
32 Transportation Research Record 1074

Transportation Network Investment
Problem-A Synthesis of

Tree-Search Algorithms

YUPO CHAN

ABSTRACT

In this paper tree-search algorithms that are particularly adept at solving
network-design problems in transportation planning are surveyed and synthesized.
A unified view of the u.nderlying pdnciples of these tree-search algorithms is
presented. Two metjlodologies--br a.nch-and-bound and br anch-and-backtr ack--have
been identified as promising techniques for solving typically nonlinear and
ill-behaved network-design p oblerns, pardcularly when they are coordinated
with the postoptimality procedures of link lengthening and link shor-tening in
minimum-path computation. The two algorithms are then con1pared , and a third
algorithm--based on double bounding-is synthesized to solve transportation
network-design problems more efficiently .

A number of problems in transpo ation planning deal
with network investment or network design. An ex
ample may be the improvement nf a a il o: highwn:r
network where the heavy capital investment involved
necessitates a careful configuration. A body of lit
erature exists on this type of analysis, which is
often referred to as the link-addition problem. This
paper is written to summarize the pertinent tech
niques that address the problem.

The plan of presentation is as follows: First,
the essential elements of the mathematical formula
tion of a transportation networl:-decign problem cut!
identified. Second, a brief review of the solution
methods, which lead to the potential of the tree
search technique, is presented. Third, examples of
the upper- and lower-bound tree-search techniques
are given, compared, and their key features un
covered. The comparison helps to arrive at a gener -
alized bounding technique to solve network-design
problems.

PROBLEM STATEMENT

The substantive problem of this paper can be stated
as follows: The transportation planner is given a
fixed budget, B, to improve a multiple origin-desti
nation network. Each link in the network is associ
ated with a level-of-service function Cij(Xijl•
which is a monotonically increasing function of
flow, Xij• Investment projects are defined for a link
(i,j), where 6Cij(X1jl denotes the improvement on
link (i,j). It is assumed that the project candidates
have been identified (i.e., 6C1j's are exogenously
defined for a subset of the linlts). The problem is
remotely similar to a knapsack problem in the sense
that an attempt is made to fit a number of projects,
each with a nonzero cost of biji into the budget:

(1)

Department of Civil and Environmental Engineering,
Washington State University, Pullman, wash. 99164.

whe e Oii is a ()-1 variable that denotes whether
project liCij is rejected (0) o~ accepted (1). A
:st..:.i: LJ1.,11d form for i::qua ti on l is b'i'6 < B.

This is a multicommodity net;"or:k -flow (1). Each
"commodity" is defined as the vehicles, ~ssengers ,
or cargo that sta.rt from an origin (0), k, heading
for destination (0), 1 . There are as many commodities
as the number of origin-destination (O-D) pairs. The
constraints can be written as a tableau of a block
diagonal form; each block is a "copy" (.2) of the
node-arc incidence matrix, Akt, representi~ the flow
betweeu k and x.. 'l'he flow between k and t using link

(i,j) is denoted by X~~·s, which are grouped into a
l.J

vector !kt. Each copy Ak1 models an amount of flow
vkl originating at k and terminates at 1. The node
arc incidence matrix Ak1 is composed of the following
elements:

if p c k

if p = l
otherwise (2)

whei:e the o-o demand vkt.•s are functions of the level
of service from k tot. [i.e., vk t.(ckt 1 J. If £kt. is
used to denote the right-hand vector of Equation 2,
each copy of commodity flow can be written as

(3)

The flow on a link comes from diverse 0-D pairs:

kt. l X· · = Xi·
kl£Rij3 J

(4)

where ~j is the set of 0-D flows that utilizes
link ij.

The objective function minimizes the individual
vehicle's travel cost (i.e., user optimizing instead
of system optimizing) <lJ for highway travel:

SupZ=Gh min l [Cij(Xij)
)akt (ij) £Rk1

-6Cij cxij> 6ij1xn} <s>

I

I
I

Chan

where

Rk1 the set of links contained in the routing
from k to 1,

G(2._) monotone function of the project vector
6, and

Sup(•) =max(•) or min(•).

For scheduled transportation services such as trains
and airplanes, vehicular flow can be more appropri
ately modeled by a system-optimizing objective func
tion (4,5), which is Equation 5 without the minimi
zation - operator between the summation signs. Notice
that the amount of travel cost each project saves
(henceforth called the "value• of a project) is not
explicitly stated. The reason is that each time a
project AC ij is implemented, the flows X ij may
change because of a possible change in the minimum
cost flow paths. The implementation of a particular
project would affect the minimum cost flow pattern
in a different way (and hence its value is different)
depending on whether and what other projects have
been implemented. The link-travel-time-reduction
projects are termed dependent <§..> becaus e the value
of a project depends on whether and what other proj
ects have been implemented.

Obviously, variants of this "classic" formulation
are found. Instead of minimizing the system or user
cost, the total budget expendit~re for a given level
of effectiveness may be minimized {11. Furthermore,
maximization of consumers' surplus and a system
equity measure (_!!) may be employed. Instead of a
single period problem, a staged-investment formula
tion (8-11) can be used. Final.ly, a hierarchical ap
proach - tO-network investment (l,12) can be employed.
'l'he important point is that the tree-search method
is flexible and robust enough to tackle all of these
variants.

REVIEW OF SOLUTION METHODS

It is well recognized that there are serious limita
tions of the formal developments in mathematical
programming for solving the typically ill-behaved
transport network-design problem (11-15). Here a set
of network-design methodologies, which combines the
versatility of the enumerative-type algorithm with
some analytical niceties of the algebraic formula
tions, is presented. These algorithms are referred
to as tree-search solution algorithms in which the
geometric configuration (the network synthesis prob
lem) is structured by the enumerative mechanism and
the passenger or commodity flow problem is solved by
an algebraic formulation (the network analysis prob
lem). In this way, a problem is decomposed into sub
problems (_!,J,2.1. The tree-search algorithms as de
fined here have the following additional advantages:
First, the network-flow algotithms-such as traffic
assignment--are computed only as needed and often
involve postoptimality procedures in minimum-path
computations. Second, the tree-pruning criteria are
often stronger, thus deli.mi ting the computational
space. Finally (but probably most significant), the
tree-search strategy as defined in this fashion in
dicates adaptability to the many more •real-life•
issues encountered in transport network design--a
point that will be elaborated.

TREE SEARCH

Included in the synthesis of tree searob is a class
of enumerative solution methods such as branch-and
bound and implicit enumeration (branch-and-backtrack)
<l•!,17-lQ). Tree search derives its name in part
from the way the solution procedure is graphically

33

displayed as a directed tree (see example in Appen
dix). The solution strategy is to break up (or de
compose) the original difficult problem into easier,
auxiliary problems, each of which constitutes a net
work analysis problem.

An auxiliary problem is defined at the nodes of
the directed tree. The first node of the tree is the
root. In the directed tree, there is branching from
a predecess or node to two or more successor nodes.
Thus in the network-design problem cited previously
Z(6) is minimized or maximized by an optimal choice
of- 6*. The solution strategy involves dividing the
set-of all feasible and infeasible solutions D into
the combinatorial space of q subsets, where

(6)

A partial solution is defined as one in which only a
subset of the n decision variables has been assigned
0-1 values. Those decision variables not yet assigned
a binary value are called the free variables. A com
pletion of a partial solution is obtained by speci
fying binary values for the free variables.

In the directed tree, each auxiliary problem can
be written as Zk(Dk) at node k. Among the current
successor nodes, a lower bound can be computed for
the corresponding network-analysis problem, yielding

zk<~> with

£ D (7)

Such a bounded node is where branching takes place
in the next step in the branch-and-bound algorithm.
Likewise, an upper bound U is computed for the opti
mal solution 6*.

A node is said to have been dominated if its ob
jective function cannot be made better (than the ob
jective function of a feasible solution already ob
tained) by further branching. Fathoming a node is
the process of completing (explicitly or implicitly)
the partial solution at that node. Inactive or fath
omed nodes are nodes that have been considered and
need not be investigated further because of domi
nance, feasibility, or end-of-branch considerations.
In other words, if z~ > u, the successor 08 cannot

include the optimal solution 6*. Hence these succes
sors need not be examined further.

Active or unfa thorned nodes, on the other hand,
are nodes that still can be branched from. More pre
cisely, if zr. < u, tbe successor Ds may include 6*.

k- -
Active nodes that are not yet branched from are
called terminal nodes.

Backtracking refers to "climbing up" the directed
tree through the predecessor nodes to some terminal
node and fur·ther branching from the terminal node.
In the branch-and-bound procedure, typically,
branching takes place from the best bound of all
terminal nodes. In the branch-and-backtrack proce
dure, on the other hand, branching is done from the
set of nodes that bas been reached last (i.e.,
bra.nch from the newest active node). Because all
terminal nodes are considered. (explicitly or implic
itly) candidates for branching, this branching pro
cess is called flooding.

There are two types of branching strategy: either
free decision variables a.re sequentially fixed in a
predetermined order or they are chosen in a variable
manner. These are called fixed-order and variable
order branching, respectively. Branching stops when
the optimal solution Z(~*l ~ is found or when

zL > U
k- v k (8)

34

In these network-analysis problems, the works of
Loubal (31), Murchland (~,and Ralder (~) on min
imum-path recomputation are often used to solve the
auxiliary, algebraic problem--aside from the regular
minimufll-patb traffic assignments (34,~). In a net
work in which link (m,n) is shortened from Cmn to
Cmn', the auxiliary problem of tree search is to find

the new shortest distance c~JI. and its corresponding

route. Murchland suggests the following method of
updating an existing ckl and the routing matrix
in min imum-path computation:

ckn =
*

min (ckn, ckm + Cinn') Vk, k t- n (9)
m

and

ckll
*

min (ckll, ckn
*

+ cnll) Vk and JI.,

n JI. "f k, JI. "f n (10)

Loubal 's algorithm (;g_) can be thought of as a spe
cial case of the Mui::chland method generalized to
more than the matrix minimum-path computation.

Neithe·r Loubal 's nor Murchland ' s algorithm is
particularly efficient for link lengthening (or when
a link is deleted from a network). Balder's method
(33) of competing link::i specifically addresses this
problem. Assume that Nm stands for the set of nodes
contained in a tree built from m as the root and Nn
is the set of nodes in the tree with n as the root.
'Now, in the general case, define LO as the set of
links the removal of which would disconnect every
node of Nm i:,0111 ;,.n. '.!'his means a minimum path from a
node k in Nm to a node 1 in Nn will contain one of
the (competing) links of Lo. Updatinb the minimum
paths after lengthening link (m,n) in L involves

min (ckr + Crs + csll.) (ll)

(rs)£Lo

It can be seen that thiR 1 ;ok-lengthening procedure
is not as efficient as the link-shortening one. One
·t 'hing remains clear, however: minimum-path updates
normally involves n2 instead of n' arithmetic opera
tions, where n is the number of nodes in the net
work. The computational savings achieved by updating
is obvious.

UPPER VERSUS LOWER BOUNDING TECHNIQUES

The project vector, 6 a (4ij>• whose entries oij are
0-ls, denotes the re)ection or acceptance of project
ll.Cij• Thus 6 = (0110) denotes the rejection of the
first and last link project and acceptance of the
second and third. As suggested previously, the
branch-and-bound tree with a 0-1 branching rule de
£ines the combinatorial space of 6. An interesting
relation is observed between the -project vector 6
and the objective function, Z:

(01) If 6 1 is identical to 6 except that 6' has
more entries of l's, then Z' < Z or z7 > Z,
corresponding to a minimizing-or maximii"ing
objective, respectively.

To see this, let us consider three states in the
network-design problem as shown in Equations 1-5:
(a) link (i,j) carries no flow, or (b) it carries
the flow on one 0-0 pair k-t only, or (c) it
carries the flow of multiple 0-D pairs. Link (i,j)
belongs to one of the three states. A reduction in
travel cost in (i,j) would result in link (i,j)
staying in state t or going to a higher state t+k i

Transportation Research Record 1074

k = 0, l , 2. The change to a higher state is caused
because some 0-0 flows find it less costly to use
the reduced cost link on their paths from k to 1..
In the case of perfectly inelastic demand, for
example, the total travel cost z can either stay the
same , Z'=z, corresponding to staying in s _tate (a)
before and after, or decrease, z' < z, when one or
more o-o pair flows find it less costly to traverse
link (i,j), corresponding to states (b) and (c). On
the other hand, in the case in which demand is a
function of level of service, the total amount of
0-D movements will be increased because of network
improvement , at a nondecreasing cost. Bence system
user cost will be increased (i.e., z• ~ Z) as a
resul·t.

A second observation is given between the pro~ect
vector 6 and the constraint E (&) [where E(6) ~ b 6 <
B in the classical formulation given in -Equations
1-5]:

(02) For a monotonically decreasing function
E(&T6) and a monotonically increasing func
tion-E 1 <~ . .'1'2.> , suI,>pose E <!> .5. E0 or E ' <!l ~
E0 • Then a vector!'• which is identical to
6 except that 6' has moce entries of l 's,
Ts an infeasible solution.

To see this, take the budget EC!) = &T!_, which is
a monotonically increasing function of 6T6 . At opti
mality, the dot product o·f 6 is at its-maximum value
consistent with the budget constraint E(6) = bT6* <
B = E. Because the cost of implP.mPnl'inlJ i:~~· p"l;o}cct
is nonnegative, adding another project to a subset
of projects that already uses the budget to its
limit would certainly exceed the budget and become
infeasible .

These two observations, together with the branch
ing strategy , make it possible to bound and .fathom.
Each auxiliary problem is to update a multiple 0-D
minimum-path computation by an algorithm suggested
by Murchland ~) or Balder (::l::l). Because the number
of candidate project links is typically only a minor
fraction of the number of all links in the network
and a subset of the candidate links is defined at a
node (say ic of them), the number of calculations
is on the order of oc: n 2 « 11' • Th is inequality be
comes quite significant when n is large, as is the
case with most real-world problems . Depending on the
actual tree-search algorithm, however, the size oc:

may vary significantly.
For the sake of clarity 1 thP. tree-sear~h mGthod

will be illustrated in its detailed algorithmic
s teps , in which the following. procedures are used to
solve the classical minimization network-design
problem outlined in Equations 1-5.

Branch-and-Bound Algorithm

Step 1

Generate the active root node, r
this node 6 = (1) and label it
function z1 .-Go to Step 4.

Step 2

= 1. Define for
with objective

If an active node j has bj = £T.!:l ~ B (i.e., node j
is feasible), set upper bound a " zj. Put node j on
inactive status. All active, feasible nodes i with
Zi > u are dominated {by (Olli. Put these dominated
nodes on inactive status. If there are no more active
terminal. nodes, terminate the algorithm. The optimal
solution, or solutions, z~ = u has been found.

J

I

Chan

Step 3

Branch: Branch from the bounded node 1, creating
node r + l to the r ight and r + 2 to the left. set a
f ree variable 6ij = l on the r i ght branch and 6ij = O
on the left branch . At node r + 1, add 6i j to the set
o f variables with assigned values , I . Calculate

L bi. If Br+l > B, node r + l has been fath-

omed [by (02)] and termed inactive. Otherwise, set
Zr+l = 21 . At node r + 2, solve the auxiliary problem
correspondi ng t o 2.c+2 to obtain Zr+2•

Step 4

Bound: Out of the set of active (i .e., the lower

bound Z~) nodes, find the node t with the smallest
object i ve function z1 • Node IL i s the bounded node. If
r ! l, set r = r + 2. Go to Step 2 . An example of
this algori t hm is shown in the Appendix.

Branch-and-Backtrack Algorithm

Step l

Generate the active root node l and set counter r =
l. Set u = ... Define 6 ,. (0). The set of free var i
ables , F , consists of-all 6i; ' s. The problem as de
f ined here has e xactly the £row pattern of the orig
i nal network before any project implementation . Call
the present objective function z1 •

Step 2

Backtrack: Out o f the set of active terminal nodes,
find the node with the l argest node number (i.e.,
the latest active termi nal node). If r ! l, set r =
r + 2.

Step 3

Branch: Branch. from the latest active node. Create
node r + l to the right and node r + 2 to the left.
Set a free variable 6ij " l on the right branch a nd 0
on the left branch. At node r + 1 , compute £~ ~r+l =
B +l' If Br+l ~ B, node r + l has been fathomed (by
c6211 and ter med inactive . Otherwise , declare node
r + l active. At node r + 2 , let F be the new set of
free variables after 6k has been fixed . If r bi =

icF
Br+2 2_ B, then node r + 2 is feasible . Solve the
auxiliary problem corresponding to setting the free
variabl e in the cur·rent 6 to unity and obtain Zr+2 .
If Zr+2 2_ O, modify the-upper bound to be U = Zr+2•
Declare node r + 2 i nactive . All feasible nodes with
zi > u are dominated [by (Ol) J . Put these dominated
nodes on i nactive status. If there are no more active
terminal nodes, terminate the algorithm . Optimal
solution u has been found. On the other hand , if
Br+2 > B, declare node r + 2 active . Go to Step 2 . An
example of this algor ithm is also contained i n the
Appendix.

Parametric Branch-and-Bound

In the branch-and-bound scheme proposed previously,
a parametric analysis <!, 22,lli can be performed on
the budget level. Sensitivity analysis can be carried

35

out to find the range wi thin which the budget B can
vary, and the solution obta ined still rema i ns op
t i mal.

First is di s cussed the procedure for finding the
lowest budget B (henceforth called the budget
"floor") at which the solution s t i ll remains opti
mal . A solution is shown to be optimal in th e
branch-a nd-bound procedure by establ i sh ing its feasi
bility and that it occurs at a bounded node. Suppose
the optimal solution occurred at the bounded node
t , incurring a cost of B.Tit • which is less than B. B
can conceivably be decreased to £Tb = aL without af
fecting the feasibility of solution !.t . Therefore B
can be decreased by AB and the former solution would
still remain optimal:

- (B - 'B_T!R,) .s_ LI B ,S_ 0 (11)

Second, a question can be posed: Row large could
B be and the solution still remain optimal? This up
per limit is called the budget "cei.ling," Bu . De
termining the budget ceiling is more complicated
than determining the budget floor because the feasi
bility dominance rule_ has been employed. Recalling
the way the bounding operation was carried out, the
partial solution with an objective function value
z1 • closest to the optimal one z1 (z1 , .S. Ztl is ob
tained at the bounded node in the iteration just be
fore the one tbat provides the optimum. The solution
at£', iR, • r is clearly infeasible because , if it were
feasible , it would have been accepted as the optimal
solution (remember z1 , 2_ z 1J . To note this, B.T!.I.• > B
can be written. Therefore the budget could have been
expanded up to (but not set at) B1 1 = 2_T& 1 , and the
current optimum would still be optimal. The amount
LI B by which B can be increased is expressed as

0 ,S_ LI B .s_ (.~_Tit• - B) (12)

If it is guaranteed that all the other nodes dom
inated due to feas i bi l i ty reasons (call it the set G)
have parti al solutions 6~, i ncurring budgets gr eater

-i
than B1 1, that is,

(13)

then z1 would be t .he first optimal sol ution encoun
tered as B i s i ncrementally expanded. For this rea
son , to maintain optimality for the current solu
tion, B definitely cannot be increased by more than
AB as prescribed in Equation 12. On the other hand ,
if Equation 13 is not guaranteed, a second-best so
lution could conceivably be found in the set G. Un
der these conditions , only a weak upper bound could
be obtained by taking !!_T!J_. This section can be sum
mar i zed by saying that

-(B - £Tit> .s_ LIB .S. min [(bT!t • - B),

min (bTr.~- B)] - -'].

i£G

Discussion of Solution Methods

(14)

Two solution methods, branch-and-bound and branch
and- backtrack, were outl i ned in the previous sec
t i ons to solve the network investment problem. The
branch-and-bound scheme adopts a strategy of branch
ing from the lowest bound. The root node accepts al l
projects [6 = (1)) and "rejects" projects one by one
during branching . Computationally , each auxiliary
problem may involve using the link-shortening al
gorithm quite a few times (up to ic times, where K i s

36

the number of l's in 6). For this reason, Halder's
method of lengthening links may be more applicable
here because only one additional link needs to be
lengthened at a time.

The computer storage required to retain the in
termediate information may have to be quite large.
Programming the branch-and-bound algorithm may not
be ea.sy either. It requires a sophisticated data
structure to jump efficiently from one node to an
other and to regenerate solution information at
nodes not recently visited. But the greatest diffi
culty lies in controlling the number of terminal
nodes. Storage space, rather than solution time, is
the key constraint on this method. Because of the
greater complexity of programming, data manipula
tion, and branching node choice, the execution speed
is slower than for the branch-and-backtrack method.

The branch-and-backtrack method keeps on branch
ing from the latest active node. In the present al
gorithm, a root node of all zeros [6 = (O)J is used
to start and projects are accepted one by one during
branching. Computationally, this branching rule
saves solving quite a few auxiliary problems (five
compared with nine in the problem worked out in the
Appendix) because the auxiliary problem at a left
hand node need not be evaluated until feasibility is
encountered. Also, each auxiliary problem defined in
a branch-and-backtrack tree typically has fewer en
tries of l's. The number of calculations in a link
shortening algorithm, Kn', is smaller because K is
not as big as most of the K's found in the branch
and-oound auxiliary problems.

Inside the computer, a pushdown list can be used.
'l'he entry on the top would correspond to the most
recent active element. Each time branching is car
ried out, the new problems are placed on top of the
stack. Each time branching is to be performed, ele
ments from the top of the stack are examined. If
active, new elements will be added to the stack,
corresponding to the new problems generated by
branching. If not active, the element will be dis
carded until an active element is encountered, The
length of the stack will be proportional to the
length of the longest path directed away from the
root of the tree.

The branch-and-bound procedure of branching from
the lowest bound obviously gives the best criteria
for choosing the next node to branch from, in that
the node chosen is more likely to have an optimal
solution at its successor than the node automatically
chosen by branch-and-backtrack. The scheme of branch
and-bound thus allows sensitivity analysis to be
performed on the budget as outlined earlier, and
this author finds it infeasible to perform an equiv
alent sensitivity analysis on the solution obtained
by the branch-and-backtrack method. On the other
hand, branch-and-backtrack tends to arrive at a fea
sible solution fast, even though it may be far from
optimal.

,f\
' I

infeasible
<l---

I
j(

optimum
Z*

Transportation Research Record 1074

There is a certain similar! ty between the tree
search scheme proposed here and the unimodal func
tion search discussed by Mitten (12_) . In Figure l is
depi cted the trade-off relationship between optimal
ity and feasibility. On the left end of the z-axis
are solutions with low Zs, yet most of them are in
f easible solutions . On the right portion of the axis
are high Zs, but they tend to be feasible solutions.
In the center portion will lie the optimum solution
that satisfie s opti ma li ty and f easibility. The
branch-and- bound procedure generates solutions from
the lowest bound. It approaches the solution from
the left portion of the z-axis. The branch-and-back
track method emphasizes getting feasible solutions
fast. It operates from the right portion of the z
a xi s , edging onto the center portion. I f the ccm
puter time available does not permit the execution
of the tree-s earch scheme to completion , chances are
that branch-and-backtrack will give at least a fea
sible sol.u ti on and an upper bound. Br a.nch-and- bound
may just give an infeasible solution and a lower
bound .

A DOUBLE-BOUNDING TECHNIQUE

The branch-and-bound and branch-and-backtrack algo
rithms are flexible enough to address a generalized
cost function; a demand function; and a user- and
s ystem-optimizing, minimization, or maximi2ation ob
jective . There i s one unsatisfying element about the
2ol~tio~ mcthod, hvwever, and that is the difficulty
of finding strong hounds , particularly both an upper
and a lower bound . A strong upper and lowe r bound
are critical to improving computational e ffic ie1lcy.
Pre1iminary research has led to an algorithm that is
discussed hereafter. Again, a minimization objective
o f the network-design formulation is assumed for
convenience in the algorithmic steps . The design of
the algorithm is motivated by works of Chan (1ll,
Billheimer and Gr<1y CW, Magnanti and Wong CW,
and Ruiter \iQ).

Preliminary step

Set up a sta.te-stage diagram , as shown in Figure 2,
in which the rows correspond to the 0-D pairs and
the columns correspond to the number o f algorit.hmic
iterations. The O-D demands corresponding to level of

service m are also sketched in as w~1 , corresponding

to the amount of induced demand increments . Initial
ize m .. 0. Solve t .he first auxiliary problem by per
forming a traffic assignment for the network (if one
i s not already available), yielding the upper bound
objective function ri11 = Zu . 11 parallel assignment is

feasible

z
us .. .

I
)j "' I

I i
All projects Interval of A 11 projects

rejected accepted Uncertainty

FIGURE 1 Bounding from above and below.

Chan

1-2

I I
I I

1-3

Tl I II I
$ ~ r=z '$ + r,.5

I I
I I

2-3

II
0 I 11

1 I
~~~___,~-'---3~~~~-2~~~~~~r-~_6~~~~-

I 
FIGURE 2 Demand function as represented in the state-stage 
diagram. 

performed on a network where all the projects in the 
specified set R have been implemented, yielding the 
lower bound objective function Lm = ZL. Set S = R and 
T = R. 

Step 1: Link Insertion 

Set m+m + 1. Take each node m-r in the state-stage 
diagram as the active node, starting from the top in 
a fixed-order sequence. From the set of project can
didates, S, a subset of projects I = [6il is se
lected. The improvement in the objective function 

6Z~(m) over the upper bound is obtained by updating 

th~ traffic assignment for each of the 6·cI. The 
project that results in the best improvemenf 6i is 
accepted and set to unity. The corresponding o6jec-

tive function Um= Um-1 - 6Z~(m) and budget level 

Bu(m) l 6j bj are then computed. Project 6j is 
j cS 

then removed from the set S for further consider
ation. 

Step 2: Link Removal 

For the same nodes m-r, a project 6k (if any) is se
lected from the subset I if the elimination o f it 
from the network (i.e., setting 6k = D) results in 
the minimal (but nonzero) degradation of the objec-

tive function, and the degradation hZk(m) has to be 

less than the improvement 6Z~(m) [i.e., hZ~(m) < 6Z~ 
(m)]. The corresponding o6jective function, Lm = 
Lm-1 + hZ~(m), and the budget level, Bt(m) a L 6kbk, 

kcT 
are computed. Project 6k is then removed from T. 

Step 3: Termination Criteria 

When both the ·Upper and lower bound solutions ace 
feasible [i.e., BL(m)<B and 8tJ(m)<B] or both sets S 
and T are empty, stop. A local optimal solution Z* = 
min (t\n1Iml has been found, with tbe corresponding 
projects s or T and budget level. Otherwise, after 
all the nodes m-r have been scanned and become in
active, go back to Step l. An example of this double
bounding algorithm, to accompany the branch-and-bound 
and branch-and-backtrack examples, is shown in the 
Appendix. 

37 

CONCLUSION 

This paper serves as a brief review of tree-search 
methods as applied to transportation network design. 
The example problem is f ormulated as a user-optimiz
ing , nonlinear, multicommodity, fi xed-charge-type 
integer program. The integer program is solved by 
two approaches, branch-and-bound and branch-and
backtrack. Postoptimality procedures are used to 
solve the auxiliary problem gE!!nerated by the tree
search schemes . The concept of parametric branch-and
bound is sketched, showing that sensitivity analyses 
can be performed as part of the algor ithm. Finally, 
a comparison is made between the two solution 
methods. This results in the design of a double
bounding algorithm. 

It is observed that from the computation and com
puter programming point of veiw, the branch-and
backtrack algorithm is more efficient than the 
branch-and- bound algorithm. Branch-and-back track 
provides feasible solutions quite early in the com
putation. It approaches the optimal solution via an 
upper-bound pruning rule. Branch-and-bound gives 
feasible solutions only at the final phase o f the 
algorithm, approaching the optimal solution m•.:>s tly 
from the lower bound. Parametric sensitivity a .ialy
sis can be performed with the branch-and-bound al
gorithm, whereas the author sees no way to do the 
same with branch-and-backtrack. 

The proposed double-bounding algorithm has the 
promise of being computationally more efficient. The 
solution so obtained is, nevertheless, merely a 
local optimum. More research is needed in its re
finement. Available i.nforrnation substantiates the 
value of tree-search methods in solving a number of 
transportation network-design problems with typi
cally ill-behaved non.a nalytical properties. 

It should be noted that the tree-search algo
rithms presented here are based on the monotonicity 
properties (01) and (02), which essentially assume 
that travel congestion in vehicle-minutes is reduced 
f or perfectly inelastic demands as links are added 
to the network. Likewise, it is assumed that the 
number of o-o movements is increased on an improved 
network for downward-sloping demand functions. Re
cent findings about the Braess' paradox by Steinberg 
and Zangwill (4'1) show that, should all r outes used 
before the addttion of the new link continue to be 
used, travel congestion f or the inelastic demand 
case may be worsened as a result of link addition. 
This would in some cases violate the first of the 
two monotonicity properties on which tree-search so
lution algorithms are built and raises serious 
doubts over the wealth of literature on tree-search. 

However, another recent finding is of i .nterest. 
Pearman Wl found out that network-design problems 
are "rich in suboptimal solutions.• Because there 
are other concerns in transportation planning aside 
from an "optimal" solution to the network-design 
problem, any improved network design, even though 
only locally optimal, may be useful in practice. 
Following this line of argument, a strong case can 
still be made f or using the tree-search algorithms 
presented here as a computational tool to get better 
network designs1 although the researcher would nec
essar Uy have to be humble in claiming that the al
gorithms are panaceas for solving al.l transportation 
woes. 

REFERENCES 

1. J.L. Kennington. A Survey of Linear Cost Multi
cornrnodity Network Flows. Operations Research, 
Vol. 26, No. 2, 1978, pp. 209-236. 

2. L.D. Charnes and W.W. Cooper. Multicopy Traffic 



38 

3. 

4 . 

5 . 

6. 

7 . 

8. 

9 . 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18 . 

19. 

20. 

21. 

2 2. 

Network Models. Symposium on The Theory of 
Traffic Flow, General Motors Research Labora
tory, Warren, Mich., 1959, pp. 85-96. 
s . c. Defermos . An Extended Traf fic Assign.ment 
Model with Applications t o Two-Way Traffic. 
Tr anspor ta tion Science, Vol. 5 , No . l , 19 7l , 
pp . 366-389. 
G. Dantz ig, R. Harvey, z. Lansdowne, D. Robin
son , and S . Maier. Formulating a.nd Solv ing 'the 
Newtork Design Problem by Decomposi t i on. Trans
portation Re s e arch , Vol . l3B , 1978, pp . 5-17 . 
L.J . LeBlanc a nd M. Abdulaal. An Efficient 
Trial Approach t o the Or ban Road Network Design 
Problem. Compute rs and Mathematics with Appl i 
cation , Vol . 5 , 1979 , pp . ll-19 . 
R. M. Weinga rtner. Mathemat i cal Programming and 
the Analysis of Capital Budgeting Problems. 
Pr ent ice-Hall , Inc., Englewood Cliffs , N.J. , 
1.963 . 
Y. Chan. Optimal Travel Time Reduction in a 
Transport Network: An Application of Network 
Aggregation and Branch and Bound Techniques . 
Report R6S-39. Depar t men t of Civil J::ngineer ing , 
Massachusetts Institute of Technology , Cam
bridge , 1969 . 
A.S. El-Aroud. A Road Development Model for De
veloping Countries. Ph.D. dissertation. Penn
sylvania State University, University Park , 
1980. 
M.L. Funk and E.A. Tillman. Optimal Construc
t i on Staging b~z' Dynamic Programming. Journal o f 
the Highway Division, ASCE, 1968, pp . 255-265. 
c:;= ~rgendahl. A Comb i ned Linear and Dy.narnic 
Programming Mode l for Interdependent Road In
vestment Planning. Transportation Research, 
Vol. 3, 1969, pp. 211-228. 
L. D. Chapman. Inves ting in Regiona l Highway 
Networks. Journal of the Transportation Engi
neering Division , ASCE , 1973. 
T.T. Shen . Application of Traffic Assignment 
and Net wor k Aggregation in an Urban Area . Mas
t er's The&is. National Taiwan Unive.niity, 
Taipei, Taiwan, Republic of China , 1981. 
D. Johnson, J . Lenstra, and A.R. Kan. The Com
plexity of the Network Design Problem. Net
works, Vol. 8, 1978, pp. 279~285. 
R. Di onne and M. Florian . Exact and Approxi
mate Algorithms for Optimal Network Design. 
Networ ks , Vol. 9, 1979 , pp. 37-59. 
R.T. Wong. Worst-Case Analysis of Network De
sign Problem Heuristics. J ournal of Algebraic 
~ nd Di screte M~thods , Society for Industrial 
and Applied Ma t hematics, Vol. l, 1980, pp . 51-
63 . 
D. Dubois, G. Bel, and M. Llibre. A Set of 
Methods in Transportation Network Synthesis and 
Analysis. Journal of the Operational Research 
Society, Vol. 30, No. 9, 1979, pp. 798-808. 
A.H. Land and A. Doig. An Automatic Method of 
Solving Di screte Programming Problems. Econo
metrica, Vol. 28, 1960, pp. 497-520. 
J.D.C. Little, K.C. Murty, D.W. Sweeney, and C. 
Karel. An Algorithm for the Travelling Salesman 
Problem. Operations Research, Vol. 11, 1963, 
pp. 972-989. 
E. Balas. An Additive Algorithm for Solving 
Linear Programs with 0-1 Variables. Operations 
Research, Vol. 13, 1965, pp. 517-549. 
E. Balas. A Note on the Branch-and-Bound Prin
ciple. Operations Research, Vol. 16, No. 2, 
1968, pp. 422-445. Errata in Vol. 16, No. 4, p. 
886. 
E.L. Lawler and D.E Wood. Branch and Bound 
Methods : A Survey. Operations Research, Vol. 
14, No. 4, 1966, pp. 699-719. 
J .D. Ichbiah. Connectivity Analysis and Branch 

23. 

24. 

25. 

26. 

27 . 

28. 

29. 

30. 

31 . 

3 2. 

33. 

34 . 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

Trans portation Research Record 1074 

and Bound Methods. 
chusetts Institute 
1967. 

Ph . D. dissertation. Massa
of Technology, Cambridge, 

F . Ochoa a nd A. Sil va . Opt imum Project Addition 
in Urban Transportation Networ ks v ia Descrip
tive Traffic Assignment Models . Research Report 
~68-44 . Department of Civil Engineering , Massa
chusett s I nstitute of Techhology , Cambridge , 
1968 . 
A . J . Scott. The Optimal Network Problem: Some 
Computational Procedures. Transportation Re
search, Vol. 3, 1969, pp. 201-210. 
L.G. Mitten. Branch-and-Bound Methods : General 
Formulation and Proper ties. Operations Re
search, Vol. 18, No. 1, 1970, pp. 24-34. 
H.H. Hoc. A Computational Approach to the Se
lec.tion of a.n Optimal Network . Management 
Science , Vol . 19 , No . 3 , 1973 , pp. 488-498 . 
D. E. Boyce , A. Farh i , and R. Weischedel . Opti
mal Net work Probl ems : A Brand- and-Bound Algo
rithm. Environment and Plann ing , Vol. 5 , 1973 , 
pp. 519-533 . 
P. A. Si:et<nbrini< . Op timiza t ion of Transport Net
works . John Wiley & Sons , Inc ., New Yor k, 1974 . 
K. Chen and J< . P. J arboe . Lai:ge Scale Decision 
Tree Optimization by Branch and Bound Methods. 
Large Scale Systems, Vol. 1, No . 2, 1980, pp. 
117-128. 
H . tloorzahedy and M.A. Turnquist. Approximate 
Algor i tbrns for the Discrete Network Design 
Problem . Transporta t ion Research, vol . 16B, No. 
1, 1982 , pp . 45-55 . 
P.S. Loubal. A L~e l.work Evalua tion Procedure . In 
Highway Research Record 205, HRB , National Re
search Council, Washington, o.c., 1967, pp. 
96-109. 
J .D. Murchland. A Fixed Matrix Method for all 
Shortest Distances in a Directed Graph and for 
the Inverse Problem. Transport Network Unit 
LBS-TNT-91. London Business School, London, En
gland, 1969. 
A.K. Halder. The Method ot t:ornpeting Links. 
Transportation Science, Vol. 4, No . 1, 1970. 
D. Van Vliet . Improved Shor test Path Algori thms 
for Transporta tion Networks . Transportation Re
search, Vol. 12, 1978, pp. 7-20. 
N. Deo, Y.B. Yoo, and M.J. Quinn. Parallel Pro
cessing for Some Large-Scale Ne twor k Optimiza
t i on Problems. Un iversity Researc h Program, U.S. 
Depa.rtment o f Transpor t ation, 1983 . 
F. Ochoa-Rosso . Appl i cations of Discrete Opti
mization Techniques to Capi t al investment and 
Network Synthesis Problems. Research Report 
R68-42. Department of Civil Engineering, Massa
chusetts Institute of Technology, Cambridge, 
1968. 
Y. Chan. Configuring a Transportation Route 
Network v ia the Me thod of Successive App roxima
tion. Computers & Operations Research , Vol. 1, 
1974, pp. 385-420. 
J.W. Billheimer and P. Gr ay . Networ k Design 
with Fi xed and Variable Cost Elements . Trans
portation Science, Vol. 7, No. 1, 1973 . 
T.L. Magnanti and R.T. Wong. Network Design and 
Transportation Planning: Models and Algorithms. 
Transporta tion Science , Vol. 18, No. 1 , 1984 . 
E.R. Ruiter . A Prot o type Analysis: Sea rch and 
Choice in Transportation Systems Planning. De
partment of Civil Engineering, Massachusetts 
Institute of Technology, Cambridge, Vol. 2, 
1968. 
R. Steinberg and W. I. Zangwill. The Prevalence 
of Braess' Paradox. Transportation Science, 
Vol. 17, No. 3, 1983, pp. 301-318. 
A.D. Pearman. The Structure of the Solution Set 
to Network Optimization Problems. Transporta
tion Research, Vol . 138, 1979, pp. 81-90. 



Chan 

APPENDIX--SOLUTION OF AN EXAMPLE PROBLEM 

Consider the following example problem with per
fectly inelastic demands (Figure A-1): 

4 
min z • l: 

4 

i: 
k=l l=l 

(4 - 61) xkt 12 

+ (2 - 62) x~f+c2_63 > x~~ 
+ (4 _ 64 ) xkl + 4xkl + 7xkl + 7xkl + xkl 

34 23 42 14 43 

such that 

1

-1 if p ~ k 

- J:xk~ = l if p "' 1 

j 
PJ . 

0 otherwise 

X~~ > 0 only if (i,j) is on the shortest path from k 
1J 

to 1 

X~~ = positive integersi 6r = (0,1) where a 
1J 

hand notation 61 has been used to denote 61 2 , 
6411 63 for 624 and 64 for 634• 

FIGURE A-1 Example network. 

(0011) 
z9=47 

z
3

=42 

B3=6 

b2=0 

B9=4.'.:.B 9 

U=47 inactive 

811=3.3~8 . 
rnact 1 ve 

FIGURE A-2 Branch-and-bound example. 

short-
62 for 

39 

Branch-and-Bound 

For this network design problem, the branch-and-bound 
algor ithm is stepped through in detail as a directed 
tree. The reader should refer to Figure A-2 as he 
goes through the algorithm, where the node numbers 
correspond to the sequence in which the algorithm is 
carried out. 

Branch-and-Backtrack 

The same network design example will be used to il
lustrate the bra.nch-and-backtrack algorithm. The 
reader should refer to the directed tree shown in 
Figure A-3 when he goes through the algorithm steps. 

Double-Bounding Algorithm 

Again, using the same example, these algorithm steps 
are performed 

m = 0 

In tbis preliminary step, a state- stage diagram is 
generated with 12 rows and an indefinite number of 
columns . Traffic ass ignments yield o• "' 55 vehicle
minutes when all projects are rejected and L0 = 3 7 
with all projects implemented. S = {61, 62, 631 04}, 
with all 6's equal to o. T • {61, 62 , 63 , 64}, with 
all entries set at 1. 

m = 1 

Link Insertion 

From the entire set of link-improvement candidates, 
links are improved by setting each 6k to l in 
the upper-bound network. The corresponding system 
travel cost (Z) in vehicle-minutes is calculated us
ing a link-shortening procedure such as Murchland' s. 

inactive 

optimum 
inactive 

inactive 

QJ1tim~rl. 

(1111) 
Z4=Z1 
84=3 

..1 3=1 

(1111) 
6 Z6=z 1 

86=s.s 
inactive 



40 Transportation Research Record 1074 

inactive 

Z13= 45 inactive inactive 
U=45 

a16=4. s 
inactive 

FIGURE A-3 Branch-and-backtrack example. 

64 res ults in t he bes t improvement in z of 7 vehicle
m1nutes . Hence Ul = 55 - 7 e 48, 8tJ(l) = 2 < B = 4. 
62 is t hen r emoved f rom the candidate set s. 

Link Removal 

Similarly, link-improvement candidates are removed 
from the network by setting eaeh 6k to 0 in the 
lower-bound network. The corres ponding system travel 
cos t (Z) is computed using a l ink-lengtheni ng a lgo
r i thm such a s Balder 's. The removal of candidate &2 
results in the mi nimal degradation of z, wi th the 

amount of degradation 6Z~(l) = 5 < 6Z~(l) = 7. Now 
L1 = 37 + 5 = 42 and BL(l) = 5 and project 62 is re
moved from T. 

m = 2 

Link Insertion 

This second iteration inserts 61 into the upper-bound 
network, resulting in U2 = 44, Bu(2) = 3, which is 
less than B = 4. Also, s now consists of 63 and 64 

Q.P_timl!!'!_ inactive 

optimum 

only, both at values of zero, with 61 and 62 set at 
unity. 

Link Removal 

Similarly, 64 is removed from s2 , resulti ng in L2 = 
45, BL(2) = 3.5 < B = 4. Now T consists o f 61 and 
63 only, both at uni t y, and 62 and 64 are set at 
zero. 

Termination 

Because both upper- and lower -bound s ol ut i ons are 
f easible, a l ocal opt imum z• =min (44,45) ., 44 ve
hicle - minutes i s obtained wi th t he corresponding 
projec·ts , 61 and 62, implemented. Compar ing t he te
sults with those of t ree search, it i s f ound that 
the sol ut i on is, indeed, a global minimum. 

Publication of this paper sponsored by Committee on 
Appl i ca tion of Economic Analysis to Transportation 
Problems. 




