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New Directions for Learning About the 
Safety Effect of Measures 

EZRA HAUER and JANE LOVELL 

ABSTRACT 

Much of what is known about the safety effect of various measures must be ex
tracted from implementations in real life rather than from experiments that are 
staged to meet the dicta of rigorous scientific experimental design. The tools 
for extracting usable knowledge from data must be tailored to suit this reality. 
Methods of estimation that appear well suited for this task are reported here. 
First it is shown that what is conunonly done is incorrect; it is incorrect to 
compare the count of "before" accidents with the count of "after" accidents and 
from this to draw conclusions about the safety effect of a measure. A simple 
method is provided for the correct analysis of ;;before;; and "after" data. Next 
the likelihood function is introduced; it serves a dual purpose: First, it 
allows the assessment of the accuracy with which the safety effect is known. 
Second, it is a coherent formal device by which results from diverse studies 
can be accumulated. The ability to accumulate empirical evidence from many small 
studies is the key to progress in research on safety. The test of the advocated 
methods is in application; in this case, the examination of the effect on in
tersection safety of a change from two-way to multiway stop control. Details 
are given in two companion papers appearing elsewhere in this Record. 

What is known about the safety effect of some treat
ment or measure is based mostly on data derived from 
instances of implementation. The implementation of a 
real measure is usually fashioned by the circum
stances of the real world and only seldom by the 
requirements of scientific experimental design. For 
measures that are in the orbit of highway or traffic 
engineering, most data come in the form of before 
and after accident counts, perhaps supplemented by 
the corresponding changes in exposure. This is why 
much of the traditional knowledge about the effect 
of such measures is based on before-and-after 
studies. 

The before-and-after study is almost always too 
small to be statistically conclusive. It is also 
vulnerable to a variety of threats to the validity 
of the inferences that the data permit. This is why 
the purist will often refuse to consider evidence 
based on uncontrolled studies of this kind. However, 
it helps little to bemoan the fact that the before
and-after experimental design is subject to threats 
and that its results are not statistically signifi
cant. The challenge is to devise methods that mini
mize such threats and that allow this ubiquitous 
source of information to be used constructively. 

In this paper the authors report on an approach 
that appears well suited for the task of extracting 
useful information from uncontrolled before-and-after 
studies and that facilitates the accumulation of 
empirical evidence from diverse studies, each of 
which, standing alone, may be inconclusive. 

Even though the focus of this paper is method
ological, the authors rely more on conunon sense and 
intuition than on mathematical formalism; in this 
way they hope to convince a wide readership that it 
is unsound and therefore unprofessional to draw con
clusions about the safety effect of a measure from a 
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simple comparison of accidents before to accidents 
after (even when changes in exposure and the secular 
timP-trPnrl ~rP takPn into account). This is discussed 
next. In the subsequent section the correct methods 
of analysis are discussed. Later the concept of the 
likelihood function is introduced and its attraction 
and use are explained. In the final section of the 
paper accomplishments are reviewed and some of the 
problems yet unresolved are discussed. 

WHY IT IS INCORRECT TO COMPARE THE COUNT OF "BEFORE" 
ACCIDENTS WITH THE COUNT OF "AFTER" ACCIDENTS 

A typical before-and-after study follows a simple 
pattern: at some time a measure (treatment) that 
affects safety is implemented on a few entities. 
Entities may be intersections or drivers, cities, 
road sections, or vehicles. The count of accidents 
on these entities before treatment is compared with 
the record of accident occurrence after treatment. 
On the basis of such a comparison, inferences are 
made about the effect of the measure or treatment. 

The mind is so accustomed to this kind of com
parison that the logic behind it is seldom examined; 
a crucial assumption that turns out to be incorrect 
is overlooked. It is not incorrect because of some 
theoretical niceties but because it is contradicted 
by mountains of empirical evidence. To recognize the 
faulty assumption it must be spelled out. 

To learn about the effect of the treatment, what 
would have happened during the after period had the 
treatment not been implemented is compared with what 
actually has happened during the after period with 
the treatment in place. 

This simple logical construct is behind all ex
perimental designs, no matter how sophisticated or 
how simple. It can never be known "what would have 
happened •••. " To avoid this difficulty the tendency 
is to assume that 
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What has happened during the period before 
treatment implementation is a good indica
tion of what would have happened during the 
after period had the treatment not been im
plemented. 

This is the assumption the authors claim to be 
contrary to empirical fact. Only one piece of empir
ical evidence is given here; however, the authors 
have examined literally dozens of data sets and 
every one of those sets corroborates the conclusion 
that the aforementioned assumption is incorrect. The 
reader is invited to furnish his or her own evi
dence. All that is needed is at least 2 years of 
accident data about several hundred entities that 
remained largely unchanged. Such data are easy to 
find. When the data are examined, as in the fol
lowing example, the conclusion is inescapable. 

Consider the entries in Table 1. The table is 
based on the count of accidents occurring during the 
years 1974 and 1975 at 1,142 intersections in San 
Francisco. All intersections in this population had 
stop signs on the two approaches carrying the lesser 
flows and remained virtually unchanged in these 2 
years. Column 1 gives the number of intersections 
(n(x)J on which the count of accidents in 1974 was 
x = O, 1, 2 ••• as shown in Colunm 2. Column 3 gives 
the average of the count of accidents [M(x)J for the 
same n(x) intersections during 1975. 

TABLE 1 Accident Count at 1,142 Intersections, 1974-1975 

Number of Intersections 
[n(x)] 

553 
296 
144 
65 
3 l 
21 

9 
13 
5 
2 

2 
Number of Accidents 
per Intersection in 
1974 
[x] 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

Note; Two intersections had 13 accidents, one had 16. 

3 
Average Number of Ac
cidents per Intersection 
in 1975 
[M(x)] 

0.54 
0.97 
1.53 
1.97 
2.10 
3.24 
5.67 
4.69 
3.80 
6.50 

Were the assumption correct, it should be observed 
that if an intersection registered, for example, 
x = 3 accidents in 1974 and if it remained largely 
unchanged, it should record, on the average, three 
accidents in 1975. However, inspection of Table 1 
reveals that intersections that registered three 
accidents in 1974, registered 1.97 accidents on the 
average in 1975. Similar discrepancies between the 
entries of Columns 2 and 3 exist for all values of x 
(except for x = 1, which will turn out to be the 
rule-confirming exception). These discrepancies can
not be reasonably attributed to chance; nor are they 
1 ikely to reflect a sudden, large, and peculiarly 
systematic change between these 2 years. (The total 
number of accidents at these intersections was 1,253 
in 1974 and 1,216 in 1975). It must be concluded 
therefore, that in this case the 1974 count of ac
cidents is not a good indication of the average count 
in 1975 for any value of x (except for x = 1) • There
fore, the accident count "before" is a systematically 
bad guess of what would have happened after. 

Tables 2 and 3 give similar information for the 
same 1,142 intersections during the pairs of years 
1975-1976 and 1976-1977. The preceding conclusion 
remains unchanged. It follows that there was nothing 

TABLE 2 Accident Counts at 1,142 Intersections, 1975-1976 

Number of Intersections 
ln(x)] 

559 
286 
144 

73 
35 
18 
ll 

9 
3 
1 
2 
1 

2 
Number of Accidents 
per Intersection in 
1975 
[x] 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

lO 
ll 

3 
Average Number of Ac
cidents per Intersection 
in 1976 
[M(x)] 

0.55 
0.98 
1.41 
1.82 
1.97 
2.50 
3.91 
4.22 
2.00 
3.00 
2.50 
5.00 
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unique or peculiar about the years 1974-1975 (Table 
1); what happened "before" did not prove to be a 
good indication of what happened after in 1975-1976 
and 1976-1977 either. It is worth noting that there 
is a pronounced similarity between the corresponding 
entries of the third colunms in the three tables. 
This regularity will be explored in the section: How 
to Analyze Before-and-After Data. 

TABLE 3 Accident Counts at 1,142 Intersections, 1976-1977 

Number of Intersections 
ln(x)] 

562 
287 
155 
74 
33 
13 
ll 

4 
1 
2 

Number of Accidents 
per Intersection in 
1976 
[x] 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

3 
Average Number of Ac
cidents per Intersection 
in 1977 
[M(x)] 

0.53 
0.94 
1.37 
1.72 
2.61 
3.00 
2.64 
2.25 
1.00 
3.50 

The results in Tables 1, 2, and 3 are not an ex
ception or aberration. They are used here merely to 
illustrate a general phenomenon found in many other 
data sets. Based on diverse and ample empirical evi
dence it can be concluded that the assumption (what 
has happened during the period before treatment 
implementation is a good indication of what "would 
have happened during the after period had the treat
ment not been implemented") is contrary to empirical 
fact and is therefore wrong. 

Because the assumption on which the simple before
and-after comparison is based is incorrect, so must 
be conclusions drawn from such comparisons. To il
lustrate, consider a site (similar to those in Table 
1) that recorded, for example, three accidents before 
treatment and one accident during a corresponding 
period after treatment. The incorrect comparison is 
between three and one. It is clear from Tables 1, 2, 
and 3 that sites that record three accidents in the 
before period, when left untreated, record approxi
mately two accidents in the after period. Therefore, 
the correct comparison is between two and one acci
dents. To be sure, no conclusions will be drawn from 
a few accidents recorded at one site. Accident counts 
from many sites will usually be added and the sums 
compared. However, if every term in the addition is 
incorrect, so will be the sum. The errors in the sum 
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of before accidents will cancel only if treatment is 
administered at random and is implemented at very 
many sites. In practice, the number of treated sites 
is limited and professionals do not usually treat 
sites at random. 

It is concluded, therefore, that it is incorrect 
to compare the count of before accidents to the count 
of after accidents as is common practice in before
and-after studies. A valid comparison requires that 
there be a way to estimate "what would have happened 
had the treatment not been implemented," which is in 
accord with empirical fact. How to obtain such esti
mates is described next. 

HOW TO ANALYZE BEFORE-AND-AFTER DATA 

The task is to obtain a good estimator to replace 
that which is in common use but is shown to be 
faulty. One wishes to estimate the number of acci
dents expected to be recorded during the after 
period had the treatment not been implemented if, 
during the before period, the entity recorded x ac
cidents. The symbol E (x) will be used to denote an 
estimator. It turns out that there are several can
didate estimators of which two [E;1(x), £2(x)) are 
recommended for use in practice. 

One obvious option is to use £ (x) = M(x) (see 
Column 3 in Tables 1-3). The symbol M(x) stands for 
"average after-period count of accidents on those 
entities that recorded x accidents in the before 
period and were left without treatment." The use of 
£ (x) = M(x) amounts to stating: "It is expected 
that had the treated entity, which in the before 
period recorded x accidents, been left untreated, it 
would have recorded during the after period, on the 
average, what has in fact materialized on similar 
entitie~ that were left untreated." In coocncc, the 
entities with x before accidents, which were left 
untreated, are'regarded as a control grnnp. 

The trouble with E:(x) = M(x) is that, to have an 
accurate estimate, a sufficient number of "similar 
entities" have to be found that during the before 
period had the same number of accidents as the 
treated entity but that were left without treatment. 
This is often difficult to do. Ordinarily, it is the 
entities with many accidents that are treated, and 
there are not many such entities to begin with. Once 
some entities have been treated, only a few remain 
for the calculation of M(x). This difficulty is easy 
to see in Tables 1-3. In the lower reaches of these 
tables (where few intersections are used to calcu
late the average) the values of M(x) fluctuate 
widely. Furthermore, were some of these intersections 
treated, even fewer could be used for the calculation 
of the M(x), making it even less reliable. This 
renders the estimator M(x) of little use in practice. 

Another estimator that can be justified on theo
retical grounds (1) is £ (x) = (x+l) • n (x+l)/n (x). 
The advantage of this estimator is that only data 
about accidents occurring during the before period 
are needed. However, because in the lower reaches of 
Tables 1-3, the n (x) are small, the ratio n (x+l) I 
n(x) is subject to vagaries of chance that are simi
lar to those that plague M(x). Thus, the problem is 
how to smooth out the random fluctuations that plague 
both estimators. Two sensible ways to obtain smooth 
estimates are discussed in the following paragraph. 

First, a continuous function t1(x) can be fit to 
the points (x+l) • n(x+l)/n(x). Thus, using the data 
in Columns 1 and 2 of Table 1, values of (x+l) • n(x+ 
1) /n (x) for x = 0, 1, ... , 8 were calculated. These 
are the ordinates of t he points in Figure 1. The 
bars around each point designate one standard devia
tion. In this case, a straight line appears to be the 
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FIGURE 1 Least-squares fit of a linear function ~ 1 (x) to paints 
(x+l) · n(x+l)/n(x) based on data in Table 1. 

sensible choice of a function to fit the data points. 
~he ordinate ot the titted function at x = O, 1, 2 ••• 
is the estimate E;1(x). When fitting a smooth function 
to the data points two technical issues must be 
given attention. First, the data points have dif
ferent standard deviations. When fitting a curve, 
each point is to be weighed in inverse proportion to 
its variance, which is estimated by [(x+l) • n(x+l)/ 
n (x)) 2 • [ l/n (x+l) + l/n (x)] • Second, for reasons of 
logical consistency, one would 1 ike to ensure that 
L[( 1 (x) • n(x)] = L[x • n(x)] when the summation is 
over all values x. 

Except for these guidelines to curve fitting, the 
approach is perfectly general and requires no as
oumptions. It consists of two basic steps: (a) values 
of data points (x+l) • n(x+l)/n(x) for x = O, 1, 2 ••• 
are calculated and plotted, and (b) a legitimate 
function £1(x) is selected and fitted to the data 
points. 

If a linear fit to the data points appears sensi
ble, the task of curve fitting may be replaced by a 
much simpler and more transparent estimator, E2(x). 
First, the sample mean and sample variance are cal
culated by using 

x = L[x • n(x)]/tn(x) (1) 

s 2 = I:[(x-xl' • n(x)]/Ln(x) (2) 

Then, by using x and s 2 

(2(x) = x + (x/s') • (x-x) (3) 

Equation 3 is not magic nor does it contain "fudge 
factors." It is a rigorous result obtained by deduc-
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tion, and it holds under broad conditions described 
elsewhere (2). Its main appeal is simplicity in use 
and clarity-in interpretation. 

The two terms of the sum in Equation 3 have rec
ognizable meaning. The first term is the count of 
before accidents; the second term is a correction 
for regression-to-the-mean. The larger the differ
ence between the count of before accidents (x) and 
its mean in the population of similar entities (~), 

the larger is the correction required. It is positive 
when x < x (see first line in Table 1), negligible 
when x ; x (see second line in Table 1) and negative 
when x > x (see lines below line 2 in Table 1). 

The role of the sample mean-to-variance ratio 
(x/s 2

) is also interesting to examine. If it was 
known that all entities in the population had the 
same expected number of accidents (and if accident 
occurrence obeys the Poisson probability law), the 
ratio would approach 1. Under such conditions Equa
tion 3 instructs that the expected number of 

accidents for a specific entity be estimated by x 
(not by x !). On reflection, this is as should be. 
If, on the other hand, the entities in the population 
are very different in terms of their expected number 
of accidents, s 2 >> ~. the correction will be small. 
In this case, ~ 2 (x) is very close to x. This is also 
as should be. 

Before summarizing, it is of interest to examine 
in Table 4 the performance of the candidate es ti-
mators on the basis of the data in Table 1. 

TABLE4 Comparison of Estimates 

2 4 5 6 
(x+l)n(x+l)/ ~I (x) 1' 2 (x) 

[n(x)] [x] M(x) n(x) Curve Fit Eqn.3 

553 0 0.54 0.54 0.53 0.44 
296 1 0.97 0.97 0.98 1.04 
144 2 1.53 1.35 1.43 1.64 
65 3 1.97 1.91 1.88 2.24 
31 4 2.10 3.39 2.32 2.84 
21 5 3.24 2.57 2.77 3.44 

9 6 5.67 10.11 3.22 4.04 
13 7 4.69 3.08 3.67 4.64 

5 8 3.80 3.60 4.11 5.25 
2 9 6.50 n.a. 4.56 5.85 

A few points deserve mention. First, having estab
lished earlier that it is incorrect to use the raw 
number of before accidents in before-and-after com
parisons, it was necessary to show what should be 
used instead. Several candidate methods of estima
tion have been presented. No matter which estimator 
is used, all correct estimates differ from the raw 
number of before accidents, which have been shown to 
be systematically biased. 

Second, Column 3 in Table 4 is M(x) and therefore 
indicates what actually happened during the after 
period for entities that were left untreated. Where 
M(x) is a reliable average it could be used as a 
yardstick against which to judge the performance of 

TABLE 5 Before-and-After Comparison 

1 No. of before accidents per intersection 0 1 2 
2 No. of such intersections in sample 7 6 8 
3 No. of before accidents (lx2) 0 6 16 
4 No. of after accidents 2 3 7 
5 Estimate i'2 (x) from Table 4 0.44 1.04 1.64 
6 No. expected w/o treatment (5x2) 3.1 6.2 13.1 

3 
7 

21 
5 

99 

F1(x) and ~2(x). These estimates are observed to ap
proximate the entries in Column 3 with varying de
grees of success. The agreement is good in the upper 
part of Table 4 where the entries of Column 3 are 
quite accurate. Not much can be made of the dis
crepancies in the lower part of the table because 
here the entries of Column 3 (being averages over 
only a few intersections) are unreliable. 

Third, in the authors' view, either £1 (x) or ~2(x) 

should be used because in the domain of interest they 
smooth out some of the fluctuations due to random
ness. When the plot of points indicates a nonlinear 
fit, use least-squares curve fitting to find ~1(x); 
otherwise use Equation 3 to obtain ;2(x). 

It remains to be demonstrated how these results 
are to be used in the context of a before-and-after 
study. This is done by example. Assume that 49 in
tersections (similar to those used to construct Table 
1) were converted from two-way to four-way stop con
trol. (Data and estimates are summarized in Table 5.) 

Row 2 in Table 5 gives the number of intersec
tions, which, during the before period had the number 
of accidents listed in Row 1. Row 3 gives the number 
of accidents for each group of intersections. Thus, 
for example, the 8 intersections, which during the 
before period recorded 2 accidents each, had together 
16 accidents. During the before period there were 
172 accidents at the 49 sites. Row 4 gives the number 
of accidents during the corresponding after period, 
which totaled 50. The authors argued that it is wrong 
to compare 172 to 50. Row 5 gives an estimate (here 
~ 2 (x) from Table 4) of the number of accidents 
that should be expected had the intersections not 
been converted to four-way stop control. In this 
illustration, the changes in exposure and the secular 
trend in accidents is disregarded. Complete details 
are given in the paper "The Safety Effect of Conver
sion to All-Way Stop Control" elsewhere in this Rec
ord. In Row 6 the number of accidents in each group 
of intersections that should be expected had they 
remained unconverted has been calculated. Thus the 
seven intersections, which during the before period 
recorded no accidents, should be expected to record 
7 x 0.44 = 3.1 accidents during the after period had 
they remained with two-way stop control. The sum of 
these expected accidents is 124.B. The effectiveness 
of the conversion should be judged by comparing what 
"would have happened without treatment" (124.8) with 
what actually transpired (50 accidents). In this 
numerical example it is estimated that the effect of 
conversion to all-way stop control was to reduce the 
expected number of accidents by 60 percent [= 100 x 
(124.8-50)/124.8]. 

THE LIKELIHOOD FUNCTION AND ITS USE 

Point estimates of the type mentioned at the end of 
the previous section (a 60 percent reduction in ex
pected accidents) are often the main figure of merit 
when it comes to practical decisions. However, for 
sound decisions it is necessary to have, in addition 
to the point estimate, a good idea about the uncer
tainty surrounding it. Unfortunately, real-life 
studies are almost without fail small in the sense 

4 5 6 7 8 9 10 Row sums 
4 6 4 3 0 2 2 49 

16 30 24 21 18 20 172 
4 12 6 5 2 4 50 

2.24 2.84 3.44 4.04 4.64 5.85 6.45 
15.7 11.4 20.6 16.2 13.9 11.7 12.9 124.8 
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that the estimates of safety effect derived from 
them are inaccurate. Also, taken singly, such esti
mates are only a frail guide for sound decisions. 
Thus, to make progress it is necessary to combine 
the information contained in many small studies in 
order for reliable knowledge to gradually emerge. 
The likelihood function is proposed for both pur
poses: (a) to characterize the accuracy with which 
the safety effect of a measure is known, and (b) to 
accumulate information obtained from diverse studies. 
It is best to postpone g iving the reasons for this 
choice until after the use of the likelihood function 
in this context is explained. 

To illustrate the use and interpretation of the 
1 ikelihood function, another numerical example is 
introduced. It is concerned with the safety effect 
on right-angle accidents of converting 10 rural in
tersections in Michigan to all-way stop control (4). 
The data for the likelihood function are given -in 
Table 6. 

TABLE 6 Data for the Likelihood Function for Michigan 
Right-Angle Accidents (4) 

Xj Xj Bi 
Accidents Accidents Years 

Site Clj ~i (€'/€)j Before After Before 

1 1.5603 0.1434 1.2237 14 6 3 
2 1.6187 0.1457 1.0657 16 3 3 
3 1.5603 0.1434 1.0189 18 9 3 
4 1.5603 0.1434 1.0549 28 7 3 
5 1.5603 0.1434 l.1387 15 3 3 
6 1.4733 0.1339 1.0643 28 1 3 
7 1.7044 0.1592 0.9976 4 0 2 
8 1.5603 0.1434 0.8642 1 3 3 
9 1.7044 0.1597 0.9659 6 2 2 

10 1.4733 0.1339 1.0069 6 2 3 

A; 
Years 
After 

3 
3 
3 
3 
3 
3 
2 
3 
2 
3 

In Table 6, ai, ai are estimates of parameters 
given by 

(4) 

where Xi and sf are the sample mean and variance of 
the number of before accidents in the population of 
entities of which the treated entity i is a part. 
(£ 1 /E)i is the ratio of exposures of the after to the 
before period for ent i ty i. xi i~ the number of acci
dents (of a certain type) occurring on entity i (i = 
1, 2, ••• , n) during a before period that for this 
entity is Bi years long. xi is the number of acci
dents (of the same type) occurring on entity i during 
an after period which, for this entity, is Ai years 
long. 

The likelihood function for this case can be 
written as 

L(0) 
n 
II 

i=l 
(5) 

The variable e serves here as the index of 
safety effect, If a measure reduces the expected 
number of accidents to, for example, 90 percent of 
its previous value, 0 = 0. 90. If it causes an in
crease of 5 percent, 0 = 1.05. (The detailed deri
vation of Equation 5 may be found in study by Hauer 
et al. (4). 

Using- the entries in Table 6, the likelihood 
function (Equation 5) takes on the form 
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L(0) 9• [4.5603 + (3 x 1.22376)]-20.14 
e' [4.6187 + (3 x 1.06578)]-19.15 
e• (4.5603 + (3 x 1.01890)]-27.14 
e' (4.5603 + (3 x 1.05498)]-35.14 
8' [4.5603 + (3 x 1.13876)]-18 • 14 

0• [4.4733 + (3 x 1.06430)]-29 •13 

e' [3.7044 + (2 x 0.99766)]- 4 • 16 

e' [4.5603 + (3 x 0.86420)]- 4 • 14 

0' [3.7044 + (2 x 0.96598)]-8 •16 
0' [4.4733 + (3 x 1.00690) 1-9 • 13 (6) 

Each line in Equation 6 corresponds to one of the 10 
sites and thus to one row of Table 6. 

With the stage set the meaning and use of the 
likelihood function can be discussed. The likelihood 
function has two important properties: (a) it pre
serves, in a condensed form, the entire information 
content of the data, and (b) it makes the merging of 
information contained in separate data sets simple. 
Thus, for example, the first line in Equation 6 cap
tures all that can be learned (about the safety ef
fect on right-angle accidents of conversion from 
two - to four-way stop control) from what has been 
observed at Site 1 alone. The corresponding likeli
hood function is shown by curve A in Figure 2. 

1.0 
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FIGURE 2 Likelihood functions and their combination. 
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The ordinate for a certain value of 8 is pro
portional to the probability of recording 14 right
angle accidents during a 3-year before period and 6 
right-angle accidents during a 3-year after period 
if that index of safety effect (0) actually pre
vailed. The larger this probability, the more likely 
is the value of 0 said to be. Values of 8 for which 
the likelihood is small compared to its largest value 
(scaled to be equal to 1) are deemed unlikely. 

The information contained in a reduction in number 
of accidents from 14 to 6 [when a, a, and (£'/£) are 
as in line 1 of Table 6] is meager. This is reflected 
in Figure 2 by the fact that curve A is quite flat 
near its peak, and a wide range of es has likeli
hoods that are not much lower than 1. Although it is 
meager, whatever information the 14- to 6-acciden t 
reduction contains is now preserved. In a similar 
manner the second line in Equation 6 preserves all 
the information that can be extracted from the acci
dent history of Site 2. The likelihood function for 
Site 2 is shown in Figure 2 by curve B. 

How can the results from Sites 1 and 2 be com
bined? As indicated by Equation 5 (or 6), the ordi-
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nate of the joint likelihood function is proportional 
to the product of the two component ordinates. For 
computational convenience, the sum of the logarithms 
is used. The joint likelihood function for Sites 1 
and 2 is shown by curve C in Figure 2. It represents 
all that can be learned from the data of Sites 1 and 
2 taken together. 

To complete the illustration, imagine one study 
encompass.ing Sites 1 to 4 and a later study encom
passing Sites 5 to 10. The likelihood function for 
the first study is shown in Figure 3 by curve A. 
When, at some later time, data from Sites 5 to 10 
become available (curve B}, the two data sets can be 
combined to yield the joint likelihood function for 
all 10 sites (curve C). 
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FIGURE 3 Likelihood functions for right-angle accidents at IO 
Michigan intersections. 

The reasons for choosing the likelihood function 
to represent, preserve, and accumulate information 
about the safety effect of a measure are now clear. 
The likelihood function (a) identifies the most 
likely value of e and represents the uncertainty 
surrounding it in an intuitively clear fashion; (b) 
preserves in condensed form all that can be extracted 
from a data set; (c) represents a structured process 
for the accumulation of information and learning 
from experience. At any point in time it represents 
the current state of knowledge. When new data become 
available, the corresponding likelihood function is 
used to revise the existing data and to create a new 
(current) state of knowledge; and (d) facilitates 
the use of formal decision analysis and is an es
sential ingredient for making coherent decisions. 

With all its merits, routine use of the likelihood 
function to combine information extracted from di
verse data sets is not free of difficulties. The 
central question (presently unresolved) can be ex
plained with reference to Figure 3. Is there some 
real difference between the group of Sites 1-4 (curve 
A} and the group of sites 5-10 (curve B), which is 
the reason why the same treatment (conversion to 
four-way stop control) may affect the safety of both 
groups differently? 

If there is such a difference, the two likelihood 
functions should not be fused into curve c. Rather, 
an attempt should be made to describe the difference. 
Thus when conversion to four-way stop control for 
another intersection is contemplated, one will be in 
a position to assess whether curve A or curve B 
applies. If the treatment effect varies randomly from 
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site to site, curves A and B should be fused into 
curve c. In this case, curve C properly represents 
the uncertainty surrounding the estimate of the 
average safety effect of the treatment. It is the 
role of further research to shed light on this im
portant and difficult question. 

SUMMARY AND DISCUSSION 

'l'he authors have attempted to devise a methodology 
that facilitates the extraction of useful information 
from real-world instances of treatment implementa
t i on. such instances are the predominant source of 
information about the safety effect of highway and 
traffic engineering measures. Therefore, the method
ology devised here appears particularly suited for 
the creation of substantial knowledge in this field. 

A simple comparison of before-and-after accident 
counts is shown to be incorrect even if corrections 
for exposure and secular trend are applied. Inasmuch 
as most of the traffic and highway engineering tradi
tional knowledge about the effect of safety measures 
is based on such simple (and incorrect) before-and
a fter comparisons, a wholesale revision of this body 
of knowledge is in order. 

Two smoothed estimates, [~ 1 (x} and £2(x)], are 
recommended for use. To calculate their values, some 
additional data are required. The needed additional 
data are the count of before accidents on all similar 
entities. 

What constitutes a similar entity? The answer 
that the analyst gives to this question influences 
the estimate and therefore introduces into the anal
ysis an element of the arbitrary. Procedures that 
allow the analyst some freedom of choice tend to be 
viewed with suspicion. Two arguments can be raised 
in defense. 

In practice the determination of what constitutes 
a sensible choice of the population of similar en
tities does not appear unduly difficult. The choice 
is seen to be severely circumscribed by what data 
can be obtained and by the interpretation of what 
can be described as a homogeneous population of en
tities. However, that in practice the choice is nar
row, is only a weak defense against the charge that 
scientific methods should be devoid of the arbitrary. 
A stronger defense is that all known methods for the 
statistical interpretation of data require a similar 
measure of the arbitrary. Thus, for example, were it 
at all possible to match a control group (of entities 
left untreated) to the treated entities, a judgment 
would have to be made as to what entities are to be 
considered similar for the purposes of matching . 
This is precisely the judgment required to delineate 
a population of similar entities. If one is accepted 
as scientifically defensible, so must be the other. 

The recommended procedure for before-and-after 
comparisons is an improvement on two counts. First, 
it is asymptotically unbiased and automatically 
e liminates regression-to-the-mean effects. Second, 
the accuracy of estimation is enhanced. However, it 
suffers from an ugly asymmetry. Although variance
reducing methods are devised for the utilization of 
before data, the use of after data remains primitive, 
Future research in this direction might lead to fur
ther improvements in estimation accuracy. 

An attempt has been made to erect a methodological 
basis for extracting information from data and for 
the accumulation of such data. The likelihood func
tion appears to be well suited for this purpose. The 
formal logic is sound, the application is straight
forward, and the interpretation is relatively free 
from obfuscation. 

In the methodological domain an intriguing con
ceptual question remains to be explored: When should 
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likelihood functions derived from different data 
sets be combined? It has its practical translation: 
When are results obtained in city A applicable to 
city B? The commonly voiced contention: "but our 
conditions are different," which exerts a paralyzing 
effect on rational safety management, stems from the 
same source. 

It has been shown that the chosen methodological 
framework worked well when the safety effect of con
version to all-way stop control was examined (Lovell 
and Hauer, and Persaud elsewhere in this Record). It 
is not surprising that a storehouse of empirical 
information on this issue exists. After all, there 
is more than half a century of application and use 
to rely on. It proved relatively simple to assemble 
the additional data that were required to do the 
proper analysis. The net result of this effort is a 
defensible current estimate of the safety effect of 
this measure. 

Much of the traditional knowledge about the safety 
effect of highway and traffic engineering measures 
is based on simple before-and-after comparisons, and 
estimates based on these comparisons are now known 
to be incorrect. Furthermore, a method for analyzing 
before-and-after data has been presented in this 
paper, and experience indicates that past data can 
be used to set the record straight. It follows that 
a concerted effort to do so appears appropriate. 
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