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Identification of Accident Factors on Highway Segments: 
A Method and Applications 

T. CHIRA-CHAVALA and KING K. MAK 

ABSTRACT 

An algorithm was developed to provide traffic engineers a means to identify 
factors or combinations of factors that cause accident overrepresentation at a 
given highway location relative to some average. The output from this algorithm 
can be used for further site investigation to develop accident countermeasures 
that may be responsive to the problems at the site. It also provides quantita
tive measures of the degree of overrepresentation for each factor at that site. 
Available mainframe computer programs to facilitate the computation involved 
are given. An example of application of this algorithm to a highway location in 
Texas is described in full detail. Comparison of the output from this full al
gorithm with that from an automated microcomputer program developed at the 
Texas Transportation Institute is also discussed. 

The objective of this paper is to develop an algo
rithm to identify accident factors that are overrep
resented at a selected roadway location relative to 
some "average," as well as to determine the magni
tude of the overrepresentation. The output from such 
an analysis can thus be used as input for 

1. Developing specific accident countermeasures 
for that location; and 

2. Establishing priority locations within a 
city, county, or district where accident remedies 
may be more urgently needed. 

INTRODUCTION 

Traffic engineers and planners are often faced with 
the tasks of having to identify roadway locations 
that are deemed accident hazardous and to determine 
effective remedies to alleviate the problems. The 
task of identifying locations with high accident 
history has been greatly facilitated by available 
computerized accident data, roadway inventory files, 
and computer programs to isolate highway segments 
that show high accident rates, frequency, and se
verity. 

To determine appropriate accident countermea
sures, the causes of the problems at the site must 
first be understood and identified. Once this is ac
complished, engineers or accident investigators can 
conduct in-depth site investigations and then de
velop appropriate remedies. Procedures to reliably 
determine causative accident factors and their mag
nitude of overrepresentation at a given site have 
not been developed or well documented. 

Accidents are complex phenomena, and the problems 
at different locations are likely to be different or 
site specific. When properly conducted, analyses of 
past accident records for a specific site of inter
est can help illuminate possible causes of accidents 
at that location. 

Texas Transportation Institute, Texas A&M University, 
College Station, Tex. 77843. 

CONCEPTUAL BASIS 

The procedure developed here is aimed at identify
ing, from computerized accident data, characteris
tics of accidents (factors) or combinations of fac
tors that are overrepresented at the site relative 
to some average. This average may be accidents on a 
similar road class within a city, county, or dis
trict. The <1lgorithm is based on the pri111.: l1Jleo; of 
discrete-multivariate models and is capable of si
multaneously analyzing a n11mh1>r of potential var i
ables. In this way, both independent (or main) ef
fects and interactions of these variables with one 
another can be systematically determined. Effects 
due to confounding variables, which may jeopardize 
the results, can therefore be minimized or avoided. 

The number of accidents on a given segment of 
highway 2 to 3 mi long is not likely to be very 
large to permit a simultaneous analysis of an unlim
ited number of variables of interest. Fortunately, 
most accident variables usually correlate and inter
act with one another in such a way that only some, 
but not all, will be required in the analysis. This 
procedure therP.fore incorporates a variable-selec
tion step that takes place before the model estima
tion. The two-stage algorithm is fully described in 
the following section. 

ALGORITHM 

The algorithm consists of two stages: variable se
lection and modeling. Variable selection involves 
the systematic selection of variables that may be 
significantly overrepresented at the site and elimi
nation of those that are statistically nonsignif
icant. Only the significant variables are further 
analyzed at the modeling stage. The modeling in
volves determining specific factors or combinations 
of factors that are overrepresented at the site, as 
well as the magnitude of such overrepresentation. 
Figure 1 shows a flow chart for the entire algorithm. 

Variable Selection 

This is a sequential procedure based on two measures 
of statistical association in contingency table 
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FIGURE 1 Flow chart for the algorithm. 

Non-Slgnficant 
Variables 

analyses: Q.r and OcMH (1). In each step of the 
variable selection, one independent variable that is 
the most significant is selected after examining the 
effects of all (unselected) variables on accident 
overrepresentation at a site. The dependent variable 
for variable-selection analyses is site/average. The 
null hypothesis associated with the tests of QT 
and QcMH can be stated as follows <!>: 

H0 : for each level of the independent var
iables, the accidents are distributed at 
random between the site and the county (as
suming county as the comparison average) for 
all levels of the covariable(s). 

The variable selection algorithm follows these steps 

<l.>: 

1. A two-way contingency table of accident fre
quency is formed between the dependent variable 
(site/county) and each of the potential independent 
variables. A Pearson chi-square is then computed. 
The variable selected is one that has the highest 
value of chi-square per degree of freedom. 

2. For each of the variables not yet selected, a 
contingency table of accident frequency is formed 
among this variable, the dependent variable, and the 
variable previously selected. QT is calculated, 
which reflects both the main effect of this var i
able, as well as its interaction with the previously 
selected variable. The variable selected in this 
step is the one that has the highest ~ value per 
degree of freedom. On the other hand, those vari-
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ables showing statistically nonsignificant QT 
values will be eliminated from further analysis. 

In this context, Q.r expresses the extent of 
"total association" of the variable with the depen
dent variable, having accounted for the previously 
selected variable. The derivation of QT is given 
by Landis et al. (l_) and its formula is given as 

where 

q 
1 Gh' [Var {Gh I H0 })- 1Gh 

h=l 
(1) 

h = 1, 2, ••• , q, is the levels of the pre
viously selected variable(s); 

Gh a matrix of the differences between ob
served and expected frequencies under H0 ; 

and 
Gh' =a transposed matrix of Gh. 

The degrees of freedom for ~ is q (s - 1) (r - 1), 
where s and r are the levels of the independent var
iable under investigation and the dependent vari
able, respectively. 

3. The variable selection process then continues 
in this manner until completion. After the first few 
steps of the variable selection, however, the cell 
frequencies of the contingency table may thin out 
considerably, and the degrees of freedom may in
crease so rapidly that Q.r may become less effec
tive. In this situation, QcMH will be used as a 
selection criteria instead. QcMH is not as sensi
tive to small cell size as is QT, and its test of 
significance is based on degrees of freedom of (s -
1) (r - 1). OcMH is capable of capturing a weak but 
consistent effect of a variable although it does not 
reflect the total contribution, which includes in
teractions with other variables as does OT (_£). 

The 
Landis 

QcMH 

where G 

derivation of QcMH is 
et al. <!> and its formula 

G' [Var (G I Ho}J-IG 

q 

1 Gh• 
h=l 

also reported by 
is given as 

(2) 

The variable selected using QcMH is one that has 
the highest QcMH per degree of freedom. 

The variable selection process is completed when 
either of the following is met: (a) the list of po
tential variables is exhausted, or (b) the data 
thins out so much that neither QT nor QcMH are 
appropriate. 

Modeling 

Accident characteristics or combinations of these 
characteristics that are overrepresented at a site 
relative to the county can be isolated and the mag
nitude of their over representation quantified using 
the following model estimation technique. 

For illustration, assume that three independent 
variables were selected by the variable selection 
process. The following procedure applies, which re
mains unchanged for any number of the independent 
variables: 

1. Accident frequency for county only is cross
classif ied by these three variables. 

2. A log-linear model that best describes this 
county contingency table is estimated. A log-linear 
model expresses the cell probabilities as a function 
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of significant main effects of and interactions 
among the variables. Such a model can generally be 
expressed as 

ln(Pijkl = u + u1 + u2 + u3 + U12 + u13 + • • • (3) 

where 

Pijk estimated cell probability for the 
(i,j,k)th cell, 

u = overall mean, 
u1 main effect of variable 1, 
u2 main effect of variable 2, 
u3 ~ main effect of variable 3, and 

u12 interaction between variables 1 and 2, 
and so on. 

The goodness-of-fit for a log-linear model is a 
likelihood ratio statistic (2_): 

X2 = -2 ~ (observed) log (estimated/observed) (4) 

3. A contingency table of expected accident fre
quency for the site, if sites and county are not 
different, is constructed. The following formula is 
used to compute the expected cell counts for the 
site. This contingency table is cross-classified by 
the same variables as those in Step 1. 

(5) 

where N is the total number of accidents at the site. 
4. For each cell of the site contingency table, 

compute the overrepresentation indicator or the 
Freeman-Tukey deviate (2_): 

Zijk = (Xijk)l/2 + (Xijk + 1)1/2 

- (4Eijk + 1)1/2 (6) 

where Xijk is the observed acc ident fr equency of 
the (i,j,k)th cell for the site. The over representa
tion indicator (Zijkl reflects the extent to which 
the actual observed number of accidents in any one 
cell of the site contingency table differs from the 
expected number of accidents in that cell, if the 
site is indeed no different from the county. A large 
positive value of Zijk indicates that the observed 
number of accidents at the site is higher than ex
pected, and therefore an overrepresentation is indi
cated for that cell. A negat ive value of Zijk in
dicates that the author did not observe as many 
accidents as expected at the site for that cell. 
When the observed and the expected number of acci
dents are simila r , Zijk will be a small positive 
number that is less than 1. 

One property of this indicator that is particu
larly useful here is that its magnitude is a func
tion of both (a) the extent to which the observed 
accident frequency differs from the expected fre
quency and (b) the cell size. That is, a larger 
value of either (a) or (b) will result in a larger 
positive Zi ik . Therefore , a cell that has h ighe r 
accident counts will d i s play a higher overrepres en
tation ranking indicator than a cell that has lower 
accident counts, even if both indicate identical 
percent differences between observed and expected 
frequencies. 

5. The cells that show Zijk values larger 
than, for example, 1. 5 are listed. These cells rep
resent combinations of accident factors that are 
found to be significantly overrepresented at the 
site relative to the county. The selection of 1.5 as 
the cutoff point is based on the fact that when the 
observed and the expected frequencies are similar, 
Zijk will be lesi; than 1. Its value will be even 
smaller for increa"s ed cell size. 
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APPLICATIONS 

The algorithm developed in the Algorithm section has 
been applied to an analysis of accident data at a 
number of sites on urban Interstate and urban non
Interstate systems in Texas. As an example for a 
case study, the analysis carried out for one of 
these sites is fully described in the next paragraph. 

Desc ription of Site 

The site is a 2.4-mi segment of a U.S. highway in 
San Antonio, Texas. It is a six-lane divided urban 
freeway, full access control, with both straight and 
sharp-curve segments. From 1980 through 1982, 254 ac
cidents were reported between milepoints 23.8 and 
26.1. These were fatal, injury, or property-damage
only accidents. The comparison average for this site 
are the accidents on all urban U.S. highways in 
Bexar County. 

Independent Variables 

The following 12 variables were i n i tially considered: 

1. Degree of curvature 
2. Weather and surface condition 
3. Accident time 
4. Accident type 
5. Vehicle type 
6. Severity 
7. Driver age 
8. Speeding 
9. Driving while intoxicated (DWI) 

10. Light condition 
ll. Vehicle damage scale 
12. Driver license status 

The levels of these variables are given in Table 1. 
Two different levels for these variables were de
fined: one for variable selection purposes and the 
other (more detailed) for modeling. This was to min
imize the number of overly small cells that would 
adversely affect variable selection more than model
ing. The first five variables are important because 
they are directly applicable to developing traffic 
engineering-related countermeasuresi they are called 
primary variables. The other seven variables are 
mostly driver related and they help to further il
luminate the causes of accidents i they are called 
secondary variables. Their usefulness in traffic 
engineering-related countermeasures is probably more 
limited. 

To ensure that the five primary variables will 
have a good chance of being evaluated before the 
data hopelessly thin out, the variable selection 
will be applied to these variables first. Once this 
is done, the secondary variables will then be ex
amined. 

Result of Variable Selection 

The variable selection yielded the following outcome 
step by step: 

Step 1: Table 2 gives the values of the Pearson 
chi-square, Xp 2

, obtained for the five pr imar y 
variables evaluated: degree of curva ture , weather 
and surface condition, accident time, accident type, 
and vehicle type. Degree of curvature, which shows 
the largest Xp 2 per degree of freedom, was se
lected. 

Step 2: Table 3 gives the values of Q.r for the 



Chira-Chavala and Mak 

TABLE 1 Levels of Potential Independent Variables 

Variable 

Degree of curvature 

Weather/surface 
condition 

Accident time 

Accident type 

Vehicle type 

Severity 

Driver age 

Speeding 

Driving while 
intoxicated (DWI) 

Light condition 

Vehicle damage 
scale 

Driver license 
status 

Level for Variable 
Selection 

Straight 
Curve 

Dry 
Wet 
Weekday, rush hour 
Weekday, non-rush 

hour; or weekend, 
day 

Evening or night 
Single-vehicle 
Multivehicle 

Rear-end, sideswipe 
Other 

Passenger cars only 
At least one pickup 

or van 
At least one heavy 

truck or bus 
Fatal or iajury 
Property damage 

only 
At least one over 

5 5 or at least one 
under 21 

21 to 55 
At least one speed-

ing 
No speeding 
At least one DWI 
No DWI 
Daylight 
Other 
Front 
Rear 
Side 
Other 
At least one out of 
state 

Other 

Level for Modeling 

Straight 
Less than 2 degrees 
Greater than 2 degrees 
Dry 
Wet 
Weekday, rush hour 
Weekday, non-rush hour 
Weekend, day 
Evening or night 

Single-vehicle: barrier/object 
Single-vehicle: other 
Multivehicle : rear-end side-
swipe angle, head-on 

Passenger cars only 
At least one pickup or van 
At least one heavy truck or 

bus 

Fatal 
lajury 
Property damage only 
At least one over 5 5 
At least one under 21 
21 to 55 

At least one speeding 
No speeding 

At least one DWI 
No DWI 
Daylight 
Other 
Front 
Rear 
Side 
Other 
At least one out of state 
Other 

TABLE 2 Result of Variable Selection: Step 1 

Independent Variable 

Degree of curvature 
Weather/surface condition 
Accident time 
Accident type 
Vehicle type 

x 2 p 

228.0 
31.2 

8.8 
14.0 

1.6 

Degrees of 
Freedom 

1 
1 
2 
2 
2 

TABLE 3 Result of Variable Selection: Step 2 

Variable 

Curvature x surface condition 
Curvature x accident time 
Curvature x accident type 
Curvature x vehicle type 

8 Eliminated. 

25.5 
17.9 
12.7 

1.3 

Degrees of 
Freedom 

2 
4 
4 
4 

p-value 

0 
0 

0.012 
0.001 
0.437 

p-value 

0 
0.001 
0.013 
0.856° 

four primary variables not selected in Step 1. 
Weather and surface condition, which shows the larg
est QT per de gree of f reedom, was s elected . On the 
other hand, v e h i cle type with a non s ignif icant QT 
value was eliminated from further analysis. 

Step 3: Table 4 gives the values of ~ for the 
primary variables not yet selected or eliminated. 
ClcMH values were also computed for these vari
ables. Al though the ~ values for both variables 
were not highly significant, the QcMH value for 
accident time was. 
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TABLE4 Result of Variable Selection: Step 3 

Degrees Degrees 
of p· of p-

Variable QT Freedom value QcMH Freedom value 

Curvature x surface 
x accident time 16.9 8 0.032 I 1.8 2 .003 

Curvature x surface 
x accident type 15.2 8 0.055 8.7 2 .013 

This indicates that accident time had consistent 
main effect on accident overrepresentation at the 
site. This variable was, therefore, selected. Acci
dent type was retained because its QcMH showed a 
p-value of 0.013, indicating that this variable may 
have consistent (though relatively weak) main effect. 

Step 4: A cross-classification of accident fre
quency by degree of curvature, weather and surface 
condition, accident time, and accident type, re
sulted in 32 percent of the cells having fewer than 
four accidents. Accident type was therefore regarded 
as a "sparse" variable, and no variable selection 
analysis was performed for this variable. Sparse 
variables are those associated with too many small 
(less than four accidents) or empty cells to warrant 
meaningful variable-selection analyses. Such vari
ables have neither been selected nor eliminated as 
significant variables because of the sample size 
limitation. As an option, they can be further inves
tigated in the modeling stage. 

Step 5: Having exhausted the primary-variable 
list, the selection process continued with the sec
ondary variables. Each secondary variable was first 
cross-classified with the dependent variable and all 
those variables already selected. Only severity, 
driver age, speeding, and driver license status 
showed cells with reasonable sample size to justify 
variable-selection analyses. All other secondary 

TABLE 5 Result of Variable Selection: Step 4 

Degrees Degrees 
of p- of p-

Variable QT Freedom value QCMH Freedom value 

Selected variables 
x speeding 22 .4 12 .034 1.16 .281 

Selected variables 
x driver age 14.0 12 .3028 0.78 .378 

Selected variables 
x severity 11.2 12 .511° 0.43 .510 

Selected variables 
x license status 9.7 12 .641° 2. 33 .127 

8 Eliminated. 

variables were sparse. The values of QT and ClcMH 
for severity, driver age, speeding, and driver li
cense status are given in Table 5. Of these, only 
the QT for speeding showed a p-value less than 
0.051 all four showed nons ignificant ClcMHs. There
fore, speeding was selected while the other three 
variables were eliminated from further analysis. 

The independent variables that were found to be sig
nificant from the variable selections were 

• Degree of curvature 
Weather and surface condition 

• Accident time 
Speeding 
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The independent variables that were sparse were 

• Accident type 
• Light condition 
• Vehicle damage scale 

DWI 

The independent variables that were found to be non
significant and thus eliminated from further analy
sis were 

• Vehicle type 
• Driver age 
• Severity 

Driver license status 

Modeling Result 

The modeling result is described next, step by step: 

1. A contingency table of accident frequency for 
county, cross-classified by the selected variables 
(a) degree of curvature, (b) weather and surface 
condition, (c) accident time, and (d) speeding is 
given in Table 6. 

TABLE 6 Number of Accidents for County 

Speeding (VI) 

Curvature (V4) Condition (V3) Time (V2) Yes No 

Straight Dry Weekday, rush hour 42 82 
Weekday, non-rush 25 59 
Weekend. day 7 21 
Evening or night 90 179 

Wet Weekday, rush hour 15 17 
Weekday, non-rush 9 IO 
We.e.ke.nd, d~y 6 7 
Evening or night 40 28 

Less than Dry Weekday, rush hour 3 6 
2 degrees Weekday, non-rush 3 6 

Weekend, day 2 3 
Evening or night 10 21 

Wet Weekday, rush hour 0 2 
Weekday, non-rush 0 2 
Weekend, day 2 0 
Evening or night 2 6 

Greater than Dry Weekday, rush hour 0 4 
2 degrees Weekday, non-rush 0 3 

Weekend, day 0 I 
Evening or night 9 9 

Wet Weekday, rush hour 0 2 
Weekday, non-rush 2 I 
Weekend, day 0 2 
Evening or night 3 4 

2. A log-linear model that best describes the 
data in Table 6 was found to be 

(7) 

'fhis model states that the probability of accidents 
for the county is influenced by the main effects of 
accident time and degree of curvature, as well as 
the interaction between speeding and weather and 
surface condition. The chi-square goodness-of-fit 
test was 44.14 for 39 degrees of freedom (a p-value 
of 0.263), indicating a very good fit. 

3. If the site and the county were similar in 
accident characteristics, the expected number of ac
cidents at the si t e, cross-classified by degree of 
curvature, weather and surface condition, accident 
time, and speeding, could be obtained (using Equa
tions 5 and 7) as given in Table 7. Also given in 
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Table 7 are the actually observed number of acci
dents at the site. 

4. The magnitude of accident characteristics 
that was overrepresented at the site relative to the 
county was computed by using Equation 6. The result 
is given in Table 8. Only those characteristics as
sociated with the overrepresentation indicator (z) 
of greater than 1.5 and the observed accidents of at 
least 7, are given in Table 7. These are cells that 
show a significantly higher than expected number of 
observed accidents at the site. Thus accident over
representation is indicated by these cells. The fol
lowing findings can be drawn from Table B: 

(a) The curve section with curvature greater than 
2 degrees was a major cause of accident overrepre
sentation, almost regardless of time of day, weather 
and surface condition, or presence or absence of 
speeding. 

(b) The combination of this sharp curve, wet con
ditions, and speeding was particularly serious in 
c a using acciden t overrepresen t a t i on, as indicated by 
consistently high values of the overrepresentation 
indicator (z). 

(c) Accidents on this sharp curve were found to 
be especially overrepresented in the evening or at 
night (very high values of overrepresentation indi
cator are given). 

(d) To a lesser extent than evening and night
time, accidents on this sharp curve tended to be 
overrepresented during rush hours of week days. 

~: The accident overrepresentation analysis 
can conclude at this point or the analyst may choose 
to further examine the four sparse variables. As 
mentioned earlier, sparse variables may not neces
sarily be nonsignificant. Their statistical signifi
cance was not tested because of the sample size 
limitation. Analyses in the modeling stage to in
corporate these sparse variables can help illuminate 
causes of accident overrepresentation at the site 
even further, if these variables are indeed signifi
cant. Sparse variables can be analyzed in the model
ing stage by one of two methods: 

1. Replacement of the last independent variable 
selected with each of the sparse variables, and 
Steps 1 through 5 are repeated. Because there were 
four sparse variables, four modeling analyses would 
be required. 

2. Incorporation of each of the four sparse 
variables into a modeling analysis together with the 
four independent variables already selected, and 
Steps 1 through 5 are repeated. Again, four analyses 
would be required for the four sparse variables. 

An advantage of the second method is that the final 
analysis result of accident-over representation 
causes would be more complete. However, the smaller 
cell size due to an additional variable may make the 
result less interesting for practical purposes. 

COMPUTER SOFTWARE 

The algorithm as described can be performed by using 
computer programs that are currently available. For 
variable selection, PARCAT (4), which is a mainframe 
program, can be used. For modeling, BMDP (~) , ECTA 
(6), or any other standard log-linear model program 
will be satisfactory. In order to perform the analy
sis us i ng these computer programs and to reach the 
final outcome given in Table 8, users are required 
to have sufficient familiarity with the statistics 
involved to make statistical decisions and to se-
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TABLE 7 Expected and Observed Number of Accidents for Site 

Speeding (V 1) 

Curvature (V 4) Condition (V3) Time {V2) Yes No 

Straight Dry Weekday, rush hour (12.7) 7 (26 .1) 9 
Weekday, non-rush (8.8) 2 (18 .2) 8 
Weekend, day (3. 7) 0 (7 .7) 7 
Evening or night (29.4) 8 (60.6) 11 

Wet Weekday, rush hour (5.3) 3 (5.4) 6 
Weekday, non-rush (3.6) 4 (3.7) 6 
Weekend, day (1.5) 6 (1.5) 3 
Evening or night (12.2) 5 (12.5) 6 

Less than Dry Weekday, rush hour (1.3) 2 (2.8) 3 
2 degrees Weekday, non-rush (.9) 2 (1.9) 1 

Weekend, day (.4) 0 (.8) 2 
Evening or night (3.1) 1 (6.5) 7 

Wet Weekday, rush hour (.6) 1 (.6) 2 
Weekday, non-rush (.4) 0 (.4) 0 
Weekend, day (.2) 0 (.2) 1 
Evening or night (1.3) 4 (1.3) 2 

Greater than Dry Weekday, rush hour (.8) 7 (1.6) 9 
2 degrees Weekday, non-rush (.6) 2 (.1) 11 

Weekend, day (.2) 1 (.5) 6 
Evening or night ( 1.8) 17 (3.8) 28 

Wet Weekday, rush hour (.3) 8 (.3) 1 
Weekday, non-rush (.2) 11 (.2) 1 
Weekend, day (.1) 7 (.1) 0 
Evening or night (.8) 12 (.8) 9 

Note: Numbers in parentheses are expected numbers of accidents. 

TABLE 8 Accident Overrepresentation Indicators for Site analysis, carry out the modeling, and finally report 
the accident overrepresentation factors for that 
site. This program was written in turbopascal for 
IBM PC-XT or compatible systems. 

Speeding 

Curvature Condition Time Yes No 

Straight Dry Weekday, rush hour 
Weekday, non-rush 
Weekend, day 
Evening or night 

Wet Weekday, rush hour 
Weekday, non-rush 
Weekend, day 
Evening or night 

Less than Dry Weekday, rush hour 
2 degrees Weekday, non-rush 

Weekend, day 
Evening or night 

Wet Weekday, rush hour 
Weekday, non-rush 
Weekend, day 
Evening or night 

Greater than Dry Weekday, rush hour 3.43 3.44 
2 degrees Weekday, non-rush 5.58 

Weekend, day a 

Evening or night 5.50 6.66 

Wet Weekday, rush hour 4.35 
Weekday, non-rush 5.44 
Weekend, day 4.26 
Evening or night 5.02 4. 11 

80verrepresentation indicator (z) less than +1.50 or observed number of accidents Jess 
than 7. 

lect, evaluate, and interpret data at every inter
mediate step of the analysis. 

The Texas Transportation Institute (TTI) has de
veloped an automated microcomputer program for the 
entire algorithm (7). The program is part of a study 
conducted for the Texas State Department of Highways 
and Public Transportation. Because the entire analy
sis procedure is fully automated, it does not re
quire intervention by the users at any of the inter
mediate steps. Once the subset of accident and 
roadway data are specified by a user, the program 
will automatically initiate the variable-selection 

This automated microcomputer program was based on 
the algorithm described in this paper but was espe
cially modified for use on microcomputers. The de
cision for such a simplification was made for prac
tical reasons: manageable run-time and storage memory 
of microcomputers. The analysis output from the full 
algorithm and that output from the automated program 
are compared in the following section for the site 
mentioned in the Applications section. 

COMPARISON OF ANALYSIS RESULTS FROM FULL ALGORITHM 
AND AUTOMATED MICROCOMPUTER PROGRAM 

For the site presented here, there were no differ
ences in the result of variable selection as far as 
the independent variables selected or eliminated or 
the order for which the variables were selected. For 
modeling, the factors or combination of factors that 
caused accident overrepresentation at the site were 
found to be the same for both algorithms. However, 
the magnitude of the accident overrepresentation in
dicators (z) from the two algorithms was slightly 
different. Table 9 gives the values of z obtained 
from the automated microcomputer program. 

Generally, the result provided by the automated 
microcomputer version is not expected to be very 
different from that provided by the full algorithm 
unless it concerns "borderline" cases. These border
line cases may be variables indicating p-values 
close to 0.05 in the variable selection stage or the 
overrepresentation factors associated with values of 
the indicator (z) close to +1.5. For the purpose of 
accident countermeasures, these borderline cases are 
likely to be less interesting, and thus they may not 
affect subsequent actions taken by engineers. 

One advantage of the full algorithm that has not 
been developed for the automated microcomputer ver
sion is that for a certain site, Step 2 of the 
modeling may yield the result such that the levels 



TABLE 9 Accident Overrepresentation Indicators for Site (from 
Automated Program) 

Speeding 

Curvature Condition Time Yes No 

Straight Dry Weekday, rush hour 
Weekday, non-rush 
Weekend, day 
Evening or night 

Wet Weekday, rush hour 
Weekday, non-rush 
Weekend, day 
Evening or night 

Less than Dry Weekday, rush hour 
2 degrees Weekday, non-rush 

Weekend, day 
Evening or night 

Wet Weekday, rush hour 
Weekday, non-rush 
Weekend, day 
Evening or night 

Greater than Dry Weekday, rush hour 4.47 3.64 
2 degrees Weekday, non-rush 4.54 

Weekend, day a 

Evening or night 4.76 7.07 

Wet Weekday, rush hour 4.83 
Weekday, non-rush 4.86 
Weekend, day 4.47 
Evening or night 4.83 3.64 

80verrepresentation indicator (z) less than +l .50 or observed number of accidents less 
than 7. 

of some independent variables can be collapsed to 
form fewer levels. Collapsing the levels of vari
ables, when statisti~ally justified, is particularly 
desirable because it may allow additional variables 
to be incorporated in the modeling without sample 
size problems that may have arisen otherwise. 

CONCLUSION 

The algorithm reported here was developed to provide 
traffic engineers a powerful means to identify fac
tors or combinations of factors that cause accident 
overrepresentation at a site relative to some aver
age. In this way, engineers can use the output from 
this algorithm to develop remedial options that may 
be responsive to the problems at that site. Engi
neers and planners can also use the output to de
velop an areawide traffic safety improvement plan 
for the area's highway network by analyzing a number 
of potential sites and examining the values of acci
dent overrepresentation indicator. Sites and/or fac
tors that show higher values of such indicator may 
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suggest more serious safety problems and a stronger 
need for safety improvement measures. 

Currently, there are available mainframe computer 
programs to facilitate the statistical computation 
involved in carrying out the analysis. However, this 
requires the analysts to have sufficient knowledge 
of the statistical methods used. An automated micro
computer program has been developed by the Texas 
Transportation Institute for the Texas State Depart
ment of Highways and Public Transportation to elimi
nate this user requirement. Although the microcom
puter program is a modified version of the full 
algorithm, its applications to date have suggested a 
comparable outcome to that provided by the full al
gorithm. 
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