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expected grout take in each abutment did not have a significant 
adverse effect on the project budget, but it did validate and 
ameliorate the condition of voids in the bedrock formation. 

SUMMARY 

With construction on the bridge phase of the project recently 
completed, it can be reported that all major design elements of 
the foundation performed as anticipated, under both con-
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struction loading and railroad live loading. Equally important 
to the city and Conrail was the fact that rail traffic was unim­
peded during construction and vehicular traffic on Brighton 
Avenue was maintained, even though occasionally reduced to 
one lane during foundation construction. The only stoppage 
and rerouting of traffic was limited to a portion of one day 
when superstructure main girder steel was set. 

Publication of this paper sponsored by committee on Foundations of 
Bridges and Other Structures. 

Geotechnical Error Analysis 
GREGORY B. BAECHER 

A simple method Is presented for rationalizing the treatment of 
uncertainties In geotechnlcal engineering calculations. This 
method uses a reliability Index to express the degree of confi­
dence In a calculation. The reliability index combines the best 
estimate with a standard deviation reflecting four principal 
sources of uncertainty, spatial variability, measurement noise, 
model bias, and limited data. An example Involving shallow 
footing design is used for Illustration. 

All engineers design in the face of uncertainties-uncertainty 
about material properties, conditions encountered in service, 
models used to predict performance, and many others. Tradi­
tionally, this uncertainty has been accounted for by conserva­
tive design, with the ratio of facility capacity to the demands 
placed on it-the factor of safety--chosen from common prac­
tice. As a general rule, the approach has been serviceable. 
Significant geotechnical failures occur at a rate of about 1,000 
per year. The consequences of these failures, while important 
financially, are rarely catastrophic. 

On the other hand, the strategy of fixed factors of safety has 
drawbacks. First, because uncertainty is not addressed directly, 
there is a tendency to be conservative about each of the esti­
mates needed for design (soil properties, loads, etc.). The result 
is that the overall design factor of safety is unknown. Second, 
because the estimates of soil properties, loads, and so forth, are 
conservative and subjective, predictions of facility perfor­
mance are often not repeatable. The result is poor quality 
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assurance. Third, levels of uncertainty vary from situation to 
situation, because amounts and quality of data vary, facility 
uses vary, and so on. The result is that a fixed factor of safety 
leads to different likelihoods of adverse performance. 

PURPOSE OF ERROR ANALYSIS 

The purpose of error analysis is to improve current practice by 
expressly considering uncertainties. The term error analysis as 
used here is not what many now call probabilistic design. 
Geotechnical engineering involves many uncertainties only 
some of which are explicit. Therefore, probabilities resulting 
from analysis are not predictions of rates of failure to be 
experienced in the field. The majority of failures are attributa­
ble to unanticipated loads, gross errors, inadequate mainte­
nance, and other factors not accounted for in design (1). 

Error analysis in the present context means a logical ac­
counting for the uncertainties inherent in engineering calcula­
tions, and decisions that explicitly balance conservatism 
against those uncertainties. Specifically, error analysis 
addresses 

1. Selection of design parameters from scattered, limited, 
and possibly biased data; and 

2. Economic rationalization of design. 

The method is nothing more than a form of accounting in 
which uncertainties are tabulated and their influence on engi­
neering calculations combined according to well-defined rules. 
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UNCERTAINTY IN GEOTECHNICAL DESIGN 

Uncertainties in geotechnical predictions are of many types. 
Some can be quantified, some cannot. In an approximate way 
they may be divided into five groups: 

1. Site conditions, 
2. Loads, 
3. Muud inaccuracies, 
4. Construction and quality control, and 
5. Omissions and gross errors. 

The most important of these for engineering analysis are the 
first three, which are quantifiable and appear in calculations. 

Uncertainties in Site Conditions and 
Models 

If attention is restricted to only those uncertainties that affect 
calculations, namely site conditions and geotechnical models, a 
further and more specific subdivision of sources of error is 
possible. This leads to four sources that are the focus of error 
analysis: 

1. Soil variability, 
2. Measurement noise, 
3. Measurement and model bias, and 
4. Statistical error due to limited measurements. 

These are the sources of uncertainty that affect calculated 
predictions. The first two, soil variability and measurement 
noise, appear as data scatter. The latter two, measurement and 
model bias and statistical error, cause systematic errors in 
predictions. 

Data Scatter Equals Spatial Variability 
Plus Measurement Noise 

The scatter among geotechnical measurements is often large. 
This scatter reflects two things: spatial variability of the soil 
and random measurement error (noise). A major purpose of 
statistical analysis is to separate real variability from noise, 
thereby lessening the magnitudes of data scatter and reducing 
uncertainty. 

Systematic Error Equals Measurement 
Bias Plus Statistical Error 

Bias is a systematic error. If strength is underestimated by a 10 
percent bias error at one location, it is underestimated by the 
same 10 percent everywhere. The distinction between spatial 
variability and bias is important. For example, a 10 percent 
probability of failure due to soil variability implies that one­
tenth of a long embankment will fail. The same probability due 
to bias implies a one in ten chance that the entire embankment 
will fail. 

In geotechnicai parameter estimation, bias is caused by (a) 
measurement techniques and (b) statistical estimation error. 
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Measurement bias is common in geotechnical engineering; it is 
caused by soil disturbance or a difference between how a 
property is measured and how a structure imposes load Statis­
tical bias is also common; it is caused by limited data. 

Separating the Sources of Uncertainty 

Together, uala scalier and systematic error constitute the uncer­
tainty of geotechnical calculations. However, the effects of 
these components differ, as do the way each propagates 
through an engineering model. The most important concept of 
uncertainty analysis has nothing to do with mathematics, rather 
it has to do with separating source of uncertainty. 

The methodology presented here is based on separating 
errors. It treats calculations and modeling. What results is a 
reliability index summarizing the confidence that can be placed 
in calculations. 

DESCRIBING UNCERTAINTY 

Assessments of soil properties for most purposes are ade­
quately expressed by two numbers: a best estimate, and a 
measure of uncertainty. Here, the average value and standard 
deviation are used to express the two attributes. When more 
than one soil property is estimated, another attribute becomes 
important. This is the association between the uncertainties in 
different parameter estimates. Here, the correlation coefficient 
is used to express this association. 

Average Equals Best Estimate 

The average or mean of a set of measurements x = (x1, ... ,xn) is 
denoted mx, and defined as 

(1) 

In effect, the mean is the center of gravity of the measurements 
along the x-axis. It is used as the best single-valued estimate of 
x, being neither conservative nor unconservative. 

Standard Deviation Equals Uncertainty 

The standard deviation of the measurements x is their variation 
with respect to the mean, expressed as the square root of the 
sum-of-squared variations 

8x = [l/n - 1 ~ (JS. - mx)2]112 = standard deviation (2) 

In effect, the standard deviation is the root of the moment of 
inertia of the data about the mean . . The proportional uncertainty 
or standard deviation normalized by the mean is called the 
coefficient of variation and denoted nx, 

nx = sxfmx = coefficient of variation (3) 

Just as in mechanics where it is convenient to deal with the 
moment of inertia rather than its square root, so, too, in analyz-
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ing uncertainty is it convenient to deal with the square of the 
standard deviation rather than sx itself. The square of the 
standard deviation is called the variance 

V = s2 = variance x x (4) 

Given the similarity of Equations 1 to 4 to mechanical 
moments, the mean and variance are often called the first and 
second moments of the uncertainty in an estimate of x. 

Correlation Coefficient Equals 
Association Between Uncertainties 

When dealing with two or more soil properties, the uncertain­
ties in estimates may be associated with one another. That is, 
the uncertainty in one property estimate may not be indepen­
dent of the uncertainty in the other estimate. Consider the 
problem of estimating the cohesion and friction parameters of a 
Mohr-Coulomb strength envelope based on a small number of 
tests. If the slope of the envelope to the Mohr circles is 
mistakenly estimated too steeply, then for the line to fit the data 
the intercept would have to be too small. The reverse is true if 
the slope is estimated too fiat. Thus, uncertainties about the 
slope and intercept are not independent, they are related to one 
another. 

The correlation coefficient for a set of paired data x,y = 
[(x1.y1), .. .,(xn•Yn)l is denoted rx,y• and defined as 

rx,y = l/n - 2 ~ (~ - ffix/Sx) (Yi - m/sy) 
= correlation coefficient (5) 

In effect, the correlation coefficient is equivalent to a nor­
malized product of inertia in solid mechanics. It expresses the 
degree to which two parameters vary together. The correlation 
coefficient is nondimensional because deviations of x and y 
from their respective means are measured in units of the 
respective standard deviation. For these reasons rx,y is a con­
venient measure for expressing the degree of association or 
dependence between the uncertainties in two properties. 

The value of rx,y may vary from + 1 to - 1; rx,y = + 1 implies a 
strict linear relation with a positive slope; r x,y "' -1 implies a 
strict linear relation with a negative slope; rx,y = 0 implies no 
association at all. 

The corresponding dimensional form of Equation 5, that is, 
using absolute deviations of x and y rather than normalized 
deviations, is called the covariance of x,y and denoted 

Cx,y = l/n - 2 ~ (xi - mx) (Yi - my) = covariance (6) 

From Equations 5 and 6, 

(7) 

Autocorrelation 

Thus far the fact that soil properties are spatially variable has 
been ignored. They have not only magnitude but also location. 
The spatial quality of soils data has important implications, for 
it both strongly affects engineering predictions and increases 
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the amount of information that can be squeezed from a testing 
program. Fortunately, the salient aspects of spatial variability 
from an error analysis view are easily analyzed using the 
statistical concept called autocovariance. 

In an approximate way, spatial variability of data can be 
summarized by two measures: the variance of the data about 
their mean, and the waviness or frequency content of the 
variability in space. The longer the period of this waviness, the 
further data may be spatially extrapolated. Autocorrelation is 
used to measure waviness. 

Autocorrelation measures the statistical association between 
data of the same type measured at separate locations. For 
example, the properties of two adjacent soil elements tend to be 
similar. If one is above average, the other tends to be above 
average, also; they are associated. Conversely, the properties of 
widely separated elements are not necessarily similar. If one is 
above average, the other may or may not be; they are not 
associated. This association of properties in space can be mea­
sured by the correlation coefficient of Equation 5. It is called 
autocorrelation because the data are all of the same type. 

For data xi, where i =the location of the measurement, the 
autocorrelation of data separated by interval, b, is 

(8) 

the sum taken over all pairs of data having separation distance, 
b, their number being n0. Autocovariance is related to autocor­
relation as covariance is to correlation. The autocovariance of 
data at points separated by distance, o is, 

(9) 

Autocorrelation expressed as a function of separation distance, 
o, is said to be the autocorrelation function, and autocovariance 
expressed as a function of distance, b, is said to be the auto­
covariance function. 

ESTIMATING UNCERTAINTY 

Considered in this section are specific procedures for quantify­
ing the uncertainties identified earlier. 

Data Scatter: Soil Variability and 
Measurement Noise 

Scatter in soil data reflects two things: real variability and 
noise. Yet, the amount of scatter is measured by a single 
number, namely the standard deviation of the data. It is not 
possible to separate soil variability from noise simply by 
inspection. Hence another approach to estimating the fraction 
of data scatter contributed by either of these sources must be 
used The most convenient is through the autocovariance func­
tion. The autocovariance function reflects the spatial structure 
of variability in soil property measurements, and this structure 
differs depending on how the data scatter is divided between 
soil variability and noise. Each component has a characteristic 
signature that can be observed in the autocovariance function. 

As a good approximation, measurements taken in the labora­
tory or field can be modeled as 
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z=x+e (10) 

where z is the measurement, x is the real soil property, and e is 
random measurement error. After some algebra, the auto­
covariance function of the set of measurements turns out to be 
related to the autocovariance functions of x and e by 

(11) 

The autocovariance of x equals V x at o = 0, and approaches 0 
as O increases. The autocovariance of e, on the other hand, 
equals Ve at o = 0, but equals 0 for any o 'I: O; that is, it is a 
spike. This is a result of the assumption that the error is 
independent from one test to another. Thus, for o 'I: 0, the 
covariance of the e's is zero. Therefore, by extrapolating the 
observed autocovariance function back to the origin, an esti­
mate of V x and Ve is obtained directly. For typical in situ 
measurements on soil, measurement error variances have been 
found to contribute anywhere from 0 to as much as 70 percent 
of data scatter Baecher et al. (2). 

Systematic Error 

Systematic error in the statistical estimation of soil parameters 
is directly calculated from statistical theory. The most signifi­
cant of these errors is that in the mean of the soil property in the 
soil mass. As an approximation, although a robust one, the 
variance of the statistical error in this mean is 

(12) 

where n is the number of measurements. Note, although ran­
dom measurement error can be eliminated from the data scatter 
variance to yield a reduced uncertainty, it does contribute to 
statistical error. Its effect on statistical error can only be 
lessened by making more measuremenls. The statistical error in 
other parameters usually has only second-order effect on pre­
dictions. 

The last of the major sources of uncertainty, measurement 
bias, is the most difficult to estimate. Usually, the only way to 
estimate this component is by comparison of predicted with 
observed performance or by field-scale experiments. This has 
been done by Bjerrum (3) for field-vane strengths of normally 
consolidated clay, and has been attempted by other researchers 
for other applications. Such an approach aggregates a large 
number of uncertainties or biases together, including those due 
to inaccuracies of theory and method of analysis. Thus, mea­
surement bias and model bias are usually inseparable. 

In Bjerrum's work, the joint effect of bias in field-vane data 
and bias in 2D modified Bishop stability analysis leads to a 
correction factor, µ, which is the ratio of back-calculated, 
undrained strength to measured FV strength. The variation of 
back-calculated µ's about their mean is summarized in a vari­
ance, V µ> which expresses the uncertainty of the bias term. 

Estimating Autocovariance 

In this section only a simple and often used approach to 
estimating autocovariances, the moment estimate, is consid-
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ered. For readers with greater interest, a more detailed discus­
sion of statistical aspects of estimating autocovariance, includ­
ing maximum likelihood techniques, is presented by DeGroot 
(4). 

Consider the simple case of measurements at equally spaced 
intervals along a line, as for example in a boring. Presume that 
the measurements x = (x1, .. .,xnJ are uncorrupted by measure­
ment error. The observed autocovariance of the measurements 
at separation, o, is 

(13) 

where n0 = the number of pairs of data at separation distance, Ii. 
This is called the sample autocovariance and is used as an 

estimator of the real autocovariance, Cx(o), for separation 
distance, O. Statistically, cx(8) is a moment of the sample data 
that is used to estimate the corresponding moment of the spatial 
model. Thus, Cx(O) is said to be a moment estimator of Cx(li), 
just as the sample variance is said to be a moment estimator of 
the real soil variance, V x· 

In the general case, measurements are seldom uniformly 
spaced and, at least in the horizontal plane, seldom lie on a line. 
For such situations the moment estimator of the autocorrelation 
function can still be used, but with some alteration. The most 
common way to accommodate nonuniformly placed measure­
ments is by dividing separation distances into bands, and then 
taking averages of Equation 13 within those bands. This intro­
duces some bias to the estimate but for most engineering 
purposes it is sufficiently accurate. 

Combining Uncertainties in a 
Design Profile 

The total uncertainty in engineering properties at a point in the 
soil profile reflects the combination of data scatter and systema­
tic error. Algebraically, this total uncertainty, measured as a 
variance, is expressed as 

(14) 

where the four components of variance summarize, respec­
tively, the four contributions of uncertainty: 

Vl = Variance of the spatial variability, (15) 

V2 = Variance of the measurement noise, (16) 

V3 = Variance of the statistical error, and (17) 

V4 =Variance of the measurement and model bias. (18) 

For modeling purposes it is often convenient to draw a 
design profile of soil properties versus depth. About this profile 
are drawn two sets of standard deviation envelopes. One set 
describes point-to-point variability around the mean. This is the 
contribution of spatial variability. The other set describes 
uncertainty in the mean itself. This is the contribution of 
systematic error. 
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UNCERTAINTY IN CALCULATED PREDICTIONS 

The preceding discussion used means, standard deviations, and 
correlations to describe best estimates and uncertainties about 
soil properties. For engineering analysis, these mean standard 
deviations and correlations must be accounted for in calcula­
tions. This leads to performance predictions that are described 
by means, standard deviations, and correlations. 

The mathematics needed for relating a second-moment 
description of soil properties, loads, and other input parameters 
to a corresponding second-moment description of performance 
predictions are relatively uncomplicated. Schematically, the 
procedure is shown as follows: 

Soil Parameters 
-L 

Loads~ I M 0 D E L I ~ Prediction 

A model is chosen for calculating performance. For example, 
this might be Terzaghi 's formula for predicting the bearing 
capacity of a footing. Next, means, standard deviation, and 
correlations are evaluated for all required input parameters. 
These means, standard deviations, and correlations are then 
translated through the model to determine the resulting means, 
standard deviations, and correlations on performance predic­
tions. 

Best Estimate (Mean) Prediction 

Operationally, best estimates of soil properties are translated 
through a model using a first-order approximation. This is 
simply a linear approximation to the model in the vicinity of 
the best estimates of the soil parameters. Mathematically, the 
calculation of some performance prediction y based on a soil 
parameter x can be expressed as a function 

y = g(x) (19) 

By taking a Taylor's series expansion of g(x) at the point IIlx 
and then truncating all but the first two (i.e., linear) terms, the 
tangent plane at IIlx is obtained. For most geotechnical pur­
poses this linearization is sufficiently accurate. Applying rudi­
mentary probability theory leads to the convenient result 

(20) 

where : indicates first~order approximation. In words, the 
mean .or best estimate of the prediction y is the function of the 
mean or best estimate of the parameter x. This is the normal 
deterministic solution, using best-estimate soil properties as 
input. 

Uncertainty (Standard Deviation) 
in Predictions 

By similar reasoning, standard deviations on input soil proper­
ties x may also be translated through a model y = g(x) to find a 
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corresponding standard deviation on the prediction y. The first­
order approximation leads to the relation 

Sy = (dy/dx) 8x (21) 

where the derivative dy/dx is an influence factor. Jn words, the 
standard deviation of the prediction y is the product of the 
standard deviation of the parameter x and an influence factor 
equal to the derivative of y with respect to x. The relation is 
exact when g(x) is linear. 

When the prediction y depends on a set of parameters, x = 
[ x1,. .. ,xn}, the equivalent forms of Equations 20 and 21 are 

(22) 

(23) 

Note, when ~xj are mut~all~ independent, Cxi,xj = 0 for i;i1: j 
and Cxi,xj = Sx = V x for 1 = J, thus 

(24) 

Two special cases deserve note because they are so common. 
When y is a linear combination of a set of independent param­
eters, y = r~ xi, 

(25) 

when y is a power function of a set of independent parameters, 
y = Il~xibi, 

0 2 = r b7 0 2. Y l XI 
(26) 

Equation 26 pertains to small coefficients of variation, for 
example, less than 0.2 to 0.3. 

Reliability Index, p 

In traditional geotechnical analysis, the adequacy of a design is 
expressed by a factor of safety, defined as the ratio of capacity 
to demand 

F = capacity/demand (27) 

The factor of safety makes no allowance for uncertainty. When 
performance is predicted by both a best estimate and a measure 
of uncertainty, a new and more complete safety index can be 
used. One such index that combines both best estimate and 
uncertainty is the reliability index, P 

(28) 

where Yr is the limiting state or failure value for the predicted 
performance, y. In essence, p measures the number of standard 
deviations separating the best estimate of performance from 
some unacceptable value. If the predicted variable, y, were, for 
example, a factor of safety against bearing capacity failure of a 
footing, then my = mean of F, Sy = standard deviation of F, and 
Yr= 1.0. 

A lower value of p implies lower reliability. A p = 0 means 
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that the best estimate of performance just equals the failure 
criterion, that is, my would equal Yr· P > 0 means that my> Yr 
because the standard deviation is always positive. Typical 
values of p for common geotechnical design range from about 
2 to 3. The reliability index is a useful measure of safety 
because it balances the safety implied by a best estimate of 
facility performance against the uncertainty in that prediction. 
Thus, p can distinguish between the case of high estimated 
factor of safety with correspondingly high uncertainty and the 
case of a low estimated factor of safety with correspondingly 
low uncertainty. Thus, P allows a more comprehensive balanc­
ing of design conservatism against uncertainty than does FS 
alone, and can lead to significant economies on large projects 
(5). The use of p rather than FS also allows design conserva­
tism to be quantitatively related to the extent of site characteriz­
ation and testing, thereby allowing a balance to be struck 
between information gathering and conservatism. 

SETTLEMENT OF SHALLOW FOOTINGS 
ON SAND 

The importance of uncertainties and errors is well illustrated by 
a field case involving shallow footings (6). The case especially 
shows the usefulness of separating random measurement error 
from spatial variability when making predictions. The site 
overlies approximately 10 meters of uniform windblown sand 
on which a large number of footings were constructed. The site 
was characterized by SPT blow count measurements. Predic­
tions were made of settlement, and subsequent settlements 
were measured. 

Spatial Variation and Noise in 
Settlement Predictions 

Inspection of the standard penetration test (SPT) data and 
subsequent settlements reveals an interesting discrepancy. 
Because footing settlements on sand tend to be proportional to 
the inverse of average blow count beneath the footing, from 
Equation 26 it would be expected that the coefficient of varia­
tion of the settlements be approximately thal of the vertically 
averaged blow counts. Mathematically, settlement is predicted 
by a formula of the form 

p oc (~q/N) g(B) 

where 

p = settlement, 
~q = net applied stress at the base of the footing, 
N = average corrected blow count, and 

g(B) = a function of footing width. 

Therefore, from Equation 26, 

(29) 

(30) 

but it is not. The coefficient of variation of the vertically 
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averaged blow counts is about 0.50; the coefficient of variation 
of the settlements is only 0.37. Why the difference? 

The best explanation for this apparent inconsistency is found 
in estimates of measurement noise in the blow count data. 
Figure 1 shows the horizontal autocorrelation function for the 
blow count data. By extrapolating this function to the origin, 
the noise (or high frequency) content of the data is estimated to 
be about 50 percent of the data scatter variance. This means 
that 

(llsoi1)2 = (Qdata)2 (0.5) 

= (0.35)2 (31) 

which is close to the observed variability of the settlements. 

Calculating Footing Settlement 

Footing settlement can be predicted by any of a number of 
equations. Peck and Bazaara 's equation is a modification of the 
Terzaghi and Peck upper envelope 

p = [(2Aq/mN) (2B/l + B)2 (1 - 1/4 D/B)] (32) 

where 

p = settlement (inches), 
~q = allowable applied stress (TSF), 

mN = (vertically) averaged corrected blow count, and 
B = ff)oting width (ft). 

Water table elevation is ignored. The term involving D/B, 
where D = embedment depth, is a depth correction factor. In the 
present case D/B = 0.5. For square footings of design width B = 
10 ft, the best estimate of p at the allowable stress of 3 TSF (6 
ksf) is shown in Figure 2. 

Spatial Component of Settlement 
Uncertainty 

The variance of p due to uncertainty in mN is calculated by 
noting that p is inversely proportional to mN. Therefore, from 
Equation 26 

(33) 

mN is the average blow count within a depth B of the footing 
and thus its variance and coefficient of variation are less than 
those of the point-by-point blow counts, N. For this site, blow 
counts are taken every 5 ft, thus mN is the average of two 
measurements. As such, from Equation 12, V mN = V N/2, and 
Cov mN = .,J 1/2 QN = (0.71) (0.44) = 0.32. Therefore, QP is 
approximately 0.32. Alternately, Equation 21 could have been 
used to find the same result with more effort. 

The coefficient of variation of p calculated above is that 
responding to spatial variation in the SPT data. This magnitude 
of variation should be observed among the various footings 
around the site. In comparison, the observed values of total 
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settlements for 268 footing at this site have a mean of about 
0.35 ft, and a standard deviation of 0.12. Thus, np = 0.34. 

Systematic Component of Settlement 
Uncertainty 

site to site. For Equation 32 comparison data of predicted 
versus observed settlements yield a mean bias (2) of mb = 1.46 
and a standard deviation of sb = 1.32, where b = observed 
settlement and predicted settlement. Correcting the earlier esti­
mate for this model bias, 

(34) 
Jn addition to spatial variability, the limited number of borings 
causes statistical error in the prediction of average settlement. 
With 50 borings and hence 50 SPT measurements at any 
elevation, the statistical error in the estimated mean blow count 
at any elevation in the upper levels is VmN ,;,, V N/50. This 
reflects uncertainty on the average settlement of all the footings 
at the site. 

where lI1p is the corrected mean settlement The variance of the 
corrected settlement is found using Equation 24 as 

(35) 

The settlement model itself introduces bias that differs from 
The poor correlation of the settlement model to actual footing 
performance introduces a large model error if data are unavail-
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FIGURE 2 Calculation of footing settlement. 
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able for calibrating the model to a particular site. This model 
error is difficult to divide into scatter and systematic parts 
because data of the type used in Figure 1 are mixtures from 
many sites and model tests. However, the calculations in Figure 
2 attest to the importance of model uncertainty in settlement 
predictions. 

Jn service, the footings were exposed only to 40 to 70 
percent of the allowable load used for predicting settlements. 
Also, footing dimension and embedments varied. Therefore, 
the mean predicted settlement and the mean observed are not 
comparable. However, because Equation 30 is multiplicative, 
np should be unaffected by these differences. 

CONCLUSION 

The purpose of error analysis is to (a) identify the sources of 
uncertainty in engineering calculations, (b) estimate the magni­
tude of error contributed by each source, and (c) assess the 
confidence that should be attached to a calculated prediction. 
The methodology for perfonning error analyses is uncompli­
cated, and its routine use fosters improved quality control and 
reliability. 
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