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On Predicting Pavement Surface 
Distress with Empirical Models of 
Failure Times 

WILLIAM D. 0. PATERSON AND ANDREW D. CHESHER 

A statistical procedure that overcomes common difficulties in 
the development of distress models from empirical data is 
described and applied in an example. The time at which crack
ing or raveling appears in bituminous pavements is influenced 
by both trafficking and weathering and varies across pave
ments, even under nominally identical conditions. Also, any 
data set that represents a uniform sample of roads of all ages in 
a network over a given time period will typically include some 
unobserved (or "censored") events, that ls pavements on 
which distress began either before or after the observation 
"window." The method applies failure-time theory, using max
im um likelihood methods so that censored data can be 
Included to prevent statistical bias in the predictions. The 
variability of failure times is represented by a Weibull distribu
tion because that is considered the most appropriate for the 
concurrent mechanisms of fatigue and weathering and is flex
ible in shape. An example application of the procedure to a 
major analysis of Brazilian condition data shows that it per
mitted the use of a much wider data base than would otherwise 
be possible and produced important results that quantify 
strong effects of weathering and variability. 

The initiation of surfacing distress such as cracking or raveling 
marks a significant stage in the deterioration of a pavement. 
From this point, the rate of deterioration usually accelerates at a 
rate that varies with traffic, pavement, and climatic conditions. 
The economic consequences of this are expressed through the 
secondary impact of surfacing distress on road roughness, 
which has a significant influence on vehicle operating costs (1). 

The timing of periodic maintenance to control the deteriora
tion is thus largely dependent on the time of initiation of 
distress. Hence the prediction of that time is an important 
component of pavement management systems and models for 
the economic evaluation of road maintenance policies and 
pricing policies. That distress does not occur instantaneously 
over the entire length of roads under like conditions is also 
important because the needs for maintenance expenditure are 
thereby spread over time. Considerable attention was therefore 
devoted to the modeling of pavement distress from field data in 
recent World Bank studies (1,2), and in particular to the joint 
effects of traffic and aging because these influence the alloca
tion of road damage costs between users and society. 

The procedure described is a statistical method for esti
mating empirical prediction models from pavement condition 
data. The method, based on failure-time theory, incorporates 
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the stochastic variations of pavement behavior and represents 
the concurrent effects of traffic-related fatigue and time-related 
aging, which can vary considerably from region to region. The 
method was developed because the variability evident in real 
pavement data and the fact that the time of appearance of 
distress usually cannot be observed on all sections within a 
finite study period were hindering the analysis of cracking and 
raveling data from a major United Nations Development Pro
gram road costs study in Brazil (3). 

One example from the World Bank's analysis of this study 
(2) is given to illustrate the procedure, and guidance is given on 
its application to other regions. 

TRAFFIC AND AGE-RELATED MECHANISMS 

Traffic-related cracking occurs through fatigue of bituminous 
surfacing materials under repeated wheel-load applications. 
The occurrence of failure, here defined as the first visible crack, 
is commonly expressed in terms of the cumulative number of 
load applications and is related to the tensile strains induced in 
the surfacing under the spectrum of mixed wheel loadings and 
to the material properties, primarily mixture stiffness and the 
volume of bituminous binder, by the following general expres
sion: 

(1) 

where 

N f = number of repetitions of load in flexure under 
strain control to the initiation of fatigue cracking; 

£i = maximum horizontal tensile strain; and 
K, n = estimated constants (values vary with materials 

and test conditions, but typically n increases from 
3 to 7 as the material stiffness increases from 
soft to stiff or brittle). 

The strains induced in the surfacing depend primarily on the 
tire contact pressure (and on wheel load in the case of thick 
surfacings), the thickness and stiffness of the surfacing layer, 
and the stiffness of the underlying pavement. Laboratory test
ing has indicated considerable stochastic variation in failure 
lives, which range typically over an order of magnitude or by a 
factor of three each side of the mean, under controlled condi
tions. 

Due to exposure to air, a bituminous ~i;nder hardens over 
time primarily by oxidation, which consequently reduces the 
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fatigue life of the surfacing material. The rate at which this 
occurs depends on the oxidation resistance of the binder, which 
varies with the chemical composition and source of crude; on 
temperature; and on the film thickness, which determines the 
length of the oxidation path (4). Hardening rates therefore vary 
with binder source, climate, and material design. Dickinson (4) 
has observed that cracking usually occurs when a binder 
reaches a critical viscosity at which the binder can no longer 
sustain the low strain levels associated with daily thermal 
movements and fracture occurs. By that stage the surfacing is 
typically 9 years old although, depending on the composition 
of the binder, the age may range between 6 and 15 years. This 
cracking by "aging" usually takes the form of irregular or 
"map" cracking with a spacing greater than 0.5 m and is likely 
to progress rapidly over the full area of surface. Raveling can 
also occur at this viscosity through fracture of the binder film 
on individual particles. 

Thus the interaction of oxidation with traffic-related fatigue 
advances the time at which fracture occurs in all bituminous
surface<l pave1n~nls. Thi:s iukaae;iivc effect iiiay be depicted 
conceptually as is done in Figure i. The fatigue life of lhe 
surfacing (in logarithm of load repetitions), shown by Curve A 
for the exposed surface and Curve B for the underside, 
decreases as the surfacing ages due to oxidation. Curve A is 
initially highest because lower strains are induced at the sur
face, but oxidation reduces the life at the exposed surface more 
rapidly than at the underside, as shown. Under high traffic 
volumes, shown as Curve C, traffic-related fatigue causes 
cracking first (at 4.5 years in the example), and, depending on 
the relative disposition of Curves A and B, initiation of crack
ing may occur either at the surface (as shown) or at the 
underside. Under very low traffic volumes, or on stiff pave
ments, Curve C may be lower than Curve D so that initial 
fracture may be attributable primarily to the age-related mecha
nism. 

The relative influences of traffic and aging are therefore 
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likely to vary considerably across pavements that have dif
ferent surfacings, materials, and traffic and also across cli
mates, because these factors influence the relative position of 
the functions shown. Empirical models must represent such 
interaction and be adaptable, through parameterization or cal
ibration, to other conditions. 

FAILURE-TIME THEORY 

Concepts 

The initiation of distress such as cracking is a discrete but 
highly variable event. That is, cracking will occur at different 
times at various locations along a nominally homogeneous 
road. The first of these times is termed the initiation of crack
ing. Another pavement of nominally identical properties and 
traffic will have initiation at a different time (Ti), where i 
indexes the pavement section. 

The time (Ti) or age of t_l).~ !'~!!faeirrg ?.t "faih1r1>." (heTP. 

defined as the appearance of distress) thus varies in the real 
world, even under nominally identical conditions. This can be 
represented by a probability density function [f(t)] as shown by 
a hypothetical example in Figure 2. In the function drawn, the 
first crack is unlikely to appear within "A" years of surfacing 
construction and is nearly certain to appear before the surfacing 
is "B" years old. On about one-half of all identical pavements, 
the first crack is likely to have appeared within "C" years. The 
probability or chance that the pavement will not have cracked 
by a certain age is represented by the survivor function [F(t)] in 
Figure 2b. The location of the functions along the time axis and 
their shapes can be expected to depend on the properties of the 
pavement and the intensity of traffic and loading stresses to 
which it is subjected. 

In some instances, when modeling fatigue cracking, it may 
be desirable to use cumulative traffic (for example the log-
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FIGURE 1 Interaction between traffic-related and aging
related fatigue that causes cracking In bituminous 
surfacings. 
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arithm of cwnulative equivalent standard axles) in place of 
chronological time, but the modeling principles are similar for 
both cases. In general, time is the most convenient unit for 
planning models and is used in the argument that follows. 

Because data collection surveys are typically oflimited dura
tion. in addition to the considerable variability in failure times, 
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there is the difficulty of unobserved failure events in a typical 
set of pavement condition data. Among a uniform cross section 
of pavements with a range of different ages, strengths, and 
traffic loadings, some of the pavements will have already been 
cracked on the first survey date, some will begin to crack 
during the survey period, and on others cracking will begin 

(a) Probability density function 
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FIGURE 2 Variability of failure times represented by probability 
density and survivor functions of time to first distress. 
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FIGURE 3 Unobserved or censored data on distress 
initiation and progression: example of three pavement 
sections with prior, observed, and future failure events, 
respectively. 

only after the end of the survey, as shown in Figure 3. If only 
the cracking initiation events observed during the survey were 
included in a statistical analysis, important information about 
the stochastic and mechanistic properties of the phenomenon 
coming from the "before" and "after" events might be 
excluded and thus cause a bias in the model. These latter 
events, known as "censored data," can be of vital importance 
particularly in representing long-life pavements in an analysis. 

Both features, stochastic variations and censored data, were 
addressed by developing an estimation procedure based on the 
principles of failure-time analysis, originally developed to 
study the reliability of industrial components. The procedure 
uses the statistical method of maximum likelihood estimation 
to exploit both censored and uncensored data, as described in 
the following section, and a flexible distribution that enables 
the variability of failure times to be determined by the data, as 
outlined in ihe sul:l:eeding sel:iion. 

Censored Data: Maximum Likelihood 
Estimation 

T is defined as the time from construction of a section of 
surfacing to failure, where T is a random variable indexed by i, 
a section identifier to indicate that the distribution of T depends 
on section characteristics. The term "failure" is used to 
describe the first appearance of the mode of pavement distress 
that is of interest, for example, narrow cracking, wide cracking, 
or raveling. 

T is regarded as a continuous nonnegative random variable 
and its probability density function is denoted by f(t), its 
distribution function by F(t), and its survivor function by F(t) = 
P(T > t) = 1 - F(t) (see Figure 2). 

Suppose a road section is selected at random, initially 
observed S0 years after surfacing, and finally observed S1 > S0 
years after surfacing. One and only one of the following events 
may be observed: 

• T < S0 : failure occurred before the road was observed. In 
this case define D1 = 1, otherwise define D1 = 0. 
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• S0 ~ T ~ S1: failure occurred while the road was observed. 
In this case define D2 = 1, otherwise define D2 = 0. Let z be the 
observed value of T. 

• S1 < T: failure occurred after the road was observed. In 
this case define D3 = 1, otherwise define D3 = 0. 

Let 

= S0 if D1 = 1, 
= z if D2 = 1, and 
= S1 if D3 = 1. 

By selecting a road at random, values are obtained for D1, D2, 

D3, and t. 
To exploit data on all sections it is necessary to develop a 

maximum likelihood estimator. Accordingly, consider the joint 
probability-probability density function of the discrete D1, D2, 

and D3 and the continuous t. 
Standard probability theory gives D1, D2, and D3 as multi

nomiH llv ilistrihntP.il with Pm.= 1) = F(SA) Pm~= n =HS.) 
o1 " J. " " U"' " ,L. ' " .1' 

- F(S0), an.d P(D3 = 1) = F(S1). Conditional on D1 = l or D3 = 
1, t is either S0 or S1 with probability 1 in each case. Condi
tional on D2 = 1, t has the truncated probability density function 
f(t)/[F(S 1) - F(S0)]. Multiplying marginal and conditional 
probabilities gives 

(2) 

Now write f(t) as a conditional failure time probability density 
function, depending on section characteristics x and parameters 
8. Then 

P(D1nD2nD3ntl x, 8) = F(tl x, 0P1 f(tl x, 8)
0

2 

F(TI X, 8)
0

3 (3) 

Estimation of 8 can be achieved by calculating the maximum 
likelihood estimator. Index t and x by i, which distinguishes 
sections. Then the probability-probability density function of 
the observed Di's, ~·s D, and t, given the x's, x, and 8, is 

n 
-·- I -· I T'\ I T'\ 
P(Untl x, t:J) = II F(~ I xi, 8)~1i f(~ I xi, 8)~2i 

i=l 
- I D F(~ xi, 8) 3i (4) 

By taking logs, Equation 5, the log-likelihood function, is 
obtained. The maximum likelihood estimator (8) is that value 
of 8 which maximizes Equation 5. 8 must be obtained using 
numerical methods. Under fairly general conditions 8 is consis
tent and efficient. The variance-covariance matrix of 8 is esti
mated by minus the inverse of the Hessian of Equation 5 at 8 = 
8. See Rao (5) or Theil (6) for further details of the properties 
of 8. 

n 

L(8 ID, t, x) = L, (Du log F(~ I xi, 8) + D2i 
i=l 

log f(~ I xi, 8) + D3i log F(~ I xi, 8)} (5) 

The log-likelihood function of Equation 5 is maximized by 
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some variant of the Newton-Raphson procedure. A program 
was developed that maximizes Equation 5 either by Newton
Raphson as modified by Berndt et al. (7) or by steepest ascent. 

The Berndt et al. modification of the Newton-Raphson pro
cedure makes use of the identity: 

E(n-182L/8989') = -E[n-1 (8L/88) (8L/89')] 

so that the matrix of second derivatives 

E (82L/898e') 

is estimated by the approximation 

n 

-n-1 I. (8L/89) (8L/89') 
i=l 

where (8L/89) is the ith term in the summation 

n 

C8L/89) = ~ C8L/89). 
i=l 

(6) 

The program uses analytic expressions for first derivatives of 
the log-likelihood function. At the termination of the optimiza
tion the Hessian associated with the log-likelihood function is 
calculated by differencing the analytic first derivative vector. 
Eigenvalues are calculated to check on the definiteness of the 
Hessian and the Hessian is then inverted to obtain estimates of 
asymptotic variances and covariances of estimated coefficients. 
Various predictions are provided for each observation so that 
the equivalent of residuals can be examined. The program will 
calculate asymptotic confidence intervals around predictions 
and provide various graph plots if required. 

Asymptotic confidence intervals for expected failure times 
are provided by exploiting the local large sample linearity of 
the expression for expected failure time given pavement 
characteristics and computing the asymptotic variance of the 
resulting linear approximation; 1.96 times the square root of 
this variance is then added to and subtracted from the predicted 
expected failure time to give the required interval. 

Starting values for the parameters are provided automat
ically, but there is provision for using a manual start if required. 
The program is written in SAS's matrix procedure (8). 

Variability of Failure Times 

The underlying variation of failure times was assumed in the 
failure-time model to follow a Weibull distribution [for which 
general statistical results may be found in Chapter 20, Vol. 1 of 
Johnson and Kotz (9)]. A log normal distribution is also avail
able in the program, but the Weibull distribution was consid
ered the most representative of the joint mechanisms of fatigue 
and aging for the following reasons. 

The time to failure of a section is the first failure to occur 
among all individual elements of the surfacing, where each 
fails at a time following some probability law, as shown in 
Figure 4a. The Weibull distribution, a Type-3 extreme value 
distribution, is suitable for determining the minimum (or limit
ing distribution) of a series of minima (that is the failure times). 

The mechanisms of fatigue under traffic and oxidation, 
which reduce the available fatigue life, work concurrently, and 

Fl 1 1,, 11 1 1 1 1 11 1 
T = min (Ti j = 1 to J) 

(a) Cracking initiation in a nominally homogeneous section 
represented by elements over which pavement properties 
ore randomly distributed Failure occurs at the minimum 
of the failure times of all elements 

HAZARD, h(t) 

dh(t) 0 
-at> 

TIME, or TRAFFIC, t 

(b) Fatigue is a hazard which increases monotonically with 
time or with cumulative number of axle transits 
(we expect f3 > 0) 

FIGURE 4 Two hypotheses on the 
probability of occurrence of crack initiation 
that indicate a Weibull distribution of failure 
times. 
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thus the probability of cracking occurring in the surfacing is 
expected to increase as the pavement ages. For example, the 
chances that a pavement will crack in its 15th year, if it has not 
already cracked by that time, are considered greater than the 
chances of its cracking in, say, the previous year. This can be 
described as an increasing "hazard" of cracking. The hazard 
function [h(t)], a concept used in reliability theory, is propor
tional to the probability that failure will occur in a short time 
interval at time t given that it has not occurred previously. It is 
defined by 

h(t) = [f(t)/l - F(t)] = [f(t)/F(t)] (7) 

where 

f(t) = probability density function associated with T; 
F(t) = probability distribution function, = P(T ~ t); and 
F(t) = P(T ~ t). 

To model fatigue, therefore, the hazard is expected to be an 
increasing function of time as shown in Figure 4b. When the 
hazard is specified by 

h(t) = a-13 tl3-l a, t ~ 0 and ~ > 1 (8) 

the probability distribution function is defined by 

(9) 

where 

a = function of the variables causing failure, 
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p = curvature of hazard fnnction, and 
= time (or cumulative traffic). 

This is the distribution function associated with a Weibull 
distribution, describing a positively skewed distribution over 
the nonnegative real axis. The expected, or mean, time to 
failure [E(T)] is given by 

E(T) =a B(p) (10) 

where B(P) is a constant function of ~ given by 

and selected values for B(p) are as given in Table 1. 

The selection of the type of distribution is important because 
results are sensitive to it when many of the data have censored 
values. The Weibull distribution appears to be appropriate for 
representing the variability of failures for the two conceptual 

' • .1• 1 T. 1 • n '1 1 1 '• 1 '1 
reasurn; JUSL uutuueu. 1L arsu rs ueA1u1e mxause lL ues1,;110t;s a 

famiiy of skewed curves for different vaiues of p and a. that 
appear to be realistic for pavement data, as shown in Figure 5. 
The p parameter determines the shape of the distribution, 
which becomes narrower as p increases. The a parameter is a 
scaling function that locates the distribution along the time 
axis. Because both the p and a. parameter values are estimated 
from the observed data, and neither is fixed, the Weibull model 
is particularly adaptable to actual circumstances. 

The objective of the estimation is not only to determine the 
average time to failure and its distribution but also to estimate 
how the expected time to failure depends on pavement and 
traffic characteristics. These are represented in the a parameter 
of the model that must be nonnegative. Although other forms 
could be used, a here was defined by the vector 

a = exp [X' y] 

= exp <Yo + 'Y1 X1 + 'Y2 X2 + "(3 X3 ••• ) (11) 
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where "( is the vector of coefficients 'Yi and X is the vector of 
parameters (pavement strength, traffic flow, etc.). 

Given various pavement, traffic, and environmental param
eters (xi), the model estimates the coefficients (Yi) and the 
shape parameter (p), which is assumed constant for all pave
ments within the data set. 

The mean time to failure [E(T) from Equation 10] can be 
used directly in road deterioration predictions in the same way 
as the mean time from a deterministic model. In practice, the 
prediction of the expected time to failure took the following 
simple form: 

E(T) = B(p) exp [y0 + y1 x1 + 'Y2 x2 ... ] (12) 

The probability with which failure might occur at some time 
other thHn the r.xpr.ctt>.<l time derives from the value of B. shown 
for example in the family of probability functions generated by 
different values of p in Figure 5. At low values of p, say below 
2.5, the distributions tend to be widely dispersed and highly 
skeweu with mum ihan half of the observations having values 
iess than the mean but with a number of very iate faiiures. At 
high values of p, the distributions tend to be more concentrated 
and centered about the mean. 

In general, the failure time (Tp) associated with ru1y proba
bility, p = P[T ~ TP]' can be related dii"ectly to the mean E(T) 
by 

TP = K(p) . E(T) (13) 

where K(p) = [-p /n(l-p)]l/13/B(p) . K(p) is thus a constant 
function of p, and values for selected values of probability p are 
given in Table 1. For example, the median time [M(T)] and 
lower quartile time [T 0.25] to failure are given by 

M(T) = K(0.5) E(T) (14a) 

T o.25 = K(0.25) E(T) (14b) 

TABLE 1 CONSTANTS DESCRIBING A WEIBULL DISTRIBUTION OF FAILURE TIMES: FUNCTION B 
AND FACTORS K(p) OF EXPECTED FAILURE TIME E(T) FOR SELECTED PROllABILITillS (p) AND 
VALUES OF~ 

BETA B SIQF K05 K10 K25 K50 K75 K90 K95 

1. 0 1. 000 0.549 0.051 0 . 105 0.288 0 . 693 1 . 386 2.303 2.996 
1 . 5 1 . 183 0.44? 0. 153 0 . 247 0.483 0 . 868 1.377 , . 932 2.302 
2 . 0 1 . 253 0. 362 0.256 0.366 0.605 0.939 1 . 329 1 . 712 1. 953 
2. 5 1 . 280 0.300 0.344 0 . 458 0.685 0 . 973 1 . 284 1 . 573 1. 748 
3 . 0 \ . 288 0.255 0.416 0 . 529 0.739 0 . 991 1 . 249 1 . 479 1. 614 
3.5 \ . 287 0.221 0.476 0 . 584 0.779 1 . 001 1 . 220 1 . 410 1. 521 
•1. 0 1 . 282 o. 195 0.525 0.629 0.808 1 . 007 1 . 197 1 . 359 1. 451 
4. 5 1 . 275 0. 174 0.566 0 . 665 0.831 1 . 010 1 . 178 I. 319 1. 398 
5. 0 I . 267 0. 157 0.601 0 . 694 0.849 1 . 012 1 . 163 t . 287 1.356 
6.0 1 . 251 0. 131 0.657 0 . 741 0.876 1 . 014 1 . 138 1 . 239 1.294 
7 . 0 I . 235 0. 113 0.699 0 . 775 0.895 1 . 014 1. 120 1 . 204 1. 250 
8 . 0 1 . 22 1 0.099 0.733 0 . 801 0.909 1 . 014 '\ . 106 1 . 179 1. 218 
9. 0 1 . 209 0.088 0. 759 0 . 822 0.919 1.014 1.095 1 . 159 1. 193 

10 . 0 1 . 198 0.079 0.781 0 . 839 0.928 1 . 013 1 . 086 1. 143 1. 173 
15 . 0 1 . 157 0.053 0.850 0 . 891 0.953 1 . 011 1 .058 1.095 1. 114 
20.0 1 . 131 0.039 0.885 0 . 918 0.965 1 . 009 I .044 1.071 1.085 
25 . 0 1 . 113 0.032 0.908 0.934 0.972 1 . 007 1 .035 1 . 057 1.068 
30 . 0 1. 100 0.026 0.923 0 . 945 0.977 1 . 006 1 . 030 1 . 047 1.056 
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P=10, &(l)=10 

10 15 20 25 
TIME TO FAILURE. t 

FIGURE 5 Family of probability density functions represented by Weibull 
distribution of time to failure. 

For practical purposes, the width of dispersion is most sim
ply described by the spread of time between two specific 
probabilities, usually the quartiles. For convenience the serni
interquartile factor (SIQF) is defined to represent the age range 
between 25 percent and 75 percent failure probabilities, that is 
the range within which about 50 percent of the pavements may 
be expected to fail [i.e., (1 ± SIQF) E(T)] where 

SIQF = (1/2) [K(0.75) - K (0.25)) (15) 

Goodness of Fit 

The goodness of fit of probabilistic models requires special 
interpretation because two components are present: the proba
bility of failure occurring by the estimated time and the error of 
estimate. 

First, note that whereas the traditional measures of goodness 
of fit indicate what proportion of the variation in the dependent 
variable can be acconnted for by variation in the independent 
variables, in the failure-time models there is an upper bound on 
this proportion. In principle, the exact time to failure is not 
predictable because the failure 1ime is a random variable with 
distributed, positive values; thus R2 and similar measures can 
never approach unity. The model explains the variation of 
failure times that can be attributed to pavement and traffic 
characteristics, but further than that the influence of chance 
ensures that 100 identical pavements will crack at 100 different 
times. No model explains the latter variation, but the Weibull 
model predicts that it exists and estimates the shape of its 

distribution through the P parameter. This is typified by tl).e 
SIQF defined in Equation 15. 

Second, the value of Jog-likelihood (LL) that is maximized 
in the estimation is not a dimensionless proportion like R2; its 
value varies with the magnitude of the dependent variable and 
with the number of observations, so that it is meaningless to 
compare LL-values across models or groups of models (except 
where identical sets of dependent variables are involved). 
When the dependent variable is of a fixed dimension, it is 
useful to define an average log-likelihood (LL divided by the 
number of observations) as a normalized measure of goodness 
of fit across models having different numbers of observations 
within the same data set. 

Third, because the model used here is not a linear regression 
model there is no obvious equivalent of the conventionally 
reported "standard error." To assess the predictive power of 
the model, confidence intervals (with asymptotic validity) 
around predicted expected failure times were calculated as 
described earlier. Because the size of the interval depends in 
part on the error of estimate of the parameter coefficient, it also 
varies with the values of the pavement parameters. Thus the 
intervals do not form a locus of the expected time to failure but 
instead form loci of the explanatory parameters. As a practical 
measure, it is possible to compute an "average confidence 
interval," which is the arithmetic average of the estimated 95th 
percentile confidence intervals of all observations expressed in 
units of the dependent variable, for example, ± 1.2 years. 
Although this is not a precise statistic, it provides a meaningful 
estimate of the intervals to be expected given the observed 
ranges of explanatory variables. 
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Finally, assessing the adequacy of models for censored data 
remains an open research question, which has recently been 
addressed by Chesher et al. (10), for example. Future applica
tions of the procedure should consider these developments. In 
this instance the three practical measures noted previously were 
used: 

• Goodness of fit: average log-likelihood value (for internal 
best fit for given data set and dependent variable); 

• Predictive power: average 95th percentile confidence inter
vals (average for given data set); and 

• Stochastic variation: SIQF; for example, a value of SIQF = 
0.36 for p = 2.0 indicates a fairly wide dispersion, and a value 
of 0.09 for p = 10 indicates a very narrow dispersion (meaning 
that like roads will fail at very similar times). 

PRACTICAL APPLICATION 

Initiation of Cracking in Surface 
Treatments 

To illustrate the application of the procedure, the empirical 
estimation of cracking initiation in double surface treatment 
(DST) (or chip seal) surfacings from data collected in the 
Brazil Road Costs Study (3) is used. The method was applied 
extensively in analysis of these data as described in full for this 
and other surface types in Paterson (2); these models have been 
incorporated in the World Bank Highway Design and Mainte
nance Model (1) for economic evaluation of highway projects 
and policies. 

Observations of initiation of cracking were taken from time
series pavement condition survey data over a 5-year period on 
36 independent test sections with original DST surfacings 
selected within a factorial experimental matrix of traffic vol
ume, surfacing age, base type, and vertical geometry. Initiation 
of cracking was defined by the occurrence of crocodile crack
ing of 1 to 3 mm width covering not more than 5 and not less 
than 0.5 percent of the surfacing area of a subsection. Of the 
total 102 subsection observations, there were 72 independent 
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traffic-section combinations. The chip seal DST generally had 
a 14- to 19-mm stone size in the first seal and a 7- to 10-mm size 
in the second seal. Other characteristics are given in Table 2. 

As might be expected for a representative sample of a road 
network in any given time "window," the actual event of 
cracking initiation was observed on only 3.S of the 102 subsec
tions; 10 had cracked earlier, and the remainder were still 
uncracked at the date of the last survey. Conventional least 
squares estimation techniques would therefore have had to 
exclude two-thirds of the data and operate on only the observed 
events, whereas all observations could be used in the failure
time estimation procedure. 

The surfacing lives observed in the study are shown in 
Figure 6; symbols are used to indicate whether the initiation 
occurred before, during, or after the study. The symbol "O" 
indicates that initiation occurred earlier than, that is below, the 
point indicated; the symbol "D" indicates an observed initia
tion; and the symbol "+" indicates that the initiation occurred 
later than, that is above, the point indicated. A general tendency 
for the surfacing life to decrease as the annual volume of traffic 
loading increases can be seen in Figure 6a, although there are a 
number of exceptions and in particular one group of observa
tions has lives longer than 17 years. When the life is expressed 
in classical fatigue terms of the cumulative number of 80-kN 
equivalent single axle loads (ESALs) to cracking initiation, as 
shown in Figure 6b, it can be seen that shorter lives are usually 
associated with higher pavement deflections, but again there 
are several exceptions and considerable scatter. 

Model estimations were made on the data using the failure
tirne procedure. When time to failure was used as the depen
dent variable, traffic effects were represented by the rate of 
trafficking (that is the annual volume per lane) normalized to 
the average rate over the first 8 years of service in order to 
avoid the collinearity that occurs between age and traffic vol
ume due to annual traffic growth (old pavements usually carry 
a higher volume now than when they were new). When 
cumulative ESALs to failure was the dependent variable, the 
rate of aging was represented by the inverse of traffic flow 
(e.g., years per million axles). Benkelman beam deflection, 
modified structural number, base type and California bearing 

TABLE 2 DATA CHARACTERISTICS OF CRACKING INITIATION IN 
SURFACE TREATMENT SURFACINGS IN BRAZIL ROAD COSTS STUDY 

Parameter 

Surfacing age 
Cumulative loading 
Traffic volume (two way) 
Traffic loading 
Deflection (Benkelman 80 kN) 
Modified structural no. 
Base course CBR 
Resilient modulus of surfacing at 

30°C (4/36) 
No. of sections 
No. of subsections 
No. with prior cracking 
No. observed to crack 
No. with future cracking 

Units 

Year 
Million ESALs/lane 
Vehicles/day 
Million ESALs/lane/year 
mm 

% 

GPa 

Range of Values 

2.7-21 
0.005-5.16 
100-2,300 
0.001-0.24 
0.26-2.02 
2.93-5.15 
32-143 

1.6-2.7 
36 
102 
10 
35 
57 
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ratio (CBR), construction quality, monthly rainfall, traffic vol
ume (with and without load effects given by ESALs), and 
surfacing thickness were used as explanatory variables. 

The selection of the final models was based on the best 
statistical fit, as defined by the maximum log-likelihood value 
and minimum interquartile probability range, and on whether 
the predictions were reasonable over the range of estimation 
and beyond. The two with widest application are as follows: 

1. E(T) = 13.2 exp [-24.3 (1 + CQ) YE2/SNC2] (16) 

SIQF = 0.295 
Average 95 percent confidence interval= 1.73 years 
Average maximum likelihood= -1.27 
p = 2.54 

2. E(T) = 13.6 exp [-3.19 (1 + CQ) YE2 DEF] (17) 

SIQF = 0.305 

Average maximum likelihood= - 1.27 
p = 2.47 

where 

E(T) = expected age of surfacing at initiation of narrow 
crocodile cracking (1 to 3 mm in width), in 
years; 
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YE2 = annual volume of equivalent 80-kN single axles 
computed with a relative damage power of 2, in 
million ESALs per lane per year; 

SNC = modified structural number of pavement strength 
including subgrade contribution [see Paterson 
(2)]; 

DEF = pavement surface deflection by Benkelman beam 
under 80-kN axle load, in mm; and 

CQ = construction quality factor(= 0 for good quality, 
= l when original construction was faulty). 

The goodness of fit of the prediction for Model 1, shown in 
Figure 7, is reasonable but not excellent, reflecting both the 
large amount of stochastic variation that is observed under real 
conditions and the difficulties in explaining all of the diverse 
contributory factors that cause cracking in thin surfacings by 
practicable measures. The surfacing lives predicted by Equa
tion 16 for a range of pavement strengths and traffic loadings 
are shown in Figure 8. This shows that the life decreases as the 

tJ1c pavement strength (or stiffness) increases. The focal point 
at an age of 13.2 years represents the effect of aging and 
oxidation under very low-volume traffic. This point is likely to 
vary from region to region with the various factors that influ
ence the oxidation rate of the binder, as mentioned earlier. 

The variability of cracking failure times due to chance, that 
is, most of the variance that could not be explained by physical 
parameters, amounted to a distribution in which half of the 
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cracking for Brazilian data: double surface treatment surfacings on 
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FIGURE 8 Predictions of crack initiation for pavements with original double 
surface treatment surfaclngs and granular base in nonfreezing climates. 

pavements would fail within ±30 percent of the mean or 
expected time of failure and the remainder would crack either 
sooner or later than that range of time. This underlying vari
ability found in the data is shown by the bell curve in Figure 7. 
This curve is large and graphically illustrates why the empirical 
analysis of performance data is so difficult. 

Calibration or Adaptation of a Model 

In a region for which a large, well-structured data set is not 
available to permit an original estimation of cracking models, it 
is desirable to calibrate a model such as the present one to 
satisfy the specific material and climatic conditions of that 
particular region. In the case presented here, calibration is most 
effectively achieved by assuming, as a first approximation, that 
the coefficients of the traffic and pavement parameters are 
correctly estimated because lhe function represents an underly
ing physical mechanism and that it is the aging and oxidation 
function that most needs to be adapted to local conditions. 

On this assumption, calibration can be achieved by assessing 
the average life of a sample of low-volwne pavements in the 

region and computing an adjustment factor equal to the ratio of 
the observed low-volwne road life (Tr) to 13.2 years: 

E(T)' =Kc E(T) 

where 

E(T)' = calibrated estimate of failure time for local 
conditions, 

Kc = local adjustment factor = T dl3.2, and 

(18) 

TL = average observed age at failure of local surfacings 
under low traffic volumes. 

CONCLUSION 

The development of this procedure, based on the principles of 
failure-time theory, has provided the statistical means for ana
lyzing surface distress data from pavement performance studies 
or pavement condition data bases with greatly increased scope. 
Unobserved cracking events (i.e., censored data) that occur 
outside the period of data collection are taken into account by 
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the procedure and thus a statistical bias in the results, which 
might occur were they ignored, is prevented. The underlying 
variability of failure times due to chance rather than physical 
properties is quantified by the procedure and the example given 
shows that the variability can be quite large for cracking failure 
times. The Weibull distribution chosen for this purpose is 
highly adapatable to real data and appears to be particularly 
appropriate to the increasing chance of cracking that occurs as 
a result of the concurrent effects of fatigue and oxidation. 

Although the exposition and example refer to oxidation and 
aging as the primary time-related mechanism, which was 
appropriate for the tropical climate of the example application, 
the model principles apply equally to other time-related 
environmental mechanisms such as cold-temperature cracking, 
shrinkage cracking, and so forth. 
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