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New Algorithm for Grouping 
Observations from a Large 
Transportation Data Base 

RUDI HAMERSLAG AND WIM H. SCHELTES 

In this paper is presented a new cluster-segmentation algorithm. 
Its distance measure, derived by using Fisher's likelihood theory, 
depends on the probability density function (frequency function) 
of the observations. The resulting measure of similarity or dis­
similarity is consistent with the likelihood theory. It shows attrac­
tive features: (a) curtailment of cluster-segmentation techniques; 
each probability density function has its own optimal measure of 
similarity or dissimilarity; (b) detection of dependencies between 
variables; and (c) all the advantages of hierarchical divisive tech­
niques, which makes it suitable for analysis of large transportation 
surveys. The use of the new algorithm is Illustrated by using a 
large data base, the Netherlands National Travel Survey. The goal 
of this research is to analyze mobility (expressed in daily mileage) 
by constructing homogeneous population groups. This example 
clearly demonstrates that the methodology can satisfactorily deal 
with numerous observations. 

Policy making, decision making, designing, research, and so forth 
require knowledge. Experience is normally one of the major 
sources of knowledge. Information from surveyed data are also 
often used. Nowadays a wide spectrum of information about trips 
and the persons making them is generally available, mostly in the 
form of data bases. Increasing computer usage makes it possible 
for an increasing number of people to incorporate these data in 
their research. 

In general, people are only able to focus on a limited amount of 
information. Therefore it is recommended that the data be sim­
plifed with respect to the specified problem. Often this is done by 
selection and aggregation of data into groups so as to obtain a 
manageable number of observations. 

The selection of data is linked to the object of study (also named 
phenomenon or entity) that is to be analyzed. The object of study, 
in tum, depends on the research goal. Some examples are car 
ownership, (daily) mileage traveled by chosen mode of transport, 
and number of trips (per person). Aggregation means that separate 
observations are put into groups depending on their characteristics 
("attributes") and categories. 

Aggregating observations that form the object of study into 
separate groups causes loss of information (1, 2). Different data 
grouping results in different losses. Unskillful aggregation may 
therefore lead to erroneous clarification of observations, which 
induces imprecise management decisions or ineffective infrastruc­
tural design. 

Characteristics, or variables, are often chosen on the basis of 
personal experience. Sometimes the scientific background of the 
researcher plays a role: economists tend to favor a person's 
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income, whereas sociologists show preference for educational 
level. Each choice will lead to different data groupings, so a 
"multiple trueness" exists, which results in a reduced, instead of 
enlarged, insight into the analyzed phenomenon. Policy makers 
and decision makers are not likely to use such information. There­
fore it is advisable to give more attention to the grouping of 
observations. This can be done, for example, by means of cluster­
ing and segmentation. However, several techniques exist and each 
one will generally lead to a, more or less, different group composi­
tion. Thus the problem of "multiple trueness" still remains, as was 
demonstrated at the Transportation Planning and Research Collo­
quium in The Netherlands (3 ). Several reverse-clustering methods 
also have small disadvantages; for example, 

• Limitations on the number of characteristics, which makes an 
a priori selection necessary; 

• Limitations on the size of the data base (4 ); to solve this, 
observations are intuitively aggregated; and 

• Dependencies between characteristics cannot be detected. 

In this paper a new method is presented that overcomes the 
previously mentioned objections to the traditional methods. It was 
derived using Fisher's likelihood theory. Proof will be given that 
the dissimilarity measure is determined by its underlying proba­
bility density function. This leads to a curtailment of cluster­
segmentation techniques. Detection of dependencies between vari­
ables is also now possible. 

TRADITIONAL CLUSTER-SEGMENTATION 
METHODS 

The variables used to characterize data groups can be selected by 
means of cluster-segmentation techniques. Several algorithms 
exist. Only the agglomerative and divisive hierarchical methods 
are discussed in this paper, because they are the most commonly 
used. Further information about cluster-segmentation algorithms is 
available elsewhere (5-8). 

The agglomerative hierarchical techniques use the bottom-up 
approach ("clustering"). They represent an attempt to minimize the 
information loss caused by clustering observations. They are popu­
lar and also the oldest known hierarchical techniques (e.g., nearest 
neighbor and farthest neighbor algorithm). Clustering is done by 
meHnS of a distance matrix. Thus a large number of observations 
(say, more than 1,000) results in an enormous matrix, which is 
practically impossible for most computers to solve (4 ). 

In the case of a large number of observations, divisive hierarchi­
cal techniques are preferable. They use the top-down approach 
("segmentation"); the aim is to maximize the information gain that 
results from splitting the data base into two subordinant data bases. 



HAMERSLAG AND SCHELTES 

The difference between groups of observations is measured by 
similarities and dissimilarities. One of the most favored methods is 
the Euclidian distance, a special case of the Minkowski metric. 
The Minkowski distance (D) between two observations (Pk,l and 

Pk;i) is 

[ 

h ]l/r 
D(l,2) = ;

1 
( IP k,l - P k;l I r) 

where D(l,2) is the dissimilarity value between first and second 
observation and P k.i is the value of the jth observation in the kth 

dimension. Notice that for r = 2 this dissimilarity measure is 
equivalent to the Euclidian distance in an h-dimensional space. For 
r = 1 the measure transforms into the so-called city-block (Manhat­
tan) metric. 

Dissimilarities can also be qualified by complicated statistical 
measures, as is done, for example, in the well-known automatic 
interaction detection (AID) analysis. Its distance measure between 
groups can be written as follows: 

D(l,2) = (Nl*MEAN1 2 +N2*MEAN22 -N12*MEAN122)/S 

where 

D(l,2) = dissimilarity value, 
MEANi = observed average value in the ith group, 

MEAN12 observed average value in the combined group, 
Ni = size of the ith group, 

N12 = size of the combined group (Nl + N2), and 
S = standard deviation in the combined group. 

NEW METHODOLOGY 

This section deals with a recently developed grouping technique. 
The new dissimilarity measures, the algorithm, and the interaction 
of data variables are discussed. 

The most interesting aspects of the method are 

•It is derived by using Fisher's likelihood theory, 
• Its distance measure depends on the probability density func­

tion of the observations, 
• There are no restrictions with respect to the size of the data 

base and the number of characteristics to be analyzed, and 
• Detection of dependencies between characteristics is possible 

by using the "likelihood ratio test." 

Development of New Dissimilarity Measures 

The new dissimilarity measures depend on the probability density 
function ("frequency function") of the observations. They are 
developed by using the likelihood estimation theory. 

Consider a large set of observations of a certain phenomenon, 
for example, the daily number of trips (phenomenon) of several 
interviewees (observations). Suppose the probability density func­
tion (f) of the data base is known. When all observations (Xl, 
X2, ... , Xn) are stochastically independent, then the likelihood 
(L) follows from 
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L = j{Xl) * j{X2) * f(X3) * ... * f(Xn) 

and the logarithm of the likelihood (LN L) is 

LN L = IN[f{Xl)] + LN[f{X2)] + IN[f{X3)] + . . . + LN [f!Xn)] 

n 
= L IN[ffXj)] 

j=l 

The dissimilarity measure (D) between two groups of observa­
tions (Group 1 and Group 2) is defined as the difference in log­
likelihood before and after clustering them: 

D(l,2) = LN Ll + LN L2 - LN L12 

where 

D(l,2) = dissimilarity value between the groups (the 
difference in log-likelihood before and after 
grouping), 

Li = likelihood value of the ith group, and 
L12 = likelihood value of the combined group. 

New dissimilarity measures can be calculated for every data 
base; they optimize the gain of information that results from 
segmentation. Each probability density function leads to its own 
characteristic dissimilarity. In the Appendix the derivations are 
given for 

• Binominal (Bernoulli) distribution, a discrete function with 
true/false or yes/no values (e.g., car ownership, driver's licence); 

• Normal distribution, a continuous function; and 
• Poisson distribution, a discrete function with nonnegative 

integers (e.g., daily number of trips per person). 

Application of the log-likelihood difference as a new dis­
similarity measure will lead to the formulas given hereafter, which 
are valid for multidimensional (k) space. The following abbrevia­
tions will be used: 

D(l,2) = dissimilarity value between Group 1 and 
Group 2, 

DIFFk,i = auxiliary variable= 1 - MEANk,i• 
MEANk,i = observed average value in the ith group, 

MEANk, 12 = observed overall average, 
Ni = number of observations in the ith group, 

N12 = total number of observations (Nl + N2), 
RTOTk,i = auxiliary variable= Ni - TOTk,i• 

sk = standard deviation, and 
TOTk,i = total observed value in the ith group. 

For a binominal function (with MEAN> 0): 

+ TOTk,2*LN(MEANk,2) + RTOTk,2*LN(DIFFk,2) 

-TOTk,12*I.N(MEANk,l2) 

- RTOTk,12*LN(DIFFk,12)] 
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A normal distribution leads to the following dissimilarity measure: 

D(l,2) = ~ [Nl*(MEANk,i2) + N2*(MEANk,l) 

- N12*(MEAN k,tl>l!2S l 
Notice that this formula largely corresponds with the measure used 
by Ward (9) and in AID analysis (5). . 

For a Poisson Jisllibuliun (with MEAN> 0): 

D(l,2) = 'i.1t.[TOTk,t*LN(MEAN1c,i) + TOT1c,2*LN(MEAN1c,2) 

- (TOTk,t + TOT1c,2 )*LN(MEANk,d] 

For the mathematical derivations of the previous formulas, see the 
Appendix. General information can be found elsewhere (JO, JJ). 

Grouping Algorithm 

In this subsection the new dissimilarity measures in a divisive 
algorithm (segmentation or reverse clustering) are illustrated. With 
similar ease an agglomerative algorithm (clustering) could be 
used. Both methods have advantages and disadvantages (12, 13). 

In practice the new dissimilarity measures are used as follows. 
The data base that is to be analyzed contains observations about 
several variables. For each class ("category") of a variable, the size 
(number of interviewees) and average observed value (object of 
study) are noted. The distance formula is derived from the proba­
bility density function. This is used in an internal clustering pro­
cess: all classes of a variable are grouped, and the dissimilarity is 
calculated for each variable. The variable with the largest value is, 
under normal circumstances, the most discriminating one; there­
fore the data base is split up into its classes. This results in several 
subordinant data bases. Each of these will be analyzed using a 
similar process. The final outcome is a hierarchical list of discrimi­
nating variables. 

Dependency of Group Characteristics 

There is a possibility that group characteristics (variables in the 
data base) are mutually dependent. It is essential to know of these 
dependencies, especially when the use of proxies is considered or 
the results need to be interpreted, or both. 

Notice that the previously presented dissimilarity measures 
represent the difference in log-likelihood before and after combin­
ing the observations. Those results can be applied directly in the 
formula for the likelihood ratio test statistic. 

For two stochastically independent variables (A and B) the 
following relationship is valid because there is no "overlap": 

PROB(A and B)/PROB(A) * PROB(B) = 1 

or, using logarithms: 

LN PROB(A and B) -LN PROB(A) - LN PROB(B) = O 

This relationship is hidden in the so-called likelihood ratio test, 

also known as the G2 -statistic, an easy-to-use method for analyz­
ing dependency or independency between variables (14, 15). The 
formula for the test statistic is 
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G2 = -2 LN[L(A and B)/L(A) * L(B)] 

= -2 [LN L(A and B) - LN L(A) - LN L(B)] 

where G2 is the test statistic, which has a x2 distribution and L(i) is 
the likelihood value of the ith group. 

Dependencies between variables are often observed. For exam­
ple, personal income is, under normal circumstances, strongly 
related to educational level 1mrl age. With each of these variables, 
the possibility of creating nearly equally homogeneous groups 
exists. Experience, theoretical knowledge, and insight with respect 
to the phenomenon under analysis can be usable expedients in 
making a prudent choice. 

ILLUSTRATING THE NEW METHODOLOGY 

The new dissimilarity measures have been applied in 

• Analyzing mobility (16-18), 
•Analyzing travel performance in home-work traffic (19), 
•Analyzing the mobility of elderly people (20), 
• Predicting the development of public transport usage, 
•Analyzing differences in trip generation (21), 
• Analyzing car ownership (22 ), and 
• Predicting the development of car population and mobility 

(23). 

In this subsection the use of the new dissimilarity measures with a 
large data base is demonstrated. 

Suppose the research goal is to analyze mobility of the popula­
tion (expressed in daily mileage) by means of constructing homo­
genous population groups. A data base is available: the Nether­
lands National Travel Survey, which contains extensive 
information about households, the persons belonging to them, and 
the trips they make. Since 1978 about 23,000 persons have been 
interviewed annually. All potentially relevant characteristics 
(demographic, socioeconomic, etc.) were selected for analysis. 
This resulted in the following 14 variables (the number of distinct 
classes is shown in parentheses): 

•Age (5) 
•Car availability (3) 
•Children in household (6) 
• Citizenship (2) 
• City size (3) 
•Educational level (7) 
• Employment status (5) 
•Gender (2) 
•Household income (6) 
•Income per adult in household (6) 
• Incomti uf inlervitiwee (6) 
• Marital status ( 4) 
• Position in household (5) 
• Railway station nearby (2) 

The object of study (daily mileage per person per travel mode) is 
assumed to have a Poisson-like distribution. Its dissimilarity for­
mula can be found in the subsection on Development of New 
Dissimilarity Measures. Each travel mode can be viewed as a 
dimension in multidimensional space; analysis of all modes is 
done simultaneously. 

Data from the Netherlands National Travel Survey result in the 
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TABLE 1 CALCULATED DISSIMILARITY VALUES (000) 

Loss of Information 
(dissimilarity) Caused 

No. of by Internal Clustering of 
Classes in Variables (000) 

Variable Variable All Classes Final Step 

Age 5 80 53 
Car availability 3 201 178 
Children in household 6 10 2 
Citizenship 2 0 0 
City size 3 8 4 
Educational level 7 51 25 
Employment status 5 49 49 
Gender 2 74 74 
Household income 6 14 8 
Income per adult in 
household 6 13 12 

Income of interviewee 6 105 74 
Marital status 4 30 26 
Position in household 5 101 80 
Railway station nearby 2 5 4 

scheme of Table 1, which indicates that car availability is the most 
significant characteristic; much less significant are personal 
income and position in household, followed by all other analyzed 
characteristics. 

The data base is segmented into the classes of the most discrimi­
nating variable. Each subordinate data base is analyzed in a similar 
way. The final results are given in Table 2 and shown in Figure 1, 
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which shows homogenous Dutch population groups with respect to 
daily mileage. Similar research, using data from years in the same 
time range, showed that these groups are fairly time stable (17). 

The example demonstrates clearly that this methodology can 
tackle large data bases without any problems. The only required 
input information is, for Poisson-distributed data, size and average 
value of each variable class. 

The data in Table 3 make it possible to analyze dependencies. 
Two variables are independent when 

G2 > -2[!.N L(A and B) - I.N L(A) - I.N L(B)] 

The value of I.N L(A and B) - I.N L(A) is given in the last column 
of Table 3 and shows the additional information gained in the 
second segmentation step. The first column gives the value of I.N 
L(B), the increase in information had the segmentation process 
been started with that variable. When used, the G2-statistic will 
demonstrate that (in this case) only a few variables are independent 
of car availability. 

Researching the stability of these variables with respect to 
geographic area or time, or both, might give additional insight; and 
experience, theoretical knowledge, and the like with respect to the 
phenomenon under analysis can be usable expedients in making a 
prudent selection. 

CLOSING REMARKS 

A new methodology for clustering and segmentation has been, 
presented. Its main advantages are that 

TABLE 2 HOMOGENEOUS POPULATION GROUPS IN THE NETHERLANDS WITH RESPECT TO TRAVEL PERFORMANCE (1980) 

Daily Kilometrage 
Bus, 

Size of Car Car Subway, Total 
(includes 

Group Group Driver Passenger Train Streetcar Bicycle Moped Pedestrian other modes) 

Car not available 
Under 18 yearsa 7,407 7.4 1.2 2.2 6.3 1.5 0.8 19.7 
Housewife in non-car-owning 
household 1,027 0.1 4.4 2.2 2.0 2.2 0.3 1.1 12.6 

Nonhousewife in non-car-owning 
household 2,580 0.9 4.8 3.1 2.5 3.0 0.5 1.1 16.5 

Housewife in car-owning 
household 2,022 0.3 13.0 0.8 1.2 1.6 0.1 1.0 18.2 

Nonhousewife in car-owning 
household 1,196 1.2 9.1 3.5 2.8 3.7 1.7 0.9 23.7 

Subtotal 14,232 0.5 7.7 2.0 2.1 3.7 0.8 1.0 18.2 

Car Sometimes Available 
Housewife 2,188 6.9 12.5 0.5 0.7 1.7 0.1 0.8 23.4 
Nonhousewife 487 14.0 9.5 5.5 2.2 3.4 0.6 0.9 37.6 

Subtotal 2,675 8.0 12.0 1.3 1.0 2.0 0.1 0.8 25.7 

Car Available 
No Income 469 16.7 9.6 0.2 0.8 1.0 0.0 0.7 29.4 
Under DFL 8,000 (net) 175 22.0 6.1 0.8 0.4 1.0 0.1 0.7 31.8 
DFL 8,000-17,000 (net) 846 23.6 4.4 0.5 0.4 1.2 0.0 0.6 30.9 
DFL 17,000-24,000 (net) 1,705 27.0 4.9 0.8 0.9 1.2 0.1 0.6 36.3 
DFL 24,000-38,000 (net) 1,730 33.0 4.6 1.4 0.9 1.5 0.0 0.7 42.9 
Over DFL 38,000 (net) 925 42.9 3.5 2.4 0.6 1.4 0.0 0.8 52.4 

Subtotal 5,850 29.6 4.8 1.2 0.7 1.3 0.0 0.7 38.9 

Total 22,757 12.3 7.3 1.6 1.5 2.5 0.4 0.9 26.9 

Note: 1 km = 0.62 mi. 
8 Minimum age for car drivers in The Netherlands is 18 years. 
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GROUP 

TOTAL 
DATA BASE 

CAR NCYI' 
AVAILABLE 

CAR SOMETIMES 
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UNDER 18 YEARS 

HOUSEWIFE IN 
NON CAR OWNING HOUSEHOLD 

NON HOUSEWIFE IN 
NON CAR OWNING HOUSEHOLD 

~ HOUSEWIFE IN 
~ CAR OWN ING HOUSEHOLD 

NON HOUSEWIFE IN 
CAR OWNING HOUSEHOLD 

~--· [~ 
HOUSEWIFE 

NON HOUSEWIFE 

CAR AVAILABLE 

0 10 20km TRAVEL sooog PERFORMANCE 
SIZE CAR DRIVER 

0 
CAR PASSENGER 
TRAIN, BUS, 
SUBWAY, STREETCAR 
BICYCLE, MOPED, 
PEDESTRIAN 

0 10 

b NO INCOME 

UNDER DFL 8000 (NET) 

DFL 8000-17000 (NET) 

DFL 17000-24000 (NET) 

DFL 24000-38000 (NET) 

OVER DFL 38000 (NET) 

FIGURE 1 Homogenous population groups in The Netherlands with respect to travel 
performance (1980). 

• There are no restrictions on the number of observations. There 
is also no limit on the quantity of data base variables. An a priori 
grouping of observations is therrforr. nr.vr.r nr.r.r.ssary. This acivan­
tage is present because the technique belongs to the divisive 
hierarchical algorithms. Agglomerative hierarchical algorithms 
use distance matrices to calculate the differences between each 
pair of observations. However, the number of elements in such a 
matrix is limited by the memory of the computer used. 

• The new methodology is consistent with the likelihood theory. 
It is therefore easier to justify its use than that of other cluster­
segmentation methods because each probability density function 
will have its own specific measure of similarity or dissimilarity. 

• Its dissimilarities can be multidimensional; for example, a 
measure based on daily mileage by several modes of transport. 

• Dependencies between variables can be detected by using the 
likelihood ratio test. 

The new method has been applied to various kinds of transporta­
tion research. Not only travel performance and trip generation, but 
also analysis of home-work trips and car ownership were objects 
of study. The results were in general accordance with expectations. 
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TABLE 3 ANALYZING DEPENDENCIES 

Car Availabilty Categoriesa LN L(A and B) -
LN L(A) Variable LN L(B) A 

Car availabilty 201 
Personal income 105 0 
Position in household 101 0 
Age 80 0 
Gender 74 1 
City size 8 1 
Rail way station nearby 5 1 
Citizenship 0 0 

B c 

9 2 
19 3 
15 2 
12 3 
5 l 
3 0 
0 0 

D 

12 
8 
3 
7 
4 
2 
0 

23 
30 
20 
23 
11 
6 
0 

Note: Only the most extreme results are given. A = under 18 years, B = car not available, C = car 
sometimes available, and D = car available. 
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APPENDIX 

The derivation of the distance measure was as follows. Starting 
with the probability density function of the data base, the log­
likelihood (l.N L) is 

l.N L = l.N[f\Xl)] + l.N[f\X2)] + l.N[f\X3)] + ... l.N[f(Xn)] 

n 
= I l.N[f(Xj)] 

j=l 

where 

f = probability density function, 
L likelihood value of the cluster, and 

Xj = the jth observation in the cluster. 

The dissimilarity measure between two observation clusters is 
defined as the difference in log-likelihood before and after cluster­
ing: 

D(l,2) = (l.N Ll + LN L2) - l.N L12 

where 

D(l,2) 
Li 

L12 

dissimilarity measure between Group 1 and Group 2, 
likelihood value of the ith group, and 
likelihood value of the combined group. 
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This appendix will demonstrate the derivation of dissimilarity 
formulas for some widely used density functions. Included are 

• Binominal distribution, 
• Normal distribution, and 
• Poisson distribution. 

Suppose there are two groups of data (Gl and G2) of known size 
(Nl andN2, respectively). All observations are stochastically inde­
pendent. Let xk,i,p be the pth observation (pth person) of the ith 
group in the kth dimension of this multidimensional space. The 
mean value (MEAN) for the ith group in the kth dimension and the 
total value (TOTAL) follow from 

and 

Ni 
TOTALk,i = L Xk,i,p 

p=l 

where 

MEANk.i = mean value for the ith group in the kth dimen­
sion, 

Ni = number of observations in the ith group, 
TOTALk,i = total value of the ith group in the kth dimension, 

and 
xk,i,p = the plh observation of the ith group in the kth 

dimension. 

Symbolic names used in this appendix are given in Table A-1 

Blnominal Distribution 

The binominal (Bernoulli) distribution is only defined for the 
values true/false (or 1/0, yes/no, etc.). Its mathematical form is 

jfX) = MEAN for X = 1 
= 1 - MEAN for X = 0 

Its likelihood (L) of N observations is 

[, = MEANTOTAL * (1 _ MF.AN'f- TOTAL 

and the log likelihood (LN) is 

LN L = LN(MEAN TOTAL) + l.N[(l - MEANf - TOTAL] 

= TOTAL*LN(MEAN) + (N - TOTAL)*LN(l - MEAN) 

TABLE A·l SYMBOLIC NAMES 

Group 
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For Group Gl this results in 

LN L(Gl) = L [TOTALk,1*LN(MEANk.1) 
k 

+ (Nl -TOTALk,1)*LN(l - MEANk,1)] 

where 

L = likelihood, 
MEAN = average observed value, 

NI = size of Cluster Gl, and 
TOTAL = total observed value in cluster. 

Groups G2 and G12 lead to similar formulas. Calculation of the 
dissimilarity (D) follows from 

D(l,2) = LN L(Gl) + LN L(G2) - LN L(G12) 

=I. [TOTALk 1*LN(MEANk1) 
k • • 

where 

+ TOTALk,2*LN(MEANk,2) 

-TOTALk,12*LN(MEANk,l2) 

+ (Nl - TOTALk,1)*LN(l - MEANk,1) 

+ (N2 -TOTALk,2)*LN(l - MEANk,2) 

- (Nl2 - '.LV'li\Lk,l2)*LN(l - MEANk,12)] 

MEAN = average observed value, 
Ni = size of the ith cluster, and 

TOTAL = total observed value. 

Normal Distribution with Constant Variance 

In general, a normal distribution will be chosen when the object of 
study contains both positive and negative observations. It can also 
be used in case its mean value differs significantly from zero. The 
probability density function is 

f(X) = [S(2n)112]-1 * exp{-(l/2)[(X - MEAN)/S]2 } 

where 

f = probability density function, 
MEAN = average observed value, 

S = standard deviation, 
X = stochastic variable, and 
7t = mathematical constant (about 3.14) 

Identification Size of Group Observations Mean Value Total Value 

Gl Nl xk,01,1 · • · xk,01,N1 MIJAN1< 01 TOTAL,,, 01 
G2 N2 xk,02.1 · · · xk,02N2 MEAN4:02 T07iV.11:oi 
G12 (Gl and G2) N12 =Nl +N2 xk,11.,1 · · · xk,12,N12 MEANk, 12 TOTAL'k,12 



HAMERSLAG AND SCHELTES 

The calculation of likelihood (L) and log-likelihood (l.N L) 
results in 

L = [S(27t)112r1 * (exp{-(l/2)[(Xl - MEAN)/S]2)) 

and 

* [S(27t)1f2r1 * (exp{-(l/2)[(X2 - MEAN)/S]2 )) 

* [S(27t)1f2r1 * ( exp{-(l/2)[(X3 - MEAN)/S]2 )) 

* 

LN L = LN([S(21t)112r1 * exp[-(1/2)[(Xl 

- MEAN)/S]2 )) 

where 

+ LN{[S(27t)112r1 * exp{-(l/2)[(X2 - MEAN)/S]2)) 

+ LN([S(27t)1f2r1 * exp{-(l/2)[(X3 - MEAN)/S]2)) 

+ ... 

L = likelihood, 
MEAN = average observed value, 

S = standard deviation, 
Xj = thejth observed value of a stochastic variable, and 
7t = pi, mathematical constant (about 3.14) 

For group Gl (size M and observations Xk,l,l through Xk,l/n) 
this leads to 

LN L(Gl) = Nl *LN[S(27t)112r1 

+ f (l/2)*L ~ [(Xk,l,,o 
k p=l 

- MEAN,,i)/Sf} 

Similar formulas are found for Groups Gl and Gl2. The dis­
similarity measure (D) can be calculated from 

D(l,2) = LN L(Gl) + LN L(G2) - I.N L(G12) 

which results in 

D = Nl*LN[S(27t)1f2]-1 

-(l/2)*L { 'i [ (X k l,,o - MEAN k 1)/S]2 
} 

k p=l • • 

+ N2*l.N[S(27t)112]-
1 

-(112);i:{ ~~CX.,,p- MEAN,,,YSJ2 } 
+ N12*LN[S(21t)1f2f 1 

-(112l'f { i:::rcx•.12,p - MEAN •.vYSJ2 } 

Simplified. 

D = - L { L [MEAN1c,12 - 2*(MEAN1c,1*Nl) 
k p 

* MEANk,1] } /2S2 

-r { r [MEANki - 2*(MEANk,2*N2) 
k p 

* MEANk,z]} /2S2 

+ 2. { 2. [MEANk;l- 2*(MEANk,12*N12) 
k p 

* MEAN k,d } /2S2 

Finally the formula results in 

D = L (Nl*MEANk/ + N2*MEANk,2
2 -N12 

k 

* MEAN k,12
2)/2S2 

Poisson Distribution 
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A Poisson distribution is characterized by exclusively nonnegative 
integer observations. For large mean observed values, the function 
approaches a normal distribution. The mathematical form of the 
Poisson probability density function (f) is 

f(X) = [MEANX * exp(-MEAN)]!XI 

where 

f = probability density function, 
MEAN = average observed value, and 

X = observation. 

Likelihood (L) and log-likelihood (l.N L) follow from 

L = [MEANX1 * exp(-MEAN)]/Xl! * [MEANX2 

* exp(-MEAN)]/X2! * ... 

and 

LN L = Xl * l.N(MEAN) - MEAN - LN(Xl!) 

+X2 * LN(MEAN) - MEAN - LN(X2!) + ... 

where 

L = likelihood, 
MEAN = average observed value, and 

Xj = the jth observed value of a stochastic variable. 
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For Group Gl (size Nl and observations Xk,l,l through Xk,t,p) 
this results in 

N1 

LN L(Gl) = ~ I. [Xk,l,p * LN(MEANk,1) 
" p=l 

-MEANk,l - l.N(Xk,l,p !)] 

Similar formulas are found for Groups G2 and Gl2. The dis­
similarity (D) follows from 

D(l,2) = I.N L(Gl) + I.N L(G2) - LN L(G12) 

This leads to 

N1 

D = L. L. [Xk,l,p * l.N(MEAN k,1) 
k p=l 

-MEAN1c,1 - l.N(Xk,l,p !)] 

N2 

+ L. L. [Xk,2,p * l.N(MEANk,2) 
k p=l 

-Mt:AN k,l - I.N(Xk,2,p !)] 
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N12 

- L L [Xk,12,p * l.N(MEANk,12) 
k p=l 

-MEANk,12 - l.N(Xk,12,p !)] 

because 

N1 m N12 

L. LN(Xk,1,p!) + L LN(Xk,2,p!) = L l.N(Xk,12,p!) 
p=l p=l p=l 

and 

Nl*MEANk,l +N2*MEANk,2 =N12*MEANk,12 

Thus the formula can be simplified to 

D = L,[TOTALk,1*l.N(MEANk,1) + TOTALk,2*LN(MEANk,2) 
k 

-TOTALk,12*I.N(MEANk,l2)] 

Notice that this formula is also usable where all observations are 
zero (MEAN = 0) because 

LIM TOTALk,i * l.N(MEAN k/Ni) = 

LIM TOTALk,i * l.N(TOTA4_/Ni) = 0 for TOTALk ;to 




