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Transportation Network Investment

Problem—A Synthesis of
Tree-Search Algorithms

YUPO CHAN

ABSTRACT

In this paper tree-search algorithms that are particularly adept at solving
network-design problems in transportation planning are surveyed and synthesized.
A unified view of the underlying principles of these tree-search algorithms is

presented.

Two methodologies—~-branch-and-bound and branch-and-backtrack--have

been identified as promising techniques for solving typically nonlinear and

ill-behaved network-design problens,

particularly when they are coordinated

with the postoptimality procedures of link lengthening and link shortening in
minimum-path computation. The two algorithms are then compared, and a third
algorithm--based on double bounding--is synthesized to solve transportation

network-design problems more efficiently.

A number of problems in transportation planning deal
with network investment or network design. An ex-
ample may be the improvement of a rail or highway
network where the heavy capital investment involved
necessitates a careful configuration. A body of lit-
erature exists on this type of analysis, which is
often referred to as the link-addition problem. This
paper is written tc¢ summarize the pertinent tech-
nigues that address the problem.

The plan of presentation is as follows: First,
the essential elements of the mathematical formula-
tion of a transportation network-decign problem are
identified. Second, a brief review of the solution
methods, which lead to the potential of the tree-
search technique, is presented. Third, examples of
the upper- and lower-bound tree-search technigues
are given, compared, and their key features un-
covered. The comparison helps to arrive at a gener-
alized bounding technique to solve network-design
problems.

PROBLEM STATEMENT

The substantive problem of this paper can be stated
as follows: The transportation planner is given a
fixed budget, B, to improve a multiple origin-desti-
nation network. Each link in the network is associ-
ated with a level-of-service function Cjj(Xj4),
which is a monotonically increasing function “of
flow, Xj4. Investment projects are defined for a link
(i,j), where Acij(xi-) denotes the improvement on
link (i,j). It is assuimed that the project candidates
have been identified (i.e., ACj4's are exogenously
defined for a subset of the links). The problem is
remotely similar to a knapsack problem in the sense
that an attempt is made to fit a number of projects,
each with a nonzero cost of bij' into the budget:

E bij sij <B (1)
(13)
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where 612 is a 0-1 variable that denotes whether
project Cij is rejected (0) or accepted (1). A
shoiLthand form for kqguation 1 is b'§ < B.

This is a multicommodity network flow (1). Each
"commodity" is defined as the vehicles, passengers,
or cargo that start from an origin (Q), k, heading
for destination (D), L. There are as many commodities
as the number of origin-destination (0-~D) pairs. The
constraints can be written as a tableau of a block
diagonal form; each block is a "copy" (2) of the
node-arc incidence matrix, ake » representing the flow
between k and %. "The flow between k and % using link
(i,j) is denoted by x??-'s, which are grouped into a
vector 5“. Each copy ak% models an amount of flow
vk% originating at k and terminates at %. The node-
arc incidence matrix ak% is composed of the following
elements:

-vk%  ifp =k
)‘_x’ié-{x’l‘,gu vk ifp=2
i 3 [v} otherwise (2)

where the 0-D demand VK%'s are functions of the level
of service from k to ¢ [i.e., VK (c®%)). 1f gk" is
used to denote the right-hand vector of Equation 2,
each copy of commodity flow can be written as

Akﬂ.ékl - ékl(skl,) (3)

The flow on a link comes from diverse O-D pairs:

kg
Xiz = Xga (4)
kEEZ:Ri;J i3

where Rij is the set of O-D flows that utilizes
link ij.

The objective function minimizes the individual
vehicle's travel cost (i.e., user optimizing instead
of system optimizing) (3) for highway travel:

Sup Zz = G)] min I Icjy(x35
Y (i) erk?

=8Ci5 (X4 4) sij]xﬁ} (5)
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where

rkL

the set of links contained in the routing
from k to &,
G(8) = monotone function of the project vector
§, and
Sup(*) = _rr-lax(') or min(*).

For scheduled transportation services such as trains
and airplanes, vehicular flow can be more appropri-
ately modeled by a system-optimizing objective func-
tion (4,5), which is Equation 5 without the minimi-
zation operator between the summation signs. Notice
that the amount of travel cost each project saves
(henceforth called the "value" of a project) is not
explicitly stated. The reason is that each time a
project 4Cj4 is implemented, the flows Xj;4 may
change because of a possible change in the minimum
cost flow paths. The implementation of a particular
project would affect the minimum cost flow pattern
in a different way (and hence its value is different)
depending on whether and what other projects have
been implemented. The link-travel-time-reduction
projects are termed dependent (6) because the value
of a project depends on whether and what other proj-
ects have been implemented.

Obviously, variants of this "classic" formulation
are found. Instead of minimizing the system or user
cost, the total budget expenditure for a given level
of effectiveness may be minimized (7). Furthermore,
maximization of consumers' surplus and a system-
equity measure (8) may be employed. Instead of a
single period problem, a staged-investment formula-
tion (8-11l) can be used. Finally, a hierarchical ap-
proach to network investment (7,12) can be employed.
The important point is that the tree-search method
is flexible and robust enough to tackle all of these
variants.

REVIEW OF SOLUTION METHODS

It is well recognized that there are serious limita-
tions of the formal developments in mathematical
programming for solving the typically ill-behaved
transport network-design problem (13-15). Here a set
of network-design methodologies, which combines the
versatility of the enumerative-type algorithm with
some analytical niceties of the algebraic formula-
tions, is presented. These algorithms are referred
to as tree-search solution algorithms in which the
geometric configuration (the network synthesis prob-
lem) is structured by the enumerative mechanism and
the passenger or commodity flow problem is solved by
an algebraic formulation (the network analysis prob-
lem). In this way, a problem is decomposed into sub-
problems (4,16). The tree-search algorithms as de-
fined here have the following additional advantages:
First, the network-flow algorithms--such as traffic
assignment--are computed only as needed and often
involve postoptimality procedures in minimum-path
computations. Second, the tree-pruning criteria are
often stronger, thus delimiting the computational
space. Finally (but probably most significant), the
tree-search strategy as defined in this fashion in-
dicates adaptability to the many more "real-life"
issues encountered in transport network design--a
point that will be elaborated.

TREE SEARCH

Included in the synthesis of tree search is a class
of enumerative solution methods such as branch-and-
bound and implicit enumeration (branch-and-backtrack)
(7,8,17-30) . Tree search derives its name in part
from the way the solution procedure 1is graphically
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displayed as a directed tree (see example in Appen-
dix). The solution strategy is to break up (or de-
compose) the original difficult problem into easier,
auxiliary problems, each of which constitutes a net-
work analysis problem.

An auxiliary problem is defined at the nodes of
the directed tree. The first node of the tree is the
root. In the directed tree, there is branching from
a predecessor node to two or more successor nodes,
Thus in the network-design problem cited previously
Z(§) is minimized or maximized by an optimal choice
of §*. The solution strategy involves dividing the
set of all feasible and infeasible solutions D into
the combinatorial space of q subsets, where

DlUDzU...UDq=D (6)

A partial solution is defined as one in which only a
subset of the n decision variables has been assigned
0-1 values. Those decision variables not yet assigned
a binary value are called the free variables. A com-
pletion of a partial solution is obtained by speci-
fying binary values for the free variables.

In the directed tree, each auxiliary problem can
be written as Zk (Dg) at node k. Among the current
successor nodes, a lower bound can be computed for

the corresponding network-analysis problem, yielding
2 (DK) with
2l (k) <2 (8) SeD (7

Such a bounded node is where branching takes place
in the next step in the branch-and-bound algorithm.
Likewise, an upper bound U is computed for the opti-
mal solution §*.

A node is Said to have been dominated if its ob-
jective function cannot be made better (than the ob-
jective function of a feasible solution already ob-
tained) by further branching. Fathoming a node is
the process of completing (explicitly or implicitly)
the partial solution at that node. Inactive or fath-
omed nodes are nodes that have been considered and
need not be investigated further because of domi-
nance, feasibility, or end-of-branch considerations.
In other words, if Zﬁ > U, the successor Dg cannot

include the optimal solution §*. Hence these succes-
sors need not be examined further.

Active or unfathomed nodes, on the other hand,
are nodes that still can be branched from. More pre-
cisely, if z& < U, the successor Dg may include §*.
Active nodes that are not yet branched from are
called terminal nodes.

Backtracking refers to "climbing up" the directed
tree through the predecessor nodes to some terminal
node and further branching from the terminal node.
In the branch-and-bound procedure, typically,
branching takes place from the best bound of all
terminal nodes. In the branch-and-backtrack proce-
dure, on the other hand, branching is done from the
set of nodes that has been reached last (i.e.,
branch from the newest active node). Because all
terminal nodes are considered (explicitly or implic-
itly) candidates for branching, this branching pro-
cess is called flooding.

There are two types of branching strategy: either
free decision variables are sequentially fixed in a
predetermined order or they are chosen in a variable
manner. These are called fixed-order and variable-
order branching, respectively. Branching stops when
the optimal solution Z(§*) = is found or when

Zp>U Wk (8)
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In these network-analysis problems, the works of
Loubal (31), Murchland (32), and Halder (33) on min-
imum-path recomputation are often used to solve the
auxiliary, algebraic problem--aside from the regular
minimum-path traffic assignments (34,35). In a net-
work in which link (m,n) is shortened from Cy, to
Cnn' e the auxiliary problem of tree search is to find

the new shortest distance Ckz and its corresponding

the following method of

route. Murchland suggeslﬁs
and the routing matrix

updating an existing C
in minimum-path computation:

ckn = min (ckn, ckm + c ") ¥k, k # n (9)
m

and

cki = min (ckt, ckn 4+ cnt) ¥k and 2,
n L 7k, 2 #n (10)

Loubal's algorithm (31) can be thought of as a spe-
cial case of the Murchland method generalized to
more than the matrix minimum-path computation.
Neither Loubal's nor Murchland's algorithm is
particularly efficient for link lengthening (or when
a link is deleted from a network). Halder's method
(32) of competing links specifically addresses this
problem. Assume that N stands for the set of nodes
contained in a tree built from m as the root and N"
is the set of nodes in the tree with n as the root.
Now, in the general case, define L“ as the set of
links the removal of which would disconnect every
nede of N fiom 8". +whis means a minimum path from a
node k in N' to a node ¢ in N' will contain one of

the (competing) links of LD, Updating the minimum
paths after lengthening link (m,n) in LY involves
% = min  (cKT + cpg + CSB) 1)

(rs)ell

It can be seen that this link-lengthening procedure
is not as efficient as the link-shortening one. One
thing remains clear, however: minimum-path updates
normally involves n? instead of n’ arithmetic opera-
tions, where n is the number of nodes in the net-
work. The computational savings achieved by updating
is obvious.

UPPER VERSUS LOWER BOUNDING TECHNIQUES

The project vector, § = (613), whose entries 51 are
0-1s, denotes the rejection” or acceptance of project
ACj4. Thus § = (0110) denotes the rejection of the
first and last link project and acceptance of the
second and third. As suggested previously, the
branch-and-bound tree with a 0-1 branching rule de-
fines the combinatorial space of §. An interesting

relation is observed between the project vector §

and the objective function, 2:

(o1) If §' is identical to § except that §' has
more entries of 1's, then 2° <2Zor z' > Zs
corresponding to a minimizing or maximizing
objective, respectively.

To see this, let us consider three states in the
network-design problem as shown in Equations 1-5:
(a) link (i,j) carries no flow, or (b) it carries
the flow on one O-D pair k-t only, or (c) it
carries the flow of multiple 0-D pairs. Link (i,])
belongs to one of the three states. A reduction in
travel cost in (i,j) would result in link (i,j)
staying in state t or going to a higher state t+k;
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k = 0,1,2. The change to a higher state is caused
because some 0-D flows find it less costly to use
the reduced cost link on their paths from k to 2.
In the case of perfectly inelastic demand, for
example, the total travel cost Z can either stay the
same, 2'=Z, corresponding to staying in state (a)
before and after, or decrease, %' < Z, when one or
more O-D pair flows find it less costly to traverse
link (i,j), corresponding to states (b) and (¢c). On
the other hand, in the case in which demand is a
function of level of service, the total amount of
0~D movements will be increased because of network
improvement, at a nondecreasing cost. Hence system
user cost will be increased (i.e., Z' > Z) as a
result. il

A second observation is given between the project
vector § and the constraint E(§) [where E(§) = b'§ <
B in the classical formulation given in I:quations
1-5]):

(02) For a monotonically decreasing function
E(GTS) and a monotonically increasing func-
tion E‘(G 8) » suppose E(§) < E, or E'(§) >
Eg- Then a vector 8" which is identical to
§ except that §' has more entries of 1's,
is an infeasible solution.

To see this, take the budget E(§) = QT'Q, which is
a monotonically increasing function of §Ts. At opti-

mality, the dot product of § is at its maximum value
consistent with the budget constraint E(§) = bT§* <
B = E. Because the cost of implementing any p'ojcct
1s nonnegative, adding another project to a subset
of projects that already uses the budget to its
limit would certainly exceed the budget and become
infeasible.

These two observations, together with the branch-
ing strategy, make it possible to bound and fathom.
Each auxiliary problem is to update a multiple 0O-D
minimum-path computation by an algorithm suggested
by Murchland (32) or Halder (33). Because thc number
of candidate project links is typically only a minor
fraction of the number of all links in the network
and a subset of the candidate links is defined at a
node (say x of them), the number of calculations
is on the order of kn® << n'. This inequality be-
comes quite significant when n is large, as is the
case with most real-world problems. Depending on the
actual tree-search algorithm, however, the size
may vary significantly.

For the sake of clarityv, the tree-gearch mcthod
will be illustrated in its detailed algorithmic
steps, in which the following procedures are used to
solve the classical minimization network-design
problem outlined in Equations 1-5.

Branch-and-Bound Algorithm

Step 1

r = 1. Dpefine for
it with objective

Generate the active root node,
this node §= (1) and label
function 2. “Go to Step 4.

Step 2

If an active node j has by = bTaj <B (i.e., node j
is feasible), set upper bound U = Z;. Put node j on
inactive status. All active, feasible nodes i with
Zj > U are dominated [by (01)]. Put these dominated
nodes on inactive status. If there are no more active
terminal nodes, terminate the algorithm. The optimal

solution, or solutions, z¥ = U has been found.

3



Chan

Step 3

Branch: Branch from the bounded node £, creating
node r + 1 to the right and r + 2 to the left. Set a
free variable §;4 = 1 on the right branch and 654 = 0
on the left branch. At node r + 1, add 644 to the set
of variables thh assigned values, I. Calculate
I bj. If Br+1 > B, node r + 1 has been fath-
iel
omed [by (02)] and termed inactive. Otherwise, set
Zy41 = %p. At node r + 2, solve the auxiliary problem
corresponding to §.4.p to obtain Z.,,.

Bryi1 =

Step 4

Bound: Out of the set of active (i.e., the 1lower
bound Zt) nodes, find the node & with the smallest

objective function Zy. Node ¢ is the bounded node. If
r#1l, setr =r + 2. Go to Step 2. An example of
this algorithm is shown in the Appendix.

Branch-and-Backtrack Algorithm

Step 1

Generate the active root node 1 and set counter r =
1. Set U = w, Define § = (0). The set of free vari-
ables, F, consists of all §i4's. The problem as de~
fined here has exactly the fIow pattern of the orig-
inal network before any project implementation. Call
the present objective function Zj.

Step 2
Backtrack: Out of the set of active terminal nodes,
find the node with the largest node number (i.e.,
the latest active terminal node). If r # 1, setr =
r + 2.
Step 3

Branch: Branch from the latest active node. Create
node r + 1 to the right and node r + 2 to the left.
Set a free variable §j4 = 1 on the right branch and 0
on the left branch. At node r + 1, compute bT Sp41 =
If Bpy; > B, node r + 1 has been fathomed (by
{52}] and termed inactive. Otherwise, declare node
r + 1 active. At node r + 2, let F be the new set of

free variables after §x has been fixed. If § by =
ieF

Bryp € B, then node r + 2 is feasible. Solve the
auxiliary problem corresponding to setting the free
variable in the current § to unity and obtain Z 3.
If Zy49 < U, modify the upper bound to be U = Zp4p.
Declare node r + 2 inactive. All feasible nodes with
%Zj > U are dominated [by (01)]. Put these dominated
nodes on inactive status. If there are no more active
terminal nodes, terminate the algorithm. Optimal
solution U has been found. On the other hand, if
By42 > B, declare node r + 2 active. Go to Step 2. an
example of this algorithm is also contained in the
Appendix.

Parametric Brancn-and-Bound

In the branch-and-bound scheme proposed previously,
a parametric analysis (8,22,36) can be performed on
the budget level. Sensitivity analysis can be carried
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out to find the range within which the budget B can
vary, and the solution obtained still remains op-
timal.

First is discussed the procedure for finding the
lowest budget B (henceforth called the budget
"floor") at which the solution still remains opti-
mal. A solution is shown to be optimal in the
branch-and-bound procedure by establishing its feasi-
bility and that it occurs at a bounded node. Suppose
the optimal solution occurred at the bounded node
2, incurring a cost of b 8p+ which is less than B. B
can conceivably be decreased to bTs, = BL without af-
fecting the feasibility of solution 8y+ Therefore B
can be decreased by AB and the former solution would
still remain optimal:

-(B - bTs;) <aB <0 (11)

Second, a question can be posed: How large could
B be and the solution still remain optimal? This up~
per limit is called the budget "ceiling," BU. Dpe-
termining the budget ceiling is more complicated
than determining the budget floor because the feasi-
bility dominance rule has been employed. Recalling
the way the bounding operation was carried out, the
partial solution with an objective function value
Zy' closest to the optimal one Z,(%yr < Z;) is ob-
tained at the bounded node in the iteration just be-
fore the one that provides the optimum. The solution
at L', 85+, is clearly infeasible because, if it were
feasible, it would have been accepted as the optimal
solution (remember Zpr < Zg). To note this, b 830 > B
can be written. Therefore the budget could have been
expanded up to (but not set at) By: = bTs,1 and the
current optimum would still be optimal. e amount
AB by which B can be increased is expressed as

0 < aB < (BTs;r - B) (12)

If it is guaranteed that all the other nodes dom-

inated due to feasibility reasons (call it the set G)
have partial solutions gg, incurring budgets greater

than By, that is,

bTs? > pTs;  icG (13)

then 2z, would be the first optimal solution encoun-
tered as B is incrementally expanded. For this rea-
son, to maintain optimality for the current solu-
tion, B definitely cannot be increased by more than
AB as prescribed in Equation 12. On the other hand,
if Equation 13 is not guaranteed, a second-best so-
lution could conceivably be found in the set G. Un-
der these conditions, only a weak upper bound could
be obtained by taking b 8y« This section can be sum-
marized by saying that

-(B - bTs,) < B < min {(bTs,: - B),
min (ngii’- B) (14)
ieG

Discussion of Solution Methods

Two solution methods, branch-and-bound and branch-
and-backtrack, were outlined in the previous sec-
tions to solve the network investment problem. The
branch-and-bound scheme adopts a strategy of branch-
ing from the lowest bound. The root node accepts all
projects [6 = (1)] and "rejects" projects one by one
during branching. Computationally, each auxiliary
problem may involve using the link-shortening al-
gorithm quite a few times (up to x times, where x is
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the number of 1l's in §). For this reason, Halder's
method of lengthening links may be more applicable
here because only one additional link needs to be
lengthened at a time.

The computer storage required to retain the in-
termediate information may have to be quite large.
Programming the branch-and-bound algorithm may not
be easy either. It reguires a sophisticated data
structure to jump efficiently from one node to an-
other and to regenerate solution information at
nodes not recently visited. But the greatest diffi-
culty lies in controlling the number of terminal
nodes. Storage space, rather than solution time, is
the key constraint on this method. Because of the
greater complexity of programming, data manipula-
tion, and branching node choice, the execution speed
is slower than for the branch-and-backtrack method.

The branch-and-backtrack method keeps on branch-
ing from the latest active node. In the present al-
gorithm, a root node of all zeros [i = (0)] is used
to start and projects are accepted one by one during
branching. Computationally, this branching rule
saves solving quite a few auxiliary problems (five
compared with nine in the problem worked out in the
Appendix) because the auxiliary problem at a left-
hand node need not be evaluated until feasibility is
encountered. Also, each auxiliary problem defined in
a branch-and-backtrack tree typically has fewer en-
tries of 1's. The number of calculations in a link-
shortening algorithm, «n?, is smaller because x is
not as big as most of the k's found in the branch-
and-bound auxiliary problems.

Inside the computer, a pushdown list can be used.
The entry on the top would correspond to the most
recent active element. Each time branching is car-
ried out, the new problems are placed on top of the
stack. Each time branching is to be performed, ele-
ments from the top of the stack are examined. If
active, new elements will be added to the stack,
corresponding to the new problems generated by
branching. If not active, the element will be dis-
carded until an active element is encountered. The
length of the stack will be proportional to the
length of the longest path directed away from the
root of the tree.

The branch-and-bound procedure of branching from
the lowest bound obviously gives the best criteria
for choosing the next node to branch from, in that
the node chosen is more likely to have an optimal
solution at its successor than the node automatically
chosen by branch-and-backtrack. The scheme of branch-
and-bound thus allows sensitivity analysis &c be
performed on the budget as outlined earlier, and
this author finds it infeasible to perform an equiv-
alent sensitivity analysis on the solution obtained
by the branch-and-backtrack method. On the other
hand, branch-and-backtrack tends to arrive at a fea-
sible solution fast, even though it may be far from
optimal.
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There is a certain similarity between the tree-
search scheme proposed here and the unimodal func-
tion search discussed by Mitten (25). In Figure 1 is
depicted the trade-off relationship between optimal-
ity and feasibility. On the left end of the z-axis
are solutions with low %s, yet most of them are in-
feasible solutions. On the right portion of the axis
are high Zs, but they tend to be feasible solutions.
In the center portion will lie the optimum solution
that satisfies optimality and feasibility. The
branch-and-bound procedure generates solutions from
the lowest bound. It approaches the solution from
the left portion of the z-axis. The branch-and-back-
track method emphasizes getting feasible solutions
fast. It operates from the right portion of the z-
axis, edging onto the center portion. 1f the com-
puter time available does not permit the execution
of the tree-search scheme to completion, chances are
that branch-and-backtrack will give at least a fea-
sible sclution and an upper bound. Branch-and-bound
may just give an infeasible solution and a lower
bound.

A DOUBLE-BOUNDING TECHNIQUE

The branch—-and-bound and branch-and-backtrack algo-
rithms are flexible enough to address a generalized
cost function; a demand function; and a user- and
system-optimizing, minimizallon, or maximization ob-
jective. There is one unsatisfying element about the
soluticn m however, and that 1s the difficulty

ong bounds, particularly both an upper
and a lower bound. A strong upper and lower bound
are critical to improving computaticnal efficilency.
Preliminary research has led to an algorithm that is
discussed hereafter. Again, a minimization objective
of the network-design formulation is assumed for
convenience in the algorithmic steps. The design of
the algorithm is motivated by works of Chan (37),
Billheimer and Gray (38), Magnanti and Wong (39).,
and Ruiter (40).
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Preliminary Step

Set up a state-stage diagram, as shown in Figure 2,
in which the rows correspond to the O-D pairs and
the columns correspond to the number of algorithmic
iterations. The O-D demands corresponding to level of
service m are also sketched in as nwz, corresponding

to the amount of induced demand increments. Initial-
ize m = 0. Solve the first auxiliary problem by per-
forming a traffic assignment for the network (if one
is not already available), yielding the upper bound
objective function U™ = Zy. A parallel assignment is

infeasible feasible
& D
optimum
Z*
o - t © —t —t > 7
L L, Lt U ... U2 Y
| !
4 3 A
i i

A11 projects
accepted

Interval of
Uncertainty

A1l projects
rejected

FIGURE 1 Bounding from above and below.
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FIGURE 2 Demand function as represented in the state-stage
diagram

performed on a network where all the projects in the
specified set R have been implemented, yielding the
lower bound objective function L™ = z;. Set § = R and
T = R.

Step l: Link Insertion

Set m+m + 1. Take each node m-r in the state-stage
diagram as the active node, starting from the top in
a fixed-order sequence. From the set of project can-
didates, S, a subset of projects I = [§;] is se-
lected. The improvement in the objective function
AzU (m) over the upper bound is obtained by updating
the traffic assignment for each of the §5eI. The
project that results in the best improvemeng 85 is
accepted and set to unity. The corresponding objec-

tive function Up = Up-3 - Azg(m) and budget level

By(m) = 1§ 84 bj are then computed. Project & is
je

then removed from the set S for further consider-
ation.

Step 2: Link Removal

For the same nodes m-r, a project § (if any) is se-
lected from the subset I if the elimination of it
from the network (i.e., setting 6y = D) results in
the minimal (but nonzero) degradation of the objec-

tive function, and the degradation Azk(m) has to be

less than the improvement AzZU(m) [i.e., Azﬁtm) < 2zl

(m)]. The corresponding ogjective function, Lp =

Lp-1 + AZ['(m), and the budget level, By (m) = Y 6kby,
keT

are computed. Project §; is then removed from T.

Step 3: Termination Criteria

When both the upper and lower bound solutions are
feasible [i.e., By (m)<B and By(m)<B] or both sets S
and T are empty, stop. A local optimal solution 2* =
min (Up.L,) has been found, with the corresponding
projects S or T and budget level. Otherwise, after
all the nodes m-r have been scanned and become in-
active, go back to Step 1. An example of this double~
bounding algorithm, to accompany the branch-and-bound
and branch-and-backtrack examples, is shown in the
Appendix.
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CONCLUSION

This paper serves as a brief review of tree-search
methods as applied to transportation network design.
The example problem is formulated as a user-optimiz-
ing, nonlinear, multicommodity, fixed~-charge-type
integer program. The integer program is solved by
two approaches, branch-and-bound and branch-and-
backtrack. Postoptimality procedures are used to
solve the auxiliary problem generated by the tree-
search schemes. The concept of parametric branch-and-
bound is sketched, showing that sensitivity analyses
can be performed as part of the algorithm. Finally,
a comparison is made between the two solution
methods. This results in the design of a double-
bounding algorithm.

It is observed that from the computation and com-
puter programming point of veiw, the branch-and-
backtrack algorithm is more efficient than the
branch-and-bound algorithm. Branch-~and-backtrack
provides feasible solutions gquite early in the com—-
putation. It approaches the optimal solution via an
upper-bound pruning rule. Branch-and-bound gives
feasible solutions only at the final phase of the
algorithm, approaching the optimal solution mostly
from the lower bound. Parametric sensitivity a..aly-
sis can be performed with the branch-and-bound al-
gorithm, whereas the author sees no way to do the
same with branch-and-backtrack.

The proposed double-bounding algorithm has the
promise of being computationally more efficient. The
solution so obtained is, nevertheless, merely a
local optimum. More research is needed in its re-
finement. Available information substantiates the
value of tree-search methods in solving a number of
transportation network-design problems with typi~-
cally ill-behaved nonanalytical properties.

It should be noted that the tree-search algo-
rithms presented here are based on the monotonicity
properties (01) and (02), which essentially assume
that travel congestion in vehicle-minutes is reduced
for perfectly inelastic demands as links are added
to the network. Likewise, it is assumed that the
number of O-D movements is increased on an improved
network for downward-sloping demand functions. Re-
cent findings about the Braess' paradox by Steinberg
and Zangwill (41) show that, should all routes used
before the addition of the new link continue to be
used, travel congestion for the inelastic demand
case may be worsened as a result of link addition.
This would in some cases violate the first of the
two monotonicity properties on which tree-search so—
lution algorithms are built and raises serious
doubts over the wealth of literature on tree-search.

However , another recent finding is of interest.
Pearman (42) found out that network-design problems
are "rich in suboptimal solutions.®™ Because there
are other concerns in transportation planning aside
from an "optimal® solution to the network-design
problem, any improved network design, even though
only locally optimal, may be useful in practice.
Following this line of argument, a strong case can
still be made for using the tree-search algorithms
presented here as a computational tool to get better
network designs; although the researcher would nec~-
essarily have to be humble in claiming that the al-
gorithms are panaceas for solving all transportation
woes.
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APPENDIX--SOLUTION OF AN EXAMPLE PROBLEM

Consider the following example problem with per-
fectly inelastic demands (Figure A-1l):

4 4
minz = [ [ (4-6) xk4
k=1 2=1

- ki ke
+ (2 - 62) X{, o-63) X54

+ (4 - 64) xK& 4 axkt 4 7xk& 4 gxk® 4 xki

34 23 42 14 43
such that
-1 if p=k
{ng = {xgg ={1ifp=12 k # % ¥p
i 3 0 otherwise

51 + 262 * 2.553 + 1.564 i 4

x?% > 0 only if (i,j) is on the shortest path from k
to ¢ :

short-
52 for

xk& = positive integers; 6, = (0,1) where a
hand notation §1 has been used to denote 6§;,,
8§41, 83 for 894 and 64 for 634

inactive : 5
hact inactive

FIGURE A-2 Branch-and-bound example.
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Branch—-and-Bound

For this network design problem, the branch-and-bound
algorithm is stepped through in detail as a directed
tree. The reader should refer to Figure A-2 as he
goes through the algorithm, where the node numbers
correspond to the sequence in which the algorithm is
carried out.

Branch-and-Backtrack

The same network design example will be used to il-
lustrate the branch-and-backtrack algorithm. The
reader should refer to the directed tree shown in
Figure A-3 when he goes through the algorithm steps.

Double-Bounding Algorithm

Again, using the same example, these algorithm steps
are performed

m=0

In this preliminary step, a state-stage diagram is
generated with 12 rows and an indefinite number of
columns. Traffic assignments yield U° = 55 vehicle-
minutes when all projects are rejected and L° = 37
with all projects implemented. S = {83, 82, 83, 64},
with all 6's equal to 0. T = {8y, 63, 637 84} with
all entries set at 1.

m=1

Link Insertion

From the entire set of link-improvement candidates,
links are improved by setting each 6§; to 1 in
the upper-bound network. The corresponding system

travel cost (Z) in vehicle-minutes is calculated us-
ing a link-shortening procedure such as Murchland's.

(1111)_

inactive inactive
(1101)
L1672
=3. 114775 g _-3cp  Byp7d-5
B, ,=5 17 inactive
inactd 14 inactive
fnactive inactive optimum
optimum opLimgm
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Z7=47 inactive inactive

FIGURE A-3 Branch-and-backtrack example.

§2 results in the best improvement in Z of 7 vehicle-
minutes. Hence h =55 - 7= 48, BU(l) =2 < B =4,
§, is then removed from the candidate set S.

Link Removal

Similarly, link-improvement candidates are removed
from the network by setting each §; to 0 in the
lower-bound network. The corresponding system travel
cost (2) is computed using a link-lengthening algo-
rithm such as Halder's. The removal of candidate &y
results in the minimal degradation of Z, with the
amount of degradation Azg(l) =5« Azg(l) = 7. Now
Ly = 37 + 5 = 42 and By (1) = 5 and project §, is re-
moved from T.

m= 2
Link Insertion
This second iteration inserts §; into the upper-bound

network, resulting in Uy = 44, By(2) = 3, which is
less than B = 4. Also, S now consists of §3 and &4

inactive
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(1000) .

o Bz—l

B),72.5<8\{1010)

([)211=47 (10) 8

(1010) (1101)
13=3.55B
13°% inactive inactive B ;=3B §16=4.d
. 1,=45 inactive
gpLimm inactive
optimum
only, both at values of zero, with 51 and P set at
unity.

Link Removal

Similarly,
45, B (2)
83 only,
zero.

§4 is removed from S,,
3.5 <B =4,
both at unity,

resulting in L,
Now T consists of 61 and
and §; and ¢4 are set at

Termination

Because both upper- and lower-bound solutions are
feasible, a local optimum 2Z* = min (44,45) = 44 ve-~
hicle-minutes is obtained with the corresponding
projects, §; and 63, implemented. Comparing the re-
sults with those of tree search, it is found that
the solution is, indeed, a global minimum.

Publication of this paper sponsored by Committee on
Application of Economic Analysis to Transportation
Problems.





