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Statistical Analysis of Output Ratios 
Traffic Simulation 

• 
Ill 

A. v. GAFARIAN AND A. HALATI 

Simulation models are Increasingly becoming the most conven
ient tool for traffic studies. Users of such models need valid 
statistical methods to draw correct Inferences. Presented in 
this paper ls one such method applicable to several Important 
traffic parameters. The motivation for this research arose from 
a study sponsored by the FHWA, U. S. Department of Trans
portation, to develop statistical guidelines for simulation 
experiments with traffic models. NETSIM, widely used for 
simulating vehicular traffic flow on urban streets, was used In 
the study. The output of the NETSIM model Includes estimates 
of average speed, average delay per vehicle, and average travel 
time per vehicle mile. Because NETSIM uses the ratio of 
sample means to estimate these parameters, a situation exists 
that Involves the ratios of observations that are In fact autocor
related and cross correlated. In this paper, the efficacy of the 
ratio of sample means (used In NET SIM) as an estimator of the 
ratio of steady state means ls discussed. Monte Carlo experi
ments have demonstrated that the user of the NETSIM model, 
In estimating these parameters from the model output, must 
apply statistical techniques based on ratio estimators. A tech
nique that provides a measure of the accuracy of the estimate 
with a confidence interval ls developed and demonstrated. The 
efficacy of the method Is assessed through Monte Carlo experi
ments. The method ls easy to use and can be applied just as 
readlJy to field data. It can be extended to the compar ison of 
model outputs to field observations for simulation validation 
studies. 

NETSIM is a widely accepted simulation tool for simulating 
traffic behavior on urban networks (1, 2). The basic input 
requirements of the model are the network geometry, signaliza
tion information, and traffic counts, which consist of both input 
flow rates and turning movements. The standard output of the 
NETSIM model includes estimates of important traffic param
eters such as 

• Total vehicle minutes of travel time, 
• Number of vehicles discharged, 
• Total vehicle miles of travel distance, 
• Average travel time per vehicle 
• Average travel time per vehicle mile, 
• Average speed, and 
• Average delay time per vehicle. 

The estimates of the traffic parameters are provided both on a 
link-by-link basis (links represent a one-way direction of flow 
on a street typically between two successive stop bars) and on a 
network basis. 
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It will be demonstrated that (a) each of the last four measures 
of effectiveness (MOEs) is a parameter that is the ratio of 
means of two random variables X and Y (X and Y are used 
generically here), that is, the MOE itself is µx/µy, and (b) the 
natural estimate NETSIM provides is the ratio of the sample 
means of the X and Y random variables. This will be done in 
some detail for two parameters: average speed and average 
delay time per vehicle. The extension to two other parameters, 
average travel time per vehicle and average travel time per 
vehicle mile, will be obvious. 

The discussion begins by noting that NETSIM is a stochastic 
microscopic traffic simulation model with a basic sampling 
interval of 1 second Thus, the status of each individual vehicle 
is sampled at the rate of once every second and all required 
statistics are updated at the end of every second 

Example 1: Average Speed on a Link. In the simplest case, 
after the initial warm-up period, NETSIM produces for each 
1-sec !!.t time period the following observations on the totality 
of vehicles exiting the link during the time period under consid
eration: (a) number of vehicle miles in the link (equal to link 
length times the number exiting) and (b) vehicle minutes in the 
link (amount of time spent by all vehicles traversing the link). 
Running the model after warm-up for some integral multiple T 
of M = 1 provides the following as an estimate of average 
speed: 

T 

I. (vehicle miles in jth M time period) + 
.i-1 

T 

I. (vehicle minutes in jth !l.t time period) 
j=l 

To understand why there is a ratio of two means X and Y 
that are estimates of µx and µy, more work needs to be done. 
First, observe that as things stand now these observations, in 
both the numerator and the denominator, are not identically 
distributed. For example, because travel distance on a link in 
NETSIM is proportional to the number of vehicles discharged, 
during the red interval of the downstream signal the travel 
distance on the link will be accumulated at a low rate; during 
the early portion of the green interval, the travel distance will 
be accumulated at a large rate while the queue is dissipating. 

Thus, there are observations on random variables that do not 
even have the same mean let alone the same distribution. 
Therefore, dividing the numerator and the denominator in the 
above expression by T does not give an estimate of the mean of 
any well-defined random variable. 

It should be noted at the outset that it is important to deal 
with identically distributed observations because the problem 
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of making valid statistical statements becomes tractable. To 
achieve identically distributed observations in both the numera
tor and the denominator of the ratio just given (so that dividing 
the numerator and the denominator by the number of observa
tions gives estimates of the numerator and denominator means) 
is easy. All the observations for each M = 1 during one cycle of 
the link's downstream signal are summed. Thus, if the cycle 
length is 60 sec, then 60 sets of vehicle miles are added to 
produce one observation of vehicle miles. Likewise, the same 
is done with vehicle minutes in the denominator. A little reflec
tion shows that these sums, from cycle to cycle, are certainly 
identically distributed after the warm-up. The remaining MOEs 
can be treated similarly. 

Hereafter, it will be assumed that the collection interval will 
equal the downstream cycle length of each link. If there are two 
cycle lengths present in the network, for example, 60 and 90 
sec, then running the model for (180)k seconds would provide 
3k cycles' worth of observations for 60-sec links and 2k cycles' 
worth of observations for 90-sec cycle links. 

To continue, take the above ratio, group the data as 
described, and end up with the following ratio for the estimate 
of average speed: 

where 

X; = accrued vehicle miles of vehicles departing 
during ith cycle, i = 1,2, .. . , n; and 

Y; = accrued vehicle minutes in the link of vehicles 
departing during ith cycle, i = 1,2, ... , n. 

Because the X/s and Y/s are identically distributed, this may 
be written 

[(X1 + X2 + ... + X,,)/n]/[(Y1 + Y2 + ... + Y,,)/n] = XI Y 

As n ~ oo, the numerator and denominator converge to µx 
and µy, respectively, both with probability 1, ~here µx is the 
average vehicle miles per cycle and µy is the average vehicle 
minutes per cycle. Thus, the problem of estimating link average 
speed is the same as estimating µx/µy, the ratio of two means. 

Example 2: Average Delay on a Link. Here again the follow
ing would be an estimate of average delay: 

T 

I. (accrued delay of vehicles departing the link during jth 
i-1 l!..t time period) + 
T 

I. (number of vehicles departing the link during jth l!..t 
i-1 time period) 

As in Example 1, the same arguments could be used to get 
X/s and Y/s each identically distributed where 

X; = accrued delay of vehicles departing during the 
ith cycle, i = 1,2, . . . , n; and 

Y; = N; = number of vehicles departing during the ith 
cycle, i = 1,2, . . . , n, (note that Y; in this case 
is an integer-valued random variable). 
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~d t~produce an estimate of average delay :L?=l X/i.?=1 N; = 
X I N, which converges with probability 1 to µx/µN as n ~ 00• 

So again the ratio of two means is estimated. In this case, µx is 
the average delay per cycle and µN is the average number of 
vehicles discharged per cycle. 

The principal objective of this paper is to develop a statis
tically valid method for using X I Y as a point estimate for 
µx/µy and to provide, with a confidence interval, a measure of 
its accuracy. What X and Y are depends on the particular MOE 
being estimated. 

STATISTICAL PROPERTIES OF THE 
OBSERVATIONS 

In this section, some important statistical properties of the 
observations will be described. 

Observations Tend To Be Normal 

This property follows from the fact they are sums of random 
variables, obtained by adding up all the individual observations 
for each M. Thus, the Central Limit Theorem, which holds for 
fairly unrestrictive conditions (even when the variables being 
added are not identically distributed or independent), comes 
into play and it can be stated that asymptotic normality is 
obtained. This includes integer-valued observations, such as 
the number of vehicles discharged during a cycle length. 

In this connection, it should be mentioned that the method 
developed in the paper is based on the t-statistic and that this 
statistic is robust with respect to normality; that is, inferences 
using it are not seriously invalidated by the violation of the 
normality assumption. This will be demonstrated in the Monte 
Carlo experiment presented later in the paper. 

Observations Are Not Independent 

The observations of travel time and travel distance, for exam
ple, are each autocorrelated. Figure 1 shows estimates of auto
correlation for travel time on a link of a simple star network 
consisting of essentially an isolated four-legged intersection 
with pretimed signal control. The simulation run consisted of 
130 cycles of a common signal cycle length of 80 sec (i.e., 
10,400 sec). Estimates of autocorrelation 

rxx(k) = cxx(k)/cxx(O) k = 0, 1, ... , n/10 

were obtained by using 
11-/c 

cxx(k) = (l/n)I. (X; - X)(Xi+k - X) k = 0, 1, 
;~1 

where 

n/10 

rxx(k) = sample autocorrelation of the X series for 
lag k, 

cxx(k) = sample autocovariance of the X series for 
lag k, 

n = number of cycles that made up the 
simulation run, in this case 130, and 
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X; = observed value of total travel time during 
cycle i. 

The maximum lag was restricted to n/10 to obtain accurate 
estimates of the autocorrelations. 

If it is assumed that travel time observations are indepen
dently, identically, and normally distributed random variables, 
the standard deviation of the autocorrelation estimates are 
approximately equal to ..Jl/n, (3, pp.34, 35). In this case, the 
standard deviation would be approximately .0877. Because the 
estimate of the first lag autocorrelation is .321, almost four 
times the standard deviation, it can be concluded that the first 
lag correlation is not zero. Moreover, there is strong indication 
that there is autocorrelation up to lag 10. Thus, it is reasonable 
to assume that successive travel times are autocorrelated. 
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FIGURE 1 Estimates of autocorrelation for travel time on 
a link of a simple star network. 

Observations of Random Variables of the Numerator and 
Denominator Are Cross Correlated 

Figure 2, for example, shows the cross-correlation estimates 
between the total travel time per cycle and the total travel 
distance per cycle. Estimates of cross correlation 

rxy(.k) = cxy(.k)/cxx.(.O)cyy(_O) k = 0, ±1, ... , ±(n/10) 

were obtained using 
n-/c 

cxy(.k) = (l/n) I. (X; - X)(Y;+k - Y) k = 0, 
i::il 

n+/c 

1, ... , n/10 

= (l/n) I. (X;r X)(Y; - Y) k = -1, -2, ... , n/10 
i•l 

where 

rxy(k) = sample cross correlation of the X and Y 
series for lag k, 
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cdk) = sample cross covariance of the X (travel 
time) and Y (travel distance) series for lag k, 

n = number of cycles that made up the 
simulation run, in this case 130, 

X; = travel time during cycle i, and 
Y; = travel distance during cycle i. 

Again the maximum lag was restricted to ±n/10 to obtain 
accurate estimates of the cross correlations. 

Note that the cross covariance has both positive lags (where 
Y leads X) and nega1ive lags (where X leads Y); and that, in 
general, cxy(k) -:t- cXY(-k). This is not the case for the auto
covariance, where cxx(k) = cxx(- k) [or cyy(k) = cyy{- k)]. The 
large cross-correlation estimate of lag 0 is expected because a 
large observation for travel distance indicates that a large 
number of vehicles have traversed the link and thus a large 
value of travel time has been incurred. In addition, significant 
cross correlation at larger lags is also observed. 

PROBLEM DEFINITION 

There are two common methods for performing simulation 
experiments, and the problem will be defined for each of these 
methods. 

Method 1: A Single Long Run 

The first method consists of running the simulation model for a 
long duration and using the observations generated in this 
single, continuous, long run to estimate the parameters of 
interest and to obtain a measure of the accuracy of the estimate. 

In the case of the NETSIM model, as it pertains to the traffic 
parameters that are estimated as the ratio of two random vari
ables (which in this case happens to be means), it was demon
strated in the preceding section that successive observations 
obtained on the random variables (at the end of each cycle) are 
autocorrelated and cross correlated. In the presence of these 
correlations, estimating the parameters from a single contin-
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FIGURE 2 Cross-correlation estimates between total 
travel time per cycle and total travel distance per cycle. 
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uous run of the NETSIM model may be defined as the follow
ing statistical problem. 

Let (X,Y) be a bivariate random variable and suppose a 
sequence of identically distributed observations [(X1,Y1), 

(X2 ,Y :i), ... , (Xn,Y ,.)] has been obtained. The X;'s and Y/s 
correspond to the numerator and denominator observations, 
respectively. Furthermore, assume the following: 

E[X] = µx Var[X] = oi 

E[Y] = µy Var[Y] = ciy 

E[(X; - µx)(Xi+k - µx)]lcrx :I- 0 for all k 

(observations are not independent); 

for all k 

(observations are not independent); 

(observations of random variables of the numerator and 
denominator are cross correlated); 

(observations of random variables of the numerator and 
denominator are cross correlated). 

The problem then becomes that of using this information to 
estimate R = µx/µy and of assessing the accuracy of the esti
mate by constructing a confidence interval. 

The two examples of this generic problem discussed in the 
introduction were average link speed and mean delay: 

1. Average link speed. Here the point estimate is X I Y, 
where X; is accrued vehicle miles of vehicles departing during 
the ith cycle and Y; is accrued vehicle minutes in the link of 
departing vehicles during the ith cycle, i = 1,2__!_ . '.-" , n. 

2. Mean delay. Here the point estimate is X I N, where X; 
is accrued delay of vehicles departing the link during the ith 
cycle and N; is the number of vehicles departing during the ith 
cycle, i = 1,2, ... , n. 

The problem of using the observations from a single run and 
developing a confidence interval for µx/µy (average speed in 
the first example) or µx/µN (mean delay in the second example) 
is extremely complex and involves esLimaLing autocorrelations 
of the two numerator and denominator variables and the cross 
c.orrelations of the numerator variahles with the denominator 
variables [see Halati (4, pp.65-69)]. This requires an 
extremely long run to get reliable estimates of all the needed 
correlations, as well as to reduce the inherent bias present in the 
estimate XI Y [Halati (4, p.63)]. 

In addition, the use of the method is predicated on collecting 
observations that are identically distributed. It was noted that 
identically distributed observations may be obtained by sum
ming the statistics, collected at the end of each 1-sec sampling 
interval, over the period of one cycle length. This is obviously 
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applicable if the network consists solely of pretimed controls. 
When actuated controls are present, there is no inunediate 
alternative for producing identically distributed observations. 

The method of independent replications, which will be dis
cussed next, does not have this disadvantage. Each replication 
will result in a single observation that is the sum of the statistics 
over the duration of each run. The notion of the cycle will not 
be needed 

Method 2: Several Independent Replications 

The second method for conducting simulation experiments is to 
perform independent replications. In this method, repeated runs 
of the model are performed in such a way that the output of the 
model in each run is independent of the others by using a 
different random generator seed in each run. 

In this method, the great difficulty of getting reliable esti
mates of all the autocorrelations and cross correlation among 
successive observations is circumvented. However, the method 
has the disadvantage of requiring a warm-up time for each 
replication during which no data may be collected. 

In the case of the NETSIM model, and again as it pertains to 
the analysis of those traffic parameters that are the ratio of two 
random variables, the problem of estimating these parameters 
and assessing the accuracy of the estimate may now be defined 
statistically in the following way. 

Suppose n independent replications of the NETSIM model 
are performed and also assume that each run has a prescribed 
duration of k cycles. In this case the observations, (X;, Y;), i = 
1,2, ... , n, would be the cumulative values of the observed 
statistics at the end of each run and 

• X;, i = 1,2, ... , n, would be a sequence of IID observa
tions, 

• Y;, i = 1,2, ... , n, would be a sequence of IID observa
tions, 

• E[X;] = kµx and E[Y;] = kµy because now X; and Y; are the 
cumulative values obtained by adding the statistics over k 
cycles, and 

• The only cross correlation present is between X; and Y;. 

The problem in this form is that of using the cumulative 
statistics { (X;,Y;), i = 1,2, ... , n} to estimate R = µx/µy and 
assess the accuracy of the est!!llate. 

Two points should be noted here. The first point is that 
L.?=1 X/L,?=1 Y; is still an estimator of R even though the X;'s 
and Y;'s are cumulative values when independent replications 
are performed. This is because, with probability 1, 

The second point is that the normality assumption discussed in 
the section on statistical properties of the observations becomes 
better. This is because each X; and Y; is now the sum of a larger 
number of observations. 

Thus, in the first example above 
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X; = accrued travel distance of vehicles departing the 
link during the ith replication, i = 1,2, ... , n, 
and 

Y; = accrued vehicle minutes in the link of vehicles 
departing the link during the ith replication, i = 
1,2, ... , n 

and for an estimate of average speed for the link one would 
take 
II II 

I. X; /'I. Y; = X I Y 
i=l i-1 

In the second example, 

X; = total accrued delay of the ith replication, i = 1,2, 
... , n, and 

Y; = N; = total number of vehicles departing the link 

II II 

during the ith replication, i = 1,2, . . . , n, and 
for an estimate of mean delay one would take 

I. XJ'i.. N;= XI N 
i=l i=l 

To reiterate the important points with respect to independent 
replications, there are no autocorrelations among the X; 's or the 
Y;'s and there is only a cross correlation between X; and Y;. It is 
the problem in this form that will be studied in this paper. 

PERFORMANCE DEGRADATION WHEN 
OBSERVATIONS FROM INDEPENDENT 
REPLICATIONS ARE NOT TREATED AS A 
RATIO OF RANDOM VARIABLES 

Before proceeding with the development of the procedure for 
computing a confidence interval for µx/µy by using the point 
estimator I.?=1 X/I.?=1 Y; = X I Y, consider an important 
question of the degradation that occurs when the problem is not 
treated as one in ratio estimation. The reason for doing this is 
that one might easily be tempted to develop a confidence 
interval for, say, mean speed from independent replications by 
a method that goes as follows. Because each replication gives 
an independent estimate of mean speed Z; = X/Y;, i = 1,2, ... , 
n, one would estimate mean speed as 

II 

Z = (l/n) I. Z; 
i=l 

and assess the accuracy of this estimate with a (1 - ex) x 100 
percent classical confidence interval 

{ [ Z - l1-(a/2),(11-1)]St(n)
112

• [ Z + t1_(a/2),(n-l)]S/(n)
112

} 

where tl-{a/2),(n-l) is the upper cx/2 point of the I-statistic with 
n - 1 degrees of freedom and 

n 

S = [1/(n - 1)] I. (Z; - 2)2 
i=l 

In effect, the observations from the model and field were 
treated as just described in the validation studies performed on 
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NETSIM (2, pp.147-248). The thing that is wrong with this 
procedure is that one is really estimating (or doing hypothesis 
testing) on E[X/Y] and not µx/µy. It is well known that in 
general E[X/Y] =I- µx/µy. To demonstrate that this approach to 
the analysis of ratio estimators of the NETSIM model may 
produce results that are greatly in error, a Monte Carlo study 
was conducted. The study consisted of generating bivariate 
normal random variables (X;.Y;) for selected sample sizes n 
with the variance-covariance matrix 

[~.5 
X; and Y; correspond to the numerator and the denominator 
observations respectively of the ith replication and n corre
sponds to the number of replications. µx was chosen as 100 and 
µy as 5. Thus, the known and true value of the ratio of means 
was 20. 

For each sample size n and using the above procedure, a 95 
percent confidence interval was constructed. To assess the 
goodness of the confidence interval, the experiment was 
repeated 500 times for each sample size and the following four 
measures of effectiveness on the behavior of the constructed 
confidence intervals were computed: 

1. Coverage probability. This measure of effectiveness is the 
fraction of the confidence interval produced in the 500 repeti
tions of the experiment that covered the true value of the ratio 
of the means, which was 20. Closeness of this value to .95 is 
obviously a desired property of the method. 

2. Coefficient of variation of coverage probability. This sta
tistic is the ratio of the standard deviation of the estimate of 
coverage probability to the estimated coverage probability. It is 
a measure of how good the estimate of coverage probability 
is-the smaller the value the better the estimate. Thus, .010 for 
n = 5 means that the standard deviation of the estimate is only 1 
percent of the estimate. 

3. Average confidence interval length. In each repetition of 
the experiment, the length of the constructed confidence inter
val was recorded. This statistic represents the average of the 
recorded confidence interval lengths over the 500 repetitions. 
Obviously, the smaller the length the better. 

4. Coefficient of variation of expected confidence interval 
length. This is the ratio of the standard deviation of the estimate 
of the average confidence interval length to the average confi
dence interval length. Again, it is a measure of how good the 
estimate of average confidence interval length is. For n = 5, 
.023 means that the standard deviation of the estimate is about 
2.3 percent of the estimate. 

The study was conducted for replication sizes of 
5,6,7,8,9,10,20,50,100, and 200 observations per replication. 
The results are given in Table 1. 

To obtain a basis for comparison of the results, the study was 
repeated identically by using the proposed method (to be 
developed in the next section) of analysis. The results of that 
study are given in Table 2. 

It is noted that the coverage probabilities are substantially 
reduced by using the incorrect method of analysis described at 
the beginning of this section. It is seen here that as the number 
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TABLE I RESULTS OBTAINED FROM MONTE CARLO EXPERIMENTS 
USING INCORRECT METHOD 

Coefficient of 
Coefficient of Variation of 
Variation of Avg Confi- Avg Confi-

No. of Repli- Coverage Coverage dence Inter- dence Inter-
cations Probability Probability val Length val Length 

5 .950 .010 
6 .936 .009 
7 .938 .011 
8 .946 .010 
9 .934 .011 

10 .936 .011 
20 .904 .013 
50 .754 .019 

100 .574 .022 
200 .206 .018 

of replications increases smaller confidence intervals result, 
and they begin to miss µx/µy in increasing numbers {because 
they are really covering E[X/Y] -:t. (µx/µy)}. However, the 
proposed method of analysis, which is based on a ratio estima
tion technique, produced coverage probabilities close to the 
desired 95 percent percent for all sample sizes. At smaller 
replication sizes, when both methods appear to have coverage 
probabilities close to the desired .95, the proposed method 
consistently resulted in more precise (lower coefficient of vari
ation) and smaller average confidence interval lengths. 

PROPOSED METHOD 

How a confidence interval may be developed for µx/µy based 
on observations [(X;, f;), i = 1,2, ... , n] obtained from each 
independent replication of the model will now be considered. 
Keep in mind as an example that X; is total travel distance in 
vehicle-miles and f; is total travel time in vehi,cle-minutes (or 
X; could be total delay and f; = N; total number of vehicles 
discharged). The method is a small sample extension of the 
Fieller method (5). 

10.48 .023 
9.04 .022 
7.80 .021 
7.48 .022 
6.82 .020 
6.48 .020 
4.34 .014 
2.70 .010 
1.92 .009 
1.32 .006 

Suppose a confidence interval is wanted for R = µx/µy. Then 
the estimator would be 

,. n n n n 

R = I. X; /I. f; = (l/n) I. x. /(l/n) I. y. = X / Y 
i=l i=l i=l ' i=l ' 

Next, a new variable is considered: 

Zi=X; - RYi 

and then 

Z= X-R Y 

If it is assumed that Xi and Yi are normally distributed (this 
assumption has been discussed in the sec_!!on on statistical 
properties of the observations), then Zi and Z will be normally 
distributed. Because Elz;J = EL :ZJ = 0, 

{ 

n }m ZI (1/n) • [1/(n-1)] ;
1 

(Z; - 7:)2 

TABLE2 RESULTS OBTAINED FROM MONTE CARLO EXPERIMENTS 
USING PROPOSED METHOD 

Coefficient of 
Coefficient of Variation of 
Variation of Avg Confi- Avg Confi-

No. of Repli- Coverage Coverage dcnce Inter- dence Inter-
cations Probability Probability val Length val Length 

5 .940 .011 10.48 .023 
6 .928 .012 8.54 .019 
7 .938 .011 7.18 .016 
8 .944 .010 6.68 .016 
9 .936 .011 6.06 .014 

10 .942 .010 5.70 .013 
20 .942 .010 3.70 .009 
50 .960 .009 2.24 .005 

100 .968 .008 1.56 .004 
200 .938 .011 1.08 .003 
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has a Student t-distribution with n - 1 degrees of freedom. But 

n n 

[1/(n-1)] I. (Z; - Z)2 = [1/(n-1)) I. (X; - RY; - X + R Y)2 

i=l i=l 

n 

= [1/(n-1)] I. [(X; - X) - R(Y; - Y)J2 
i=l 

n 

= [l/(n-1)) I. [(X; - X)2 + R2(Y; 
i=l 

-2 - -
- Y) - 2R.(X; - X)(Y; - Y)] 

2 2 2 = (Sx + R Sy - 2RSXY) 

where 
n 

2 - 2 
Sx = [1/(n-1)] L (X; - X) =sample variance of the X;'s 

i=l 

n 
2 -2 

Sy= [1/(n-1)) I. (Y; - Y) = sample variance of the Y;'s 
i=l 

n 

SXY = [1/(n-1)) L. (X; - °X)(Y; - f) =sample covariance of 
i=l the (X;, Y;)'s 

Hence at the (1 - a) level, 

Pr ( { ( X - R Y)/ [ (l/n)(Si + R2S~ 

- 2RSxr) J 112
} ~ 11 - (o./2).n - l) = 1 - a 

Note that when both sides of the argument in the above 
probability statement are squared, the result is a quadratic 
inequality in the unknown R = µx/µy , the known eslimatcs 

- - 2 2 . . 
X, Y, Sx, Sy, Sxy, and 'i- (cx/2),(n-J)· The roots of lh1s quadralic 

inequality are 

[[ X Y - g(a)SXY] ± ([ X Y - g(a)Sxy]
2 

- {[ Y2 

)

1/2 J - 2 2 
- g(a)S;][ X2 - g(a)S~]} I [ Y - g(a)Sy] 

where 

g(a) = ~-a/2; n-l/n 

The (1 - a) x 100 percent confidence interval is then (r1, r0, 
where r1 is the S_!!lal~r root and r2 is the larger root. It should 
be noted that X I Y is not the midpoint of the confidence 
interval. 

The efficacy of the proposed method in any application 
depends on how well the assumptions are met; namely, system 
in steady state, normality of the numerator and the denominator 
observations, and independent replications. 

Steady state in NETSIM is achieved by a warm-up pro
cedure that appears to work. Independent replications are 
achieved by starting each run with a different random number 
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generator seed. The only assumption that is approximately met 
in applications is that of normality, and it is claimed that the 
method is not sensitive to this requirement. 

To demonstrate the method's robustness to this assumption, 
it was applied to the M/M/l queuing system to estimate mean 
delay (excluding service time) per customer. This is a single
server system with exponential interarrival and service times. 
This system was selected because it is known that delay in 
queue is extremely nonnormal. 

The arrival rate was taken to be A. = 36 customers per hour 
and the service rate µ = 40 customers per hour for a traffic 
intensity p = A./µ = 36/40 = 0.90. Each replication was started 
in steady state. This was accomplished by having an initial 
number of customers in the system obtained from sampling the 
steady state probability mass function given by Pn = (1- p) p", 
n = 0,1,2, .... 

Each replication consisted of 2 hours of simulated time. The 
numerator and denominator recordings were, respectively, 
X; = accumulated delay of departing customers, and Y; = N; = 
number of departing customers, i = 1,2, ... , n. Thus, the result 
is a ratio estimation situation in which Lf=1 X/Lf=1· N; con
verges as n _., 00 to µx/µN, where µxis the expected total delay 
per unit time and µN is the expected number of departures per 
unit time. 

The number of replications was selected to be 
5,6,7,8,9,10,20, and 40. For each replication size, the experi
ment was repeated 500 times and for each repetition a 95 
percent confidence interval was constructed by the proposed 
method. Because for this system the true value of the steady 
state mean delay is known to be A./[µ(µ - A.)] (in this case 13.5 
min), an estimate of coverage probability is the fraction of the 
500 repetitions, which cover the true value. Also, estimates of 
the average confidence interval length and of the coefficients of 
variation of both coverage probability and average confidence 
interval length were computed and the results are given in 
Table 3. 

The experiment was then repeated with an arrival rate of A.= 
32 customers per hour and a service rate ofµ= 40 customers 
per hour for a traffic intensity of p = A/µ = 32/40 = 0.80. These 
results are given in Table 4. 

Looking at the data in these two tables, some degradation of 
coverage probability due to the extreme nonnormality of the 
data can be seen, but the results are not bad. The worst case is 
an 81.4 percent coverage when 95 percent was expected, for n = 
5 and p = 0.8. However, it improves rapidly and for 40 replica
tions it is up 93.6 percent. The situation is considerably better 
for p = 0.9. It should be noted that the problem ofnonnormality 
can be ameliorated by making the replications longer. 

SUMMARY AND CONCLUSIONS 

In this paper a number of important traffic parameters were 
identified as being ratio of means of two random variables. 
These parameters may be estimated by the ratio of sample 
means. In particular, it was noted that NETSIM uses this type 
of estimator. It was demonstrated that, in general, the numera
tor and denominator random variables that comprise the sample 
mearis are autocorrelated and cross correlated. Therefore, 
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TABLE 3 MIM/1 QUEUING SYSTEM, AVERAGE DELAY PER CUSTOMER 
(p = 0.9) 

Coefficient of 
Coefficient of Variation of 
Variation of Avg Conti- Avg Conti-

No. of Repli- Coverage Coverage dence Inter- dence Inter-
cations Probability Probability val Length val Length 

5 .882 .016 29.86 .030 
6 .876 .017 26.90 .028 
7 .860 .018 23.18 .027 
8 .888 .016 21.94 .023 
9 .864 .018 18.68 .023 

10 .874 .017 18.36 .023 
20 .920 .013 12.96 .017 
40 .950 .010 8.66 .011 

TABLE 4 M/M/1 QUEUING SYSTEM, AVERAGE DELAY PER CUSTOMER 
(p = 0.8) 

Coefficient of 
Coefficient of Variation of 
Variation of Avg Conti- Avg Conti-

No. of Repli- Coverage Coverage 
cations Probability Probability 

5 .814 .021 
6 .874 .017 
7 .856 .Q18 
8 .870 .017 
9 .892 .016 

10 .872 .017 
20 .924 .013 
40 .936 .012 

obtaining estimates from a single continuous set of observa
tions and assessing the accuracy of the estimate by a confidence 
interval is an extremely complicated statistical problem. 

Because the method of independent replications simplifies 
the problem considerably, a method based on it was developed 
and its efficacy was demonstrated through Monte Carlo experi
ments. The method may be applied to the estimation of param
eters and assessment of the accuracy of the estimates from field 
data, to the analysis of traffic simulation outputs, and to the 
comparison of field data with simulated data for validation 
studies. 
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