main line accidents 
were obtained from records of the Indiana State 
Police Toll Road Headquarters. Accidents occurring 
at toll booths, access roads, service areas, and 
ramps were excluded because they are . likely to be 
influenced by geometric design and other operational 
characteristics that are site-specific. By studying 
only main line accidents, the authors hoped to ob­
tain a clearer relationship between accidents and 
exposure for a well-designed, fou~-lane freeway 
facility. After screening non-main line accidents, 
the data set included more than 700 accidents and 
1,023 vehicle involvements (19). 

The weather data were obtained from the National 
Oceanic and Atmospheric Administration's Environ­
mental Data and Information Service at the National 
Climatic Center in Asheville, North Carolina. There 
are six stations recording hourly precipitation and 
amount of daily snowfall along the Indiana Toll Road. 
The toll road is within 5 mi of all the stations, 
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which are roughly evenly spaced. The hours of snow 
and hours of rain were derived by Delleur (.!.2); an 
average of the weather conditions of those six survey 
stations is used as the hours of snow and hours of 
rain for the toll road overall. 

Independen t Variabl es 

A regression model does not imply a cause-and-effect 
relationship between the variables. To establish 
causality, the relationship between the regressors 
and the response must have a basis outside the sample 
data; for example, the relationship may be suggested 
by theoretical considerations. Regression analysis 
can aid in confirming a cause-effect relationship, 
but it cannot be the sole basis. 

Traffic volume and traffic composition affect 
traffic speed, variation of vehicle traveling speeds, 
and drivers' psychological condition. For example, 
automobile drivers may feel uncomfor:tahle when they 
join a traffic stream that has a high truck volume. 
Hence, the increase of traffic volume will not only 
increase the number of accidents because of more 
exposure, but it will also increase traffic conflict 
and friction. VMT is used to represent the traffic 
volume in the study system. Daily traveling miles of 
automobiles, small trucks, and large trucks are 
separated not only for exposure considerations, but 
also for distinguishing their effects on different 
accident patterns. Small trucks include six-tire 
vehicles with two axles, commercial vehicles with 
three axles, and two-axle tractors with one-axle 
trailer. 

The second factor tested in this model is the 
weather condition, which influences the friction of 
roadway pavement and driver's sight distance. These 
effects will affect the safety ot high-speed opera­
tion on the highway. The hours of snowing and raining 
in the study system are considered to reflect the 
effect of daily weather condition on daily accident 
occurrence. An average of the data collected from 
the survey stations along the toll road is used to 
represent the daily weather condition. 

The last regressor considered in this study is 
the effect of different driving populations on acci­
dent occurrence. Travel is derived by people's 
activities, which are generally controlled during 
weekdays by work trips and related travel. These 
drivers are likely to be frequent travelers of the 
toll road, familiar with its relatively high mix of 
automobiles and trucks. Weekend travelers may be 
less frequent users who ure less uble to cope with 
traffic conditions on the road. In order to help 
capture the influence, if any, of different driving 
populations, a dummy var iable--labeled WEND-- is in­
cluded in the model. 

Functional Form of the Model 

There is no reason to prefer one functional form 
over any other for Equation 7. A linear additive 
form was initially tested but failed to result in 
valid model estimates. It appeared that some sets of 

possible parameter estimates caused ~ to be nega­
tive, violating the assumed conditions of the Poisson 
distribution. A multiplicative specification was also 
tested and yielded valid parameter estimates. The 
multiplicative form of Equation 7 is as follows: 

A So(VMTa)S1(VMTlt)S2(VMTst)S3(l+HSNOW)S4 

(l+HRAIN)S5(l+WEND)S6 (12) 



Jovanis and Chang 

where 

A = expected accident frequency per day; 
VMTa = daily VMT of automobiles (10 6 vehicle 

miles); 
VMTlt = daily VMT of large trucks (10 6 vehicle 

miles); 
VMTst • daily VMT of small trucks (10 6 vehicle 

miles): 
HSNOW n hours of snow in the study system; 
HRAIN = hours of rain in the study system; and 

WEND = dummy variable for weekend; WEND=l for 
weekend, and WEND=O otherwise. 

One has been added to each of the last three pre­
dictor variables to prevent zero values for estimated 
:1.•s, which would result in the logarithm of zero 
(which is undefined) occurring in Equation 6. Notice 
that this formulation does allow for zero values of 
the dependant variable so that it is not subject to 
the criticisms described in the section on Discrete­
ness, Nonnegativity, and Homoscedasticity. 

MODEL RESULTS AND INTERPRETATION 

Preliminary empirical results indicated that the 
parameters of the weekend and small truck VMT wer e 
not significant. The dummy variable, WEND, was re­
moved from the original model in order to improve 
the model structure. A x2 -test, revealed that 
deleting weekend caused no significant difference in 
the explanatory ability of the restricted model com­
pared to the original model. The small truck VMT 
also had no significant effect on accident occur­
rence. The small truck VMT was small relative to 
automobile VMT and large truck VMT, and it also was 
positively correlated with the large truck VMT. In 
order to deal with the issue of collinearity between 
independent variables, the small truck and large 
truck VMTs were combined into one variable, truck 
VMT. 

TAB LE 1 Empirical Results for Poisson Regression Models 

Ace i dent Type Pooled Single Single Auto-
Model Auto Truck Auto 

Parameter 

BO 1. 775 0.572 0.481 0.128 
Constant 

t I 17 .20) (10.33) (8.481 15.261 

(106) Bl 0.255 0.513 -0.066 0.984 
VMTauto 

t 13.491 (-4.991 1-0.441 (4.251 

( 106) 62 0.229 -0.059 0.674 -0.412 
VMTtruck 

t (2.481 (-0.401 (3.12) (-J.68) 

B3 0.626 0.569 0.683 o. 741 
Snow (hrs) 

t 19.90\ I 5.32) (5.41) 14.22} 

(hrs) B4 0.025 
Rain 

0.180 0.097 -0.186 

t I0.391 ( 1.931 (0.741 ( -0.87l 

Average Daily Accidents J.995 0.789 0.466 0.230 

~mber of kcidents in 1982 728 288 170 84 

LL(c) -714.29 -455.46 -339.00 - 222.19 

LL(a) -668. 77 -434.41 -321.82 -200.16 

2 _ I LL (ft) 
p - - ITfCT 0.064 0.046 0.051 0.099 

2( LL( S ) - LL( c) ) 91.0 42.1 34.4 44.1 
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Therefore, only four independent variables were 
included in the model: (a) automobile VMT, (b) truck 
VMT, (c) hours of snow, and (d) hours of rain. The 
empirical results of the final model are given in 
Table 1 , along with the log likelihood and goodness­
of-fit measures discussed in the section titled 
Poisson Regression Model. 

In addition to the pooled model, which includes 
all accidents, several additional models are esti­
mated for different types of collisions. Separate 
models are estimated for single-vehicle crashes (both 
automobile and truck) and for two-vehicle crashes 
differentiated as automobile-automobile, truck-truck, 
and truck-automobile. In addition, separate models 
were estimated for single vehicle and multiple vehi­
cle crashes. Crashes with three or more vehicles 
were extremely rare, so more than 95 percent of the 
accidents were included in these categories. The 
different models were separately estimated to deter­
mine if VMT and weather conditions may have had 
different effects on different types of vehicle 
crashes. 

Pooled Model 

The estimates for the pooled model indicate that all 
parameters are significant except for hours of rain­
fall. The x2 -test for the entire model strongly 
rejects the null hypothesis that the full model has 
explanatory power equal to that of the model with 
the constant term only. Consistent with previous 
results (~), hours of snowfall is strongly positively 
associated with accident occurrence as are automobile 
and truck VMT. 

Although the pseudo goodness-of-fit measure is 
small (p 2 .06), this is an indication of the 
additional variation in accident frequency explained 
by the four predictors compared to the constant term 
alone. The magnitude of the additional variation 
explained by the predictor variables is not incon-

Truck- - Auto- Auto Truck Single Multiple 
Truck Truck Involved Involved Vehicle Vehicle 

Accident Acc ident 
0.293 0.359 J.038 1.117 1.047 0.735 

(5.801 I 7 .251 I 13. 74 l I 12.541 I 13.431 (JO. 75) 
-0.929 0.146 0.502 -0.135 0.300 0.183 

(-3.841 (0. 79) ' 15.401 ( -1.32} ( 3.19} ( 1.571 
J. 769 0.556 0.005 o. 751 0.184 0.311 

(4.41) 12.281 {0.051 (4.94} I 1.56} (2.071 
0.377 0.673 0.634 0.624 0.617 0.636 

( J.85\ I 4.471 18. J2) 17 .18] (7 .551 (6.391 
-0. 277 -0. 252 0.037 -0.076 0.150 -0.244 

(-1.061 [-J.351 (0.481 1-0. 77) ( 1.98) (-1.9 7) 

0.178 0.332 J.351 0.975 J .255 0.740 

65 121 493 365 458 270 

-184.21 -278.15 -605.67 - 516.44 ,-566.55 -451.57 

-164. 81 -266.01 -565. 37 -478.63 -539.42 -428.06 

0.105 0.044 0.067 0.073 0.048 0.052 

38.8 24.3 80.6 75.6 54.3 47 .o 
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Overall Accidents 
~l = 0.255 

Single-Vehicle 
Accidents 

Single-auto 
Accidents 

ii. = 0.513 
~ 

s
1 

= a.3aa 

L~ :Significant Effect(0(.=0.05) 
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FIGURE 4 Effects of automobile VMT on the accident occurrence for different accident patterns. 

sistent with results at disaggregate models in the 
travel demand literature. It must be remembered that 
the dependent variable is daily accident frequency. 
A significant amount of random variation might be 
expected with such a variable. 

The summaries in Table 1 include values for LL(c), 

LL(S), p 2 and 2[LL(S) - LL(c)] for each of the models 
uf the lntllv ltlual accltlent types. These statistics 
can be used to test the improvement in model fit 
that ic obtained when a more detailed analysis is 
conducted (l.e., when one moves from a pooled model 
to single-vehicle crashes to separate single automo­
bile and single truck collisions as is shown in Fig­
ure 4). The findings were consistent: the detailed 
models always achieved a statistically significant 
improvement in goodness of fit compared with the 
less-detailed models. 

3.0 

2.0 

Multiplicative Factor 
to Accident Freqllency 
~*(auto VMT)**P 
Po 1 

Effect of Automobile VMT 

Figure 4 is an overview of the parameters for auto­
mobile VMT for each of eight separate but related 
models. The tree structure sequentially separates 
accidents into the more detailed categories. By 
estimating this sequence of models and comparing the 
significance and magnitude of a parameter, the in­
fluence of automobile VMT on different types of ac­
cidents can be determined. In addition to thP. param­
eter value, the figure also indicates statistical 
significance. As would be expected, automobile VMT 
is significant for the pooled model (overall acci­
dents) as well as single-automobile and automobile­
automobile collisions. 

In order to better understand the interaction of 
the types of collisions, Figure 5 was constructed. 

Auto-involved Accidents 

~~----~-----Single-vehicle Accidents 

1. 0 
~~~~---------Single-auto Accidents 

uto-auto Collisions 

Truck-truck Collisions 

0.0 1.0 2.0 5 .0 Auto VMT(*l0 6 ) 

FIGURE 5 Effects of automobile VMT on accident occurrence within the range of available data. 

3.0 4.0 
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For comparison purposes, the constant term, So, is 
combined with the effect of automobile VMT and called 
a multiplicative factor. The number of overall acci-
dents increases at a decreasing rate (0 < a1 < 1.0) 
as the automobile VMT increases. This means that in­
creases in automobile traffic will increase the num­
ber of overall accidents when the other factors are 
fixed, but the accident rate, which can be determined 

by (VMTautoJ**Ca 1-lJ, will decrease. 
This increase of overall accidents is mainly at­

tributed to the increase of automobile-involved ac­
cidents, especially the single-automobile accidents. 

From Figure 5, it can be seen that the curves for 
single-vehicle accidents and single-automobile acci­
dents are parallel over the range of available auto­
mobile VMT data. This implies that the automobile VMT 
has no effect on the single-truck accidents. The num­
ber of single-automobile accidents increases at a 
decreasing rate, whereas the number of automobile­
automobile collisions increases approximately lin-

early (S 1 ~ 1.0). Hence, the proportion of automo­
bile-automobile collisions to automobile-involved 
accidents will increase as the automobile VMT in­
creases. 

The number of truck-truck collisions sharply de­
creases when the automobile VMT increases. This de­
crease might be expected to be compensated by an 
increase in truck-automobile collisions. However, 
neither a significant decrease of single-truck acci­
dents nor a significant increase of truck-automobile 
collisions can be found. The effect on total multiple 
vehicle accidents is not significant because of the 
compensating effects on truck-truck and automobile­
automobile crashes (this is also shown in Figure 4) • 
This is a clear example of how this market segmenta­
tion approach can be used to gain information about 
the influence of predictor variables on different 
types of accidents. 

Effect of Truck VMT 

Truck VMT also has a significant effect on overall 
accidents (see Figures 6 and 7). The number of over­
all accidents increases at a decreasing rate (0 < 
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s 2 < 1.0) as the truck VMT increases (Figure 6). This 
increase of overall accidents is mainly attributed 
to the significant increase of truck-involved acci­
dents, which include the single-truck, truck-truck, 
and truck-automobile accidents. The single-truck 
accidents and truck-automobile collisions increase 
at a decreasing rate, whereas the truck-truck colli­
sions increase at an increasing rate. From Figure 7, 
it can be seen that the number of truck-truck colli­
sions will occupy a significant proportion of truck­
involved accidents when truck traffic is high. The 
number of automobile-automobile collisions marginally 
decreases as the truck VMT increases (Figure 6). The 
increase of truck-automobile collisions and decrease 
of automobile-automobile collisions when the truck 
VMT increases verify the hypothesis that automobile­
automobile collisions shift to truck-automobile col-
1 isions as truck VMT increases. 

E.ffects of Environmen tal Variables 

The hours of snow have a significant effect on acci­
dent occurrence for all the accident patterns. The 
values of the parameter of snow hours are similar for 
all the accident patterns except the truck-truck col­
lisions. The parameter indicates that more snow hours 
will increase accident occurrence at a decreasing 
rate (< S3 < 1.0), and the magnitude of this effect 
is quite similar for all the accident patterns except 
truck-truck collisions. The hours of snow have a 
lesser effect on truck-truck collisions than on the 
other accident patterns. 

The hours of rain have a significant effect on 
single-automobile accidents, single-vehicle acci­
dents, and multivehicle accidents. As the hours of 
rain increase, single-vehicle accidents increase at 
a decreasing rate, whereas multivehicle accidents 
decrease at a decreasing rate. However, overall ac­
cidents do not significantly increase. It appears 
that increases in rain hours tend to shift multi­
vehicle accidents to single-vehicle accidents. The 
increase of single-vehicle accidents results from an 
increase in single-automobile accidents. In general, 
rainfall has much less of an effect on accident oc­
currence than snowfall. 

overall Accidents 
~2 = 0.229 

__ ... --- --· ------·- ... , 
j Single-Vehicle I 
1 AAccidents I 
l __ ~]-~-~ ~:~: ___ J ___ ___ n _____ 

Single-auto: 
~ccidents I 
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Signi ficant Effect 
(0(=0. 05) 

f- --·! Marginally (()(=0.10) :-------~ No Significant 
~-- _! Significant Effect L ________ J Effect (ol=O .10) 

FIGURE 6 Effects of truck VMT on the accident occurrence for different accident patterns. 



50 

1. 5 

1.0 

0.5 

Multiplicative Factor 
to Accident Frequency 
~*(Truck VMT)**~ 
~o 2 

0.0 

Transportation Research Record 1068 

Overall Accidents 

Truck-involved Accidents 

Single-truck Accidents 

0.5 1.0 Truck VMT(*l0
6

) 

FIGURE 7 Effects of truck VMT on accident occurrence within the range of available data. 

SUMMARY AND CONCLUSIONS 

The analysis of highway accidents and identification 
of factors contributing to their occurrence is a 
complex process. A time-space framework is presented 
to facilitate a review of the literature and intro­
duce the use of various probability distributions to 
model accident occurrence. 

The normal di ctr ibution, which underlies tradi­
tional linear regression and hypothesis testing 
methods, Rhnnln hP t1Ren with caution because of 
problems associated with nonnegativity and error 
terms with unequal variance. If the underlying acci­
dent process is one in which the mean accident fre­
quency is functionally related to the variance (e.g., 
Poisson distribution) , parameters in a linear re­
gression model will be unbiased but will have incor­
rect confidence limits. If the objective of the re­
gression is to identify factors that significantly 
affect accident occurrence, incorrect confidence 
limits invalidate hypothesis tests of parameter 
significance--a serious shortcoming. Regressing ac­
cident rates rather than accident frequency may still 
result in unequal error variances, particularly when 
the underlying process is Poisson. 

Poisson regression applied directly to accident 
data is proposed as a method to overcome many of 
these shortcomings. A Poisson regression model is 
applied to daily accident, travel mileage, and en­
vironmental data from the Indiana Toll road. Market 
segmentation is used to study whether VMT and weather 
conditions have different effects on different types 
of vehicle crashes. The models reveal that automobile 
and truck accidents are directly related to automo­
bile and truck travel (as expected). As truck VMT 
increases, there is also a marginal reduction in 
automobile-automobile collisions and an increase in 
automobile-truck collisions. Snow strongly affects 
all accident types, whereas rainfall primarily in­
creases the mean automobile accident frequency and 
has no effect on trucks. 

Poisson regression has superior statistical prop­
erties for many potential applications to highway 
safety. In addition, it can be used with generally 
smaller sample sizes than linear regression. In con­
junction with the use of segmentation, it can yield 

important insights about the significance of factors 
in accident occurrence. 
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