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Effects of Capacity Constraints on 
Peak-Period Traffic Congestion 
MOSHE BEN-AKIVA, ANDRE DE PALMA, AND PAVLOS KANAROGLOU 

The model of Ben-Akiva, Cyna, and de Palma is extended to 
represent trip departure time and route choice decisions when 
t'-'t"' ilPml>nil ;., Pln.,tlc. Th • slmol • eas treated has two l)arallel 
routes with travelers jointly sel~ctlng route and departure time. 
The delays are assumed to occur at bottlenecks of limited capacity 
(bridge, tunnel, etc.) and a simple queueing model Is employed to 
determine waiting time as a function of queue length at the time of 
arrival at the end of the queue. The day-to-day adjustment of the 
distribution of traffic is derived from a dynamic Markovian 
model. Numerical simulation experiments are pe1·formed to dem­
onstrate the possible changes in the pattern of peak-period conges­
tion when capacity of a bottleneck is changed. The results demon­
strate some of the interdependencies that may exist among 
different bottlenecks In a road network. It is shown, In particular, 
that, In the presence of eta ·ttc demand, congestion may persist 
even when capacity of a bottleneck is expanded to meet the high~t 
level of existing traffic flows. This does not mean, however, that 
expanding the capacity of a bottleneck and thus diverting trips 
from other routes cannot be a successful strategy for reducing 
schedule delays and traffic congestion along other routes, If that is 
the objective of traffic management. In addition, it is shown that if 
the capacities of the bottlenecks remain constant on average, but 
fluctuate from day to day because of stochastic factors (such as 
weather conditions), average traffic delays tend to increase. The 
modeling approach presented in this paper can also be used for 
policy analyses such as finding the optimal capacity expansion, the 
opllmal coarse toll or time-dependent toll, the impact of informa­
tion in situations of stochastic capacity, and the Impact of changing 
the characteristics of an alternative travel mode. 

Traffic congestion occurs at critical bottlenecks on the network 
where large traffic volumes and limited roadway capacity cause 
queues to develop. A bottleneck may occur at a point where 
roadway capacity is reduced, such as a merge area, a bridge, a 
tollgate, or a tunnel. It is assumed that, as soon as the arrival fl.ow 
at the bottleneck is larger than its capacity, a queue develops and 
the departure fl.ow from the bottleneck is equal to its capacity. The 
limited resources available for the expansion of highway networks 
in dense urbanized areas are likely to cause further increases in 
levels of congestion. In this paper a model of peak-period traffic 
congestion is used to analyze the effects of capacity constraints. 
The model is applied to a simplified network to predict the lengths 
of the queues at different times. Simulation results of the model in 
a prototypical situation demonstrate the effects of changing capac­
ity on the pattern of traffic congestion during a peak period. 

The model assumes that a commuter may choose to avoid long 
queues by trading off the difference between actual and desired 
arrival times (termed schedule delay) against shorter travel time. 
For a discussion and empirical estimates of this trade-off, see, for 
example, Kraft and Wohl (1), Cosslett(2), Small (3), Abkowitz (4), 
and Hendrickson and Plank (5). Equilibrium models of peak-
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period traffic congestion that incorporate this trade-off for a net­
work with a single bottleneck facility were developed by Vickery 
(6), !:!~!!de!~Q.~ (7). !!~!!.d!i'.'~0!'. imrl Kor.nr (l~r llncl Fargii!r (9). A 
stochastic extension for this problem was developed by de Palma 
et al. (10), and its dynamic version was analyzed by Ben-Akiva et 
al. (11). 

Although many useful results were obtained from these models, 
their assumption of inelastic total volume is often not satisfied. The 
presence of congestion after a significant increase in capacity is 
often attributed to diverted and induced demands. Additional trav­
elers are attracted by the expanded facility and consequently the 
queues that were expected to vanish may persist (12). To capture 
this effect the present authors use a model, recently developed by 
Ben-Akiva et al. (13 ), that extends the previous work by employing 
an elastic demand function for the total number of road users. In 
the previous analyses, the total number of travelers crossing the 
bottleneck was fixed and only the choice of departure time was 
considered. However, travelers can also decide to travel or not, to 

choose among different destinations, to switch to alternative 
modes of travel, and to divert to alternative routes. A simple 
example would be the case of two parallel routes in which travelers 
are jointly selecting a route and a departure time. In this case, it is 
also useful to include the option of not traveling. 

The numerical simulations that are presented in this paper are 
concerned with the case of two parallel roads, a high-capacity 
expressway and a shorter distance arterial. This example is used to 

demonstrate the effects of changes in capacity on the pattern of 
peak-period congestion. 

The results presented in this paper could be generalized without 
any difficulty to more than two routes in parallel. In a companion 
paper, de Palma et al. ( 14) have considered the case of multiple 
origins, a single destination, and bottlenecks in series; this corre­
sponds to an urban corridor situation. The simulation of general 
networks appears to be significantly more complex. Ben-Akiva 
( 15) discusses some of the difficulties inherent in this generaliza­
tion. 

MODEL 

Consider a network that consists of I parallel routes linking a 
single origin-destination pair. Let N be the number of potential 
travelers, each one of whom is faced with deciding whether to 
travel via one of the I routes. Given a decision to travel, the 
traveler selects a route (i = 1, .. . , J) and a departure time (t) from the 
origin, t E [T 0, T 0 + 1], where T 0 and T 0 + T are the earliest and 
the latest possible departures from the origin, respectively. 

It is assumed that individuals may alter their choices from day to 
day. The probabilily, pi(t,ro)h, I.hat n given individual decides on 
day co lo use one of the I routes, to select route i from the I routes, 
and to depart from the origin during the time interval [t, t +Ji[ E 

[1"0, T 0 + 71 is obtained from a nested logit model. [See Ben-Akiva 
and Lerman (16) and Ben-Akiva et al. (13) for detailed presenta­
tions of the nested logit model and its application, respectively.] It 
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views a trip as the outcome of a three-stage decision process: 
choice of using one of the I routes, choice of leaving during the 

time interval [t, t + h[ conditional on the choice of making a trip, 
and choice of using route i conditional on the previous two 
choices. Following Ben-Akiva et al. (13 ), the following product of 
conditional probabilities is obtained: 

Pi(t,(J))h = (Probability of a trip on day c.o) 
(Probability of a departure between t and t + h 
given a trip on day ro) 
(Probability of selecting route i given a trip 
departure during the period [t, t + h[ on day c.o) (la) 

Each probability is assumed to have the multinomial logit form 
with its own scale parameter; µ 1, µ 2 , and µ 3 are the parameters of 
the route, departure time, and the travel or no travel choice proba­
bilities, respectively. A scale parameter of a discrete choice model 
measures the degree of heterogeneity of preferences among indi­
vidual decision makers in a market segment. The nested logit 
formulation for this choice probability can be expressed by 

pi(t,ro)h = ( exp[V'°(t,ro)/µ 1]/exp[V*(t,c.o)/µ1]) 

( exp[V*(t,ro )/µz]/exp[V*(* ,ro )/µz]) 

( exp[V* (*, ro )/µ3]/ { exp[V* (* ,ro )/µ3] 

+ exp[Vc/~]}) · h 

where the following composite variables are used 

I 

V*(t,(J)) = µ 1/n L exp[vd(t,ro)/µ 1] 

j=l 

T0+T 

V*(*,ro) = µ 2/n L exp[V*(u,(J))/µz] 
u=To 

(lb) 

(le) 

(ld) 

and where an asterisk is used to indicate that a summation has been 
performed over the corresponding variable, vi(t,ro) is the systema­
tic utility of the choice described previously, and V0 is the utility of 
not using one of the I routes (i.e., the null alternative). The 
composite variable defined in Equation le is the expected max­
imum utility from the choice among alternative routes. The vari­
able defined in Equation ld is the expected maximum utility from 
the choice among alternative trips (i.e., combinations of departure 
time period and route). 

The utility function of a trip via route i departing from the origin 
at time t during day (J) is assumed for simplicity to have the 
following linear form: 

(2) 

where 

i = a constant specific to route i, 
tti(t,(J)) = travel time from the origin to the destination on day ro 

for a departure at time t via route i, 
SDi(t,(J)) = the disutility of schedule delay of a trip via route i 

departing at time t during day ro, and 
a = a constant parameter that measures the marginal dis­

utility of travel time. 

The specification of schedule delay disutility assumes that the 
desired period of arrival at the destination is [t* - A, t* +A] where 
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t* denotes the center of the desired arrival period and A ~ 0 is a 
measure of arrival time flexibility. (Alternatively, A can be inter­
preted as a measure of desired arrival time variability among 
individuals.) The arrival time at the destination for a departure at 
time t for a trip via route i during day ro is given by 

(3) 

Denote the departure times from the origin via route i during day ro 
for arrivals at the destination at times t* - A and t* +A, respec­
tively, by ?'((J)) and f((J)) to obtain 

?'((J)) = t* - A - ui(P(ro),ro) 

?(ro) = t* +A - tf(f(ro),ro) 

(4a) 

(4b) 

In other words, departures from the origin via route i on day ro 
during the period [1:0, ii(ro)] result in early arrivals, and those 
during the period [t'(ro), T0 + 11 result in late arrivals. The 
disutility of schedule delay is assumed to be piecewise linear and is 
specified as follows: 

{ 

~ [t* - ll. - t - tf(t,c.o) fort E [T0, ?'(ro)] 
SDi(t,(J)) = O forte [P(ro), t(ro] 

~y [t + tf(t,ro) - t* - A] 
fort E: [f(ro), T0 + T] 

(5) 

where ~ and ~y are constant marginal disutility parameters. ~ is 
therefore the disutility of 1-min early arrival and ~y is the disutility 
of 1-min late arrival. 

The delay on each route is assumed to occur at a single bot­
tleneck facility, such as a bridge or a tollgate, with a fixed capacity 
of J. The road segments before and after the bottlenecks have 
fixed travel times. Queues may develop only at the entrances to the 
bottleneck facilities. The waiting time at the entrance to a bot­
tleneck is determined by a deterministic queueing model: it is 
equal to the number of vehicles in the queue at the time of arrival 
at the bottleneck divided by the capacity. For more details, see 
Equations 2-4 in Ben-Akiva et al. (II). 

To simulate this model, the time period [T0 , T0 + T] is divided 
into equal time intervals of length h. Define Ri(t,ro) to be the 
number of users choosing the departure time interval [t, t + h] and 
route i. The parameter h could be interpreted as a measure of the 
ability of individuals to discriminate among alternative departure 
times. This view is supported by Mahmassani et al. (17) who 
developed an experimental procedure to study the choice of depar­
ture time and "found that the participants adjusted their departure 
times by multiples of 5 minutes, with a minimum adjustment 
interval of 5 minutes." Moreover, various values of h have been 
explored, and it has been found that, if h is small enough (on the 
order of 5 to 10 min), the results are extremely stable. In the 
following, Ri(t,(J)) will denote the departure rate per unit of time 
that is equal to Ri(t,ro)/h. 

Following de Palma and Lefevre (18) and Ben-Akiva et al. (II), 
it is assumed that the day-to-day adjustment process used by 
individuals to revise their behavior can be modeled using the 
following set of difference equations: 

(6) 

where R is a constant rate at which individuals switch their choices 
or the probability that a randomly chosen individual will review 
his travel decision on a given day. Note that [NPi(t,ro)h - Ri(t,ro)] is 
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FIGURE 2 Base case stationary distributions of travel times for Route 1 and Route 2 (sl = 8,000 vph and 
s2 = 3,000 vph). 

runs with different parameters, it appears that these abrupt changes 
are caused neither by computational problems nor by the narure of 
the dynamic model. 

In an earlier theoretical analysis of the shape of the distribution 
of departure and travel times, de Palma et al. (JO) have shown that 

1. The departure rate increases (decreases) exponentially fort< 

tq (l > tq'); 
2. When congestion is low, the distribution of departure times 

tends to be flat for f < t < t, for a small value of µ2; and 
3. The distribution of travel times can also be derived for the 

deterministic limit: it is linear for t < f and t > t and constant for f < 
t < i (25). 

Analysis of Changes in Bottleneck Capacities 

The following two changes in the capacities of the two bottlenecks 
are considered: 

1. In the base case Route 2 is higltly congested and llte max­
imum arrival rate at this bottleneck reaches approximately 4,900 
vph. As an auempt to eliminate llte congestion on Route 2, its 
capacity is increased from 3,000 to 5,000 vph. 

2. Route 1 in the base case represenrs a major expressway lltat 
carries almost two-thirds of the iraffic in the network under study. 
Considered is the situation in which this highway needs to undergo 
major reconstruction; during llte construction period. the maximum 
peak-period capacity of this highway decreases from 8,000 to 
6,000 vph (i.e., an effective loss of one lane). 

The first situation is analyzed under two assumptions about the 
total demand: elastic total demand using the parameters of the base 
case and inelastic total demartd with llte parameters of the base 
case except that the total volume is consLrained 10 be 21,698 
vehicles, as in lltc stationary state of lhe base case (Table 1). 

The inelastic total demand assumption is an approximation that 

may be more acceptable for the second situation in which the 
change in the capacity of Route 1 is due to road repair. Because of 
the temporary nature of the higher level of congestion, drivers are 
likely to adjust routes and departure times and maintain the same 
overall travel pattern in terms of origins, destinations, and modes 
of Lravel. The demand will always be elastic except when specified 
otherwise. 

The stationary distributions for these two capacity changes are 
summarized in Table 1. Figure 3 shows the stationary departure 
rate distributions in the first situation. The distributions under ilie 
elastic and inelastic total demand assumption are quite similar, and 
there are no qualitative differences between the stationary distribu­
tions for the two demand assumptions. Higher capacity on Route 2 
or lower capacity on Route 1 results in major shifts of traffic from 
Route 1 to Route 2. In the case of higher capacity on Route 2, 
congestion does not vanish from Route 2 even with inelastic total 
demand. There is a significant shift from Route 1 to Route 2 that 
actually eliminates congestion on Route 1. This increased capacity 
has substantial user benefits because the delays are significantly 
shorter. 

Note iliat the importance of the temporal distribution of ilie 
demand is demonstrated by the fact that the percentage change in 
average delay is significantly greater than the percentage change in 
total volume. In the case of larger capacity on Route 2, there are no 
important differences between the elastic and the inelastic total 
demand assumptions (Table 1). 

The comparisons with the base case in Figures 3a and 3b 
demonstrate that increasing capacity eliminates congestion on 
Route 1, shortens the lengili of the congestion period (by 25 
percent) on Route 2, and decreases the average and maximum 
delays. It also results in a significant shift toward later departure 
times and a large increase [decrease] in the maximum of ilie 
departure rate distribution for Route 2 [1] because of the shift from 
Route 1 to Route 2. Figures 3a and 3b provide a clear demonstra­
tion of how added capacity causes an increase in traffic volume, a 
shift from one route to another, and a shift in the temporal distribu­
tions. 
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FIGURE 3 Stationary distributions of departure times for Route 1 and Route 2 (sl = 8,000 vph and s2 = 
S,000 vph). 

The comparisons with the base case for the situation of reduced 
capacity on Route 1 are shown in Figure 4. In this case, the shift 
from Route 1 to Route 2 is less significant and the major change is 
a shift on both routes toward earlier departure times. There is also 
a smaller increase in late departures. The maximum departure rates 
have increased and shifted to an earlier time and the durations of 
the congestion periods on both routes have increased significantly. 
Thus the major effect of closing one lane on Route 1 is a shift of 
traffic from the congested on-time arrival period on Route 1 to 
early arrival periods on Routes 1 and 2. 

In a situation of drastic change in the capacities of the bot­
tlenecks in a highway network it is important to predict the 
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transient adjustments of the volumes in addition to the new equi­
librium state. Major reductions in capacities often occur for short 
periods of time when a highway section is being repaired and the 
dynamics of the traffic are of direct interest. For permanent 
changes in capacity such as the construction of an additional lane, 
it is also useful to study the length of the adjustment period. 

The predicted dynamic evolutions of the traffic flows and delays 
toward their new stationary states starting from the stationary state 
of the base case are shown in Figure 5. The rate of convergence to 
a stationary state is dependent on the value of the review rate. For a 
high value, a convergence to a stationary state is not guaranteed. 
Simulation experiments consistently show that for small values of 
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FIGURE 5 Transient distributions of departure times for Route 1 and Route 2 (sl = 8,000 vph and s2 = 3,000 vph). 

the review rate convergence occurs tow~d a unique stationary 
state. A value of 0.1 was selected for the simulations presented in 
this paper because it leads to stable stationary states after a period 
of 2 to 3 weeks, which is reasonable for these types of traffic 
adjustments. As also suggested by other simulations not presented 
here, the dynamic evolutions of the departure rate distributions 
appear to have two time scales. The first period corresponds to the 
major shifts among the alternative routes. During the second 
period significant adjustments occur in the departure time distribu­
tions while the total volume on each route remains stable. [A more 
detailed presentation of the dynamic evolutions in the temporal 
distributions of traffic flows is given elsewhere (25).] 

The on-time arrival period on Route 1 is shortened by only 6 
min, from 58 to 52 min, and begins 15 min earlier. This result 
could be interpreted by noting that the length of the on-time arrival 
period for a deterministic choice model is equal to 2.1, which is 
equal to 1 hr in the simulations (27). 

Adding or Closing a Route 

Next is considered a change in the number of routes available 
between the origin and the destination (Figure 6 and Table 2). 
Considered first is the case in which there is only one route. In this 
case, the congestion level, measured by average delay, is twice its 
value in the base case. However, the length of the congestion 
period increases by only 50 percent. Because of the higher level of 
congestion, the volume of vehicles and the consumer surplus 
decrease substantially. 

Second, a situation is considered in which the base case network 
is augmented by a third route that has a capacity of 3,000 vph and 
the same length as Route 1. The number of road users increases 
slightly (by 3 percent). The main effect is a shift from Route 1 to 
Route 3 (31 percent) and to a lesser extent from Route 2 to Route 3 

(12 percent). Thus Route 1 is no longer congested. The level of 
congestion decreases on Route 2 and increases on Route 3. The 
average delay is approximately two times greater on Route 2 than 
on Route 3 because Route 2 is shorter than Route 3. The average 
total travel time is 0.300 hr on Route 1, 0.308 hr on Route 2, but 
0.356 hr on Route 3, which implies that even on average the travel 
times on alternative routes are not equal. The distribution of 
departure time at the stationary state for Route 3 is shown in Figure 
7. The distribution for Route 1 is typical of a noncongested situa­
tion (10). The shape of the distributions for Routes 2 and 3 is 
typical of a congested situation: compare Figure 7 with the base 
case for Route 2 (Figure 1). 

Stochastic Capacity 

All previous analyses have assumed that the capacities of the 
bottlenecks are fixed and do not vary from day to day. However, 
observation of traffic flow conditions on major highways that are 
saturated during peak periods shows that there exist day-to-day 
variations in capacity in the range of ±10 percent (28). These 
deviations may be attributed to weather conditions, the mix of 
vehicles in the traffic stream, accidents, roadside interruptions, and 
other uncontrollable stochastic events that affect the maximal flow 
on a congested highway. The larger maximal flows that are 
observed could be attributed to a homogeneous traffic stream and 
ideal weather conditions. 

Simulation results of an extension of the model in which the 
capacity of a bottleneck on any given day is a random variable 
(which is not known to the drivers when they plan their trips) 
follow. Let si(ro) be the capacity of route ion day(!) and express it 
as 

i = 1,2,. .. ,/ (7) 
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TABLE 2 SUMMARY OF THE STATIONARY DISTRIBUI'IONS 
FOR CLOSING OR ADDING A ROUI'E 

Total volume (vehicles) 
Average delay (hr) 
Average consumer surplus (utility) 
Volume on Route 1 (vehicles) 
Volume on Route 2 (vehicles) 
Volume on Route 3 (vehicles) 
Average delay on Route 1 (hr) 
Average delay on Route 2 (hr) 
Average delay on Route 3 (hr) 
Maximum delay on Route 1 (hr) 
Maximum delay on Route 2 (hr) 
Maximum delay on Route 3 (hr) 

One Route 
sl :: 8,000 vph 

19,654 
0.169 
4.713 
19,654 

0.169 

0.331 

Three Routes 
sl = 8,000 vph, 
s2 = 3,000 vph; 
s3 = 3,000 vph 

22,343 
0.048 
6.726 
9,560 
6,878 
5,905 
0.000 
0.108 
0.056 
0.000 
0.201 
0.107 

where Ero is a uniformly distributed random variable in a range 
[-m, +m]. It is assumed that the values of Ero are the same for all 
routes and are independent from one day to another. Equation 7 
implies therefore that the average capacity remains equal to si. 

The obvious question to be addressed is: Starting from the base 
case and allowing the capacity to fluctuate according to Equation 
7, how do traffic conditions fluctuate from day to day and what is 
the effect on the average flows and delays? A reduced capacity on 
a given day may cause travelers to shift to later or earlier departure 
times on the following day and possibly to less congested routes 
thus reducing the overall level of congestion. 

On the other hand, it is expected that travel times will increase 
because of the convexity of the travel time function (11). Finally, 
although on average the capacity is equal in the deterministic and 
the stochastic simulations, the average traffic conditions (even 

over a large number of days) will not be identical. The results are 
shown in Figure 8. 

Figure 8 shows that average delay is quite sensitive to variation 
of m from 0 to 5 percent. Beyond this range of variations, the 
system appears to absorb better the stochastic variations in capac­
ity. It is worth noting that the sensitivity of average and maximum 
delay to m is not the same. Maximum delay is approximately 
constant form< 0.05 whereas average delay varies significantly in 
this range. An implication of these results is that, in order to have 
the same consumer surplus level, the capacity that is used in a 
deterministic model should be smaller than the average capacity. A 
mean preserving capacity distribution lowers the efficiency of the 
system as its range of fluctuations increases. 

The vertical lines in Figure 8 indicate the range of day-to-day 
fluctuations in travel time. The ability of a network to absorb 
unpredictable fluctuations should be taken into consideration as 
well as its performance under optimal conditions. It may be prefer­
able to have a road with stable day-to-day performance instead of a 
road that has larger maximum capacity but that is less reliable. A 
similar conclusion was reached by Kahn et al. (29) for a mode 
choice model. 

The way individuals build their expectations is critical in a 
stochastic capacity model. Here it is assumed that the expected 
travel time for day ro is equal to the travel time experienced on day 
ro - 1. In future research, more complex hypotheses should be 
tested. Little experimental evidence is available on this aspect of 
driver behavior. Moreover, little is known in general about such 
adjustment processes. There exist, however, some situations in 
which the road user may have better expectations. For example, if 
capacity level is a function of weather conditions, the value of 
capacity on day ro - 1 and on day co will be correlated. This, 
however, does not necessarily mean that road users will be better 
off. Arnott et al. (30) have studied a simplified version of the 
model presented here and have shown that this could be the case. 
More information provided to the road users, which makes the 
system more predictable, may thus lower the utility level for the 
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FIGURE 7 Stationary distribution of departure times in a network with three routes (s1 = 
8,000 vph, s2 = 3,000 vph, and s3 = 3,000 vph). 

road users. This issue (which has a strong practical interest) is an 
important topic for future research. 

CONCLUSION 

The major limitations of this approach follow. 

• The simplified time adjustment process, which excludes learn­
ing behavior. The mechanisms by which individuals process the 
information attained in their past experience should be investigated 
further on both theoretical and experimental grounds. This may 
lead to more realistic dynamic adjustment processes than those that 
have been considered so far. This extension will also explore the 
impact of detours and road construction. 

• The linear specification of the utility function. It was chosen 
only because there does not appear to be general agreement on 
how to generalize the linear specification. The specification of the 
utility function could be changed quite easily in the simulation 
program that was developed. 

• The simplified network that has been considered so far [see 
the discussion in Ben-Akiva (15)]. 

• The study of a homogeneous population without explicit treat­
ment of taste variations. Moore et al. (31) found, for example, that 
"older workers and those living at great distances from the work­
place tend to arrive earlier." This corresponds to smaller values of 
~ but the same value of ~y (Equation S). They also found that 
households constrained by the presence of a working spouse and 
young children have less flexibility to alter arrival times with 
flextime. This corresponds to a smaller value of /:J,. (Equation S). 

The results obtained nevertheless demonstrate that the model is 
able to explain, at least qualitatively, the experimental properties of 

departure time choice situations. It is believed that the results will 
not be significantly different under slightly different hypotheses. 

The simulation experiments have replicated important phe­
nomena in the response of traffic flows to changes in roadway 
capacities. It was shown how changing the capacity of one bot­
tleneck affects traffic conditions in a parallel facility. It was also 
shown that the capacity of a bottleneck may be expanded to meet 
the highest existing traffic flow without eliminating congestion. It 
is thought that the model, even with its limitations, should be able 
to effectively analyze simple networks. 

For example, the simulation model employed in this analysis 
can also be used to analyze a variety of other policy measures 
aimed at reducing peak-period congestion. In particular, it is useful 
for comparisons of the effectiveness of low-capital policy options 
such as variable work hours and peak-load pricing with capital­
intensive capacity expansions. Additional simulation results 
reported in Ben-Akiva et al. (13) replicated the phenomenon of 
shifting peaks that occurs when peak-period tolls are established. 

Finally, further work on this modeling approach should include 
a detailed validation test with data from before and after an actual 
change in a transportation network. Attention should also be given 
to the theoretical properties of the stationary state of the model and 
the stability of its dynamic evolution. Further extensions could be 
directed to capturing differences among market segments with 
different travel behavior preferences and origin-destination pat­
terns. 
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Base Values for Network Characteristics 

~ 
R 
d 
t* 

Vo 
N 
To 
T 

Free-flow travel time from origin to 
destination for Route 1 [Route 2] 

Capacity of Route 1 [Route 2] 

Base Values for Demand Parameters 

Marginal disutility of travel time 
Marginal disutility of early arrivals 
Marginal disutility of late arrivals 
Heterogeneity factor of travel decision 
Heterogeneity factor of departure 

time choice 
Heterogeneity factor of route choice 
Individual review rate 
Work start time flexibility 
Center of desired period of arrival 
Utility of the null alternative 
Number of potentential travelers 
Time of earliest possible departure 
Daily study period 

0.3 hr [0.2 hr] 
8,000 vph-1 

[3,000 vph- 1] 

6.40 m-1 

3.90 hr-1 

15.2 hr-1 

1.0 

2.0 
3.0 
0.10 day·1 

0.5 hr 
8.00 a.m. 
0 
25,000 
5.00 a.m. 

5 hr 




