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include several that fall in the category of a conflict measure 
rather than an exposure measure. It is recommended that future 
research closely examine the exposure versus conflict issue as 
well as the sensitivity of the resulting accident rate expressions 
to typical countermeasures. 
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Demonstration of Regression Analysis with 
Error in the Independent Variable 
RICHARD M. WEED AND RICARDO T. BARROS 

Regression analysis ls rrequently used in the engineering field 
to develop mathematical models ror a wide variety of applica
tions. or the several assumptions upon which regression theory 
Is based, one of the most fundamental Is that the X-values are 
known exactly and that any error Is associated only with the 
Y-measurements. Because this Is not the case for many engi
neering applications, a study was conducted (a) to determine 
the magnitude of this problem and (b) to develop and test a 
software package that Incorporates a theoretical solution 
found In the literature. Computer simulation Is used to demon
strate both the seriousness of the problem and the efrectlveness 
or the solution. An example hased on early-strength tests of 
concrete Is presented. 

Many engineering applications require the development of a 
mathematical model (equation) to characterize some physical 
relationship. Examples include those shown in Table 1. 

In the first example, the objective is a reliable early predictor 
of the 28-day strength of concrete, a measure upon which many 
acceptance procedures are based. The objective of the second 
example is to replace a costly and time-consuming subjective 
rating procedure with a simple mechanical device. In the third 
example, a relationship is sought that will become an integral 
part of a pavement management system. 

New Jersey Department uf Transportation, 1035 Parkway Avenue, 
Trenton, N.J. 08625. 

The variable to be predicted or estimated is placed on the 
Y-axis and an equation of the form y = f(x) is desired. The 
equation may be linear, quadratic, exponential, or any other 
appropriate form. The analyst, from his understanding of the 
physical process, will often know the correct form in advance. 
In other cases, it may be necessary to let the data dictate the 
form. 

The desired relationship is often derived empirically from a 
set of X,Y-data values by using the technique of least squares 
(1) as shown in Figure 1. The procedure, invisible to the analyst 
when executed by a computer program, consists of solving for 

TABLE 1 PHYSICAL RELATIONSHIPS CHARACTERIZED BY 
MATHEMATICAL MODELS 

Characteristic of 
Interest 

X-Data (Independent 
Variable) 

Y-Data (Dependent 
Variable) 

Compressive strength Seven-day test results Twenty-eight-day test 
of concrete results 

Rating of highway Output of mechanical Average rating of a 
pavement roughness- team of panelists 
serviceability measuring device 

Rating of highway Cumulative axle 
pavement loads 
serviceability 

Current rating of 
serviceability 
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FIGURE 1 Concept of the ordinary least-squares technique. 

the line that best fits the data. When ordinary least squares is 
used, the best fit is defined as that line of the chosen form that 
minimizes the sum of the squared residuals in a direction 
parallel to the Y-axis. 

In carrying out this procedure, the user makes several the
oretical assumptions, one of the most fundamental of which is 
that the X-values are known exactly and that any error of 
measurement is associated only with the Y-values. Because it is 
often impossible or impractical to achieve this idealized condi
tion in practice, a study (2) was undertaken (a) to investigate 
the effect of failing to satisfy this assumption and (b) to 
develop and test a software package that incorporates a the
oretical procedure for dealing with X-error (3). Linear models 
arc addressed because only the linear solution of the X-error 
problem has been published to date. 

USE OF COMPUTER SIMULATION 

In order to demonstrate the extent of the X-error problem and 
the effectiveness of the solution, a method was required to 
observe and quantify the accuracy and precision of the regres
sion estimates. This can readily be accomplished with compu
ter simulation by performing the following steps: 

1. Randomly generate a bivariate normal X,Y-data set with 
known regression (population) parameters: 
(a) intercept (~0), 
(b) slope (~1), and 
(c) residual error (<'JY"). 

2. Include a fixed amount of X-error, either in absolute terms 
or as a percentage of <'Jyx· 

3. Use the randomly generated data to estimate the regres
sion parameters: 
(a) intercept (B0), 

(b) slope (B1), and 
(c) residual error (SY"). 

4. Repeat the entire process many times in order to compare 
the distributions of the regression estimates with the 
known parameters. Ideally, the sampling distributions of 
the estimates should be centered on the true population 
parameters and have relatively narrow dispersions. 

This technique can be used to provide a very dramatic 
demonstration of the bias introduced by error in the X-variable 
and the conditions that accentuate it. It will also be used to 
demonstrate the effectiveness of the procedure developed to 
overcome this problem. 
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TABLE 2 EXAMPLES OF BIAS INTRODUCED BY THE PRES
ENCE OF X-ERROR 

Regression Estimates Obtained by 
Ordinary Least Squares for Selected 

True 
Levels of X-Error" 

Parameter Value 0 25 50 75 100 

Intercept 100 100.14 108.11 129.25 160.81 200.23 
Slope 10 10.00 9.84 9.41 8.78 8.00 
Residual error 5 4.93 13.21 24.62 35.08 44.79 

NoTE: Results obtained by computer simulation with 1,000 replications 
of 30 data points spannin& the ranae between approximately X = 30 and X 
=70. 
0X-error is measured as the ratio cr,,,Jcr:P.' e;ii.pressed as a percentage, in 
which cr.a represents the error in individual X-measurcments. 

DEMONSTRATION OF THE PROBLEM 

Table 2 has been prepared with dimensionless data to demon
strate the detrimental effect that even a moderate amount of 
X-error can have under certain conditions. It may be observed 
that when there is noX-error, the estimated values (averages for 
1,000 replications) of all three regression parameters are 
extremely close to the true population values. When the 
amount of X-error is as little as 25 percent of the Y-error (<ryx), 
it may be seen that a substantial amount of bias has been 
introduced in the estimates of both the intercept and the 
residual error. As the degree of X-error increases, all three 

INCREASE 

IN APPARENT 

Y ERROR 
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TABLE 3 EFFECT OF SLOPE ON THE DEGREE OF BIAS · 
INTRODUCED 

Regression Estimates Obtaine.d by 
Ordinary Least Squares for Fixed 

True 
X-Error"and Selected Levels of Slope 

Parameter Value 0.0 0.5 1.0 5.0 10.0 

Intercept 100 99.94 105.14 109.95 150.26 200.23 
Slope _b 0.00 0.40 0.80 3.99 8.00 
Residual error 5 4.95 5.44 6.69 22.58 44.79 

NoTB: Results obtained by computer simulation with 1,000 replications 
of 30 data points spanning the ranae between approximately X = 30 and X 
= 70. 

aThe level of X-error is fixed al 100 percent (cr"" = cr,.., in which cr_.. 
represents the error in individual X-measurements). 

bvariable (values given in column heading~). 

regression parameters begin to show considerable bias. When 
the X-error and the Y-error are approximately equal-a fairly 
common situation in actual practice-the regression estimates 
differ substantially from the true population parameters. 

It should be noted that this example was chosen to dramatize 
the potentially serious nature of the X-error problem. Although 
the three population parameters (~0 = 100, ~1 = 10, <ryx = 5) are 
not extreme in any sense, the effect is pronounced because the 
slope is fairly steep. Figure 2 presents a conceptual illustration 
of the effect of the slope in translating X-error into apparent 
Y-error, error that the ordinary least-squares procedure 
attributes solely to the Y-variable. The examples in Table 3 

STEEPER SLOPE 

X ERROR 

FIGURE 2 Effect of slope on the translation of X-error into apparent 
Y·error. 



Weed and Barros 

funher demonstrate this effect. Viewed collectively, the exam
ples in Tables 2 and 3 provide an empirical indication of the 
conditions that tend to influence the magnitude of the X-error 
problem: the ratio of X-error to Y-error and the slope of the 
regression line. 

MANDEL'S SOLUTION 

A theoretically derived procedure for avoiding the bias in the 
regression estimates due to X-error has been published by 
Mandel (3). Use of the procedure requires one additional bit of 
information that is usually readily available or readily obtain
able: the ratio of the variances associated with the X- and 
Y-measurements. Although the mathematical procedure is 
somewhat involved, the concept is easy to visualize. Ordinary 
least squares minimizes the sum of the squared residuals in a 
direction parallel to the Y-axis. In the presence of X-error, the 
minimization process is performed by Mandel's procedure in a 
direction oblique to the X- and Y-axes, the exact angle being 
determined primarily by the relative magnitude of the X- and 
Y-error. 

In order to test the effectiveness of Mandel's method, it was 
applied to the same data sets used to develop Table 2. The 
results are reported in Table 4 and the values from Table 2 are 
repeated for ease of comparison. It can be seen from Table 4 
that Mandel's method is extremely effective in removing the 
bias that exists when an application with X-error is analyzed by 
ordinary least squares. Its only discernible weakness in this 
example is a possible small downward bias of the estimate of 
the intercept when the X-error is quite large. 

To judge whether this apparent bias was real, the simulation 
program was modified to print out a histogram and elementary 
statistics for 1,000 intercept estimates. The X-error was held 
constant at 100 percent of oyx· Although not strictly applicable 
because the distribution of intercept estimates was somewhat 
skewed, a t-test indicated that the average intercept of 93.06 
was highly significantly different (a < 0.001) from the true 
value of 100.0. Although it is not obvious from the results in 
Table 4, a similar test suggests that the slope estimates may also 
be biased to a very small degree. Consequently, although Man-
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del's method appears to be very effective and is far superior to 
ordinary least squares, it must be concluded that it is not totally 
unbiased in all cases. 

Figure 3 shows in a graphical way the effects that have been 
observed in Table 4. The distributions shown were drawn from 
histograms generated by the same simulation programs used to 
develop Tables 2-4. Mandel's method can be seen to be essen
tially unbiased in that the means of the distributions generated 
by that method are very close Lo the true population parameters. 
In marked contrast, the distributions produced by ordinary least 
squares are shifted substantially away from the true parameters. 
Another important observation in Figure 3 is that the distribu
tions for the intercept and the slope obtained with Mandel's 
method are only slightly more dispersed than those obtained by 
ordinary least squares. This indicates that a substantial gain in 
accuracy has been achieved with only a slight loss of precision. 
For the residual error, Mandel's method is both more accurate 
and more precise. 

An interesting feature of Mandel's method is that, unlike the 
least-squares technique, the same regression line will be 
obtained regardless of which variable is considered to be inde
pendent (X) and which is dependent (Y). Furthermore, the 
degree of uncenainty associated with predictions made by this 
method is the ~ame for either choice of variables (3, p.9). This 
property conveniently avoids a controversial aspect of the cal
ibration application, the need to work backward through the 
regression procedure to estimate what value of X gave rise lo an 
observed value of Y. 

Another series of computer simulation tests was performed 
by using the appropriate procedures for computing interval 
estimates for the intercept, slope, and Oyx· A level of confidence 
of 1 - a = 0.95 was selected and the number of times that the 
interval estimate actually contained the true population param
eter was counted. For 1,000 replications, the empirically 
observed results should fall within the range of approximately 
0.95 ± 2(((0.95)(0.05))/1,000)112:: 0.95 ± 0.014 when the 
interval estimation process is working properly. It can be seen 
from the results in Table 5 that, even for small amounts of 
X-error, the interval estimates computed by ordinary least 
squares contain the population parameters substantially less 
often than desired In contrast, all of the interval estimates 
computed by Mandel's method are satisfactory. 

TABLE 4 COMPARISON OF MANDEL'S METIIOD WITH ORDINARY LEAST 
SQUARES 

Regression Estimates Obtained for Selected Levels 

True of X-Error° 

Parameter Value Method 0 25 50 75 100 

Intercept 100 Mandel 100.18 100.19 98.34 96.69 93.06 
OLS 100.14 108 11 129.25 160.81 200.23 

Slope 10 Mandel 10.00 9.99 10.03 10.06 10.14 
OLS 10.00 9.84 9.41 8.78 8.00 

Residual error 5 Mandel 4.93 4.94 4.97 4.94 4.97 
OLS 4.93 13.21 24.62 35.08 44.79 

Norn: Results obtained by computer simulation with 1,000 replications of 30 dat11 points spanning the 
range between approximately X = 30 and X = 70. OLS = ordinary least squares. 

ax.error is measured as the ratio axJayx• expressed as a percentage, in which CJ.a represents the error in 
individual X-measuremcnts. 
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FIGURE 3 Comparison of distributions of regression estimates. 

TABLE 5 EFFECT OF X-ERROR ON INTERVAL ESTIMATES 

Desired Empirically Observed Confidence Levels 

Confidence at Selected Levels of X-Brror'1 

Parameter Level Method 0 25 50 75 

lnterc'!pt 0.95 Mandel 0.950 0.938 0.954 0.939 
<Po== 100) OLS 0.951 0.898 0.768 0.548 

Slope 0.95 Mandel 0.948 0.941 0.956 0.948 
<P1 = 10) OLS 0.946 0.889 0.155 0.534 

Residual error 0.95 Mandel 0.955 0.956 0.963 0.947 
(O")l.l = 5) OLS 0.955 0.0 0.0 0.0 

400 

15 

70 

100 

0.953 
0.321 
0.952 
0.301 
0.959 
0.0 

NoTB: Results obtained by computer simulation with 1,000 replications of 30 data points spanning the range 
between approximately X = 30 and X = 70. OLS = ordinary least squares. 

ax-error is measured as the ratio O"x;)O"yx• expressed as a percentage, in which cr"" represents the error in 
indivi<iual X ·measurements. 
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FIGURE 4 Typical regression results with concrete strength data. 

EXAMPLE BASED ON CONCRETE STRENGTH DATA 

The following example is based on concrete strength data 
collected from a conslruction project in New Jersey. It is a 
contrived example in that the data set that is used was randomly 
generated from a population having the same statistical param
eters as those observed in the field. This approach provides a 
known control against which the results obtained by the two 
methods may be compared. Otherwise, it could only be 
observed that the results obtained by the two methods were 
distinctly different and it would not be known how close either 
one came to estimating the true population parameters. 

In order to use Mandel's procedure, the ratio of the X- and 
Y-error variances must be known or assumed. Because both the 
7-day and 28-day strengths are at relatively high levels, it has 
been assumed that the measurement error is the same for both 
sets of data. Therefore, the variance ratio to be entered into the 
Mandel procedure is 1.0. 

The data points and regression results are shown in Figure 4. 
These results are typical in that they are examples of central 
values of the distributions shown in Figure 3. Like the dimen
sionless examples in Table 4, ordinary least squares has pro
duced a considerably biased estimate, whereas Mandel's 
method has produced an estimate very close to the !rue location 
of the line. 

SUMMARY AND CONCLUSIONS 

Regression analysis is frequently used in the engineering pro
fession to develop mathematical models for many different 
applications. In regression theory the X-values are assumed to 
be known without error, a requirement that often cannot be 
met. Computer simulation was used to demonstrate that under 
certain relatively common conditions, regression estimates 
obtained by ordinary least squares can be seriously in error. 
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Conditions that appear to warrant concern are (a) X-error 
approaching the level of Y-error combined with moderate 
degrees of slope or (b) lesser degrees of X-error combined with 
greater degrees of slope. 

It was also demonstrated by computer simulation that Man
del's method. which might be tenned "oblique least squares" 
because of the manner in which it minimizes the sum of 
squared residuals, is extremely effective at removing most of 
the bias introduced by error in the X-variable. Figure 3 and 
Tables 4 and 5 clearly show that, in general, Mandel's method 
provides substantially more accurate results than ordinary least 
squares and Figure 4 illustrates this fact with a specific example 
based on concrete strength tests. The complete theoretical 
development, along with a more quantitative guideline to deter
mine when it is advisable to use it, is contained in the original 
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source document (3). The FORTRAN coding necessary to 
apply the procedure is contained in the project report (2). 
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Validation of a Nonautomated Speed Data 
Collection Methodology 
FRED R~ HANSCOM 

The objective of this research was to develop a vaUdated spot 
speed study procedure that does not rely on automated equip
ment. The field study procedure applied a varlety of speed 
collection techniques and compared results against baseline 
speeds obtained with reliable pavement -lnstrumentatJon. A 
recommended manual-timing technlque was based on 
observed accuracies with various vehicle-selection strategies, 
site conditions, sample sizes, observation period lengths, and 
observer characteristics. 

The conduct of spot speed studies with nonautomated equip
ment involves a variety of methodological considerations (J). 
Although such studies have long been used in traffic engineer
ing, a number of factors have hampered their valid application 
(2). Among these factors are observer vehicle-selection bias 
(e.g., the human ability to select a truly random sample), 
impact of vantage point (e.g., cosine error associated with radar 
measurement), technique reliability (e.g., stopwatch timing 

Transportation Research CoipOration, 2710 Ridge Road, Haymarket, 
Va. 22069. 

measurement error), and observer human factors (e.g., experi
ence, fatigue) . 

The objective of this research was to address the effects of 
the foregoing factors in order to develop a spot speed data 
collection procedure that does not rely on automated equip
ment. The field study procedure involved applying a variety of 
speed collection techniques and comparing results against 
baseline speeds obtained with reliable pavement instrumenta
tion. A recommended manual timing technique was based on 
achieved accuracies with various vehicle-selection strategies, 
site conditions, sample sizes, observation period lengths, and 
observer characteristics. 

VEHICLE-SELECTION STRATEGIES 

Basic Application 

Specific techniques were evaluated that controlled observer 
bias in selecting vehicles for speed measurement. Thus, two 
speed collection methods (radar and manual timing) were 
applied by using the following vehicle-selection strategies: 




