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Improved Techniques for Freeway 
Surveillance 

HAROLD J. PAYNE, DAVID BROWN, AND STEPHEN L. COHEN 

Surveillance of traffic conditions using presence detector data 
Is essential for the operation of demand-responsive freeway 
control. Current operational practice alms to produce, by ex­
tremely simple means, estimates of volume and occupancy. An 
important step in the orderly development of metering strat­
egies is the recognition that the processing of surveillance data 
should produce estimates of the traffic system states, namely, 
traffic densities and space-mean speeds in designated freeway 
sections. Several new techniques for freeway surveillance using 
modern estimation theory are presented. The approach 
adopted here is suboptimal using steady-state Kalman filters. 
The outstanding features of these estimators are their simple 
structure, light computational burden, and adequate perfor­
mance to support effective demand-responsive control. The 
microscopic simulation program INTRAS was used to gener­
ate detector data to test the estimators. 

Surveillance of traffic conditions using presence detector data 
is essential for the operation of demand-responsive freeway 
control. An important step in the orderly development of meter­
ing strategies is the recognition that the processing of sur­
veillance data should produce estimates of traffic system states, 
specifically, traffic densities and space-mean speeds in desig­
nated freeway sections. 

In contrast, current operational practice aims to produce, by 
extremely simple means, estimates of volume and occupancy. 
The principal defect of this approach is that occupancy depends 
on traffic operational and surveillance system hardware fea­
tures. Furthermore, the approach fails to extract as much infor­
mation as is available through more sophisticated processing. 

Some new techniques for freeway surveillance using modem 
estimation theory are presented in this paper. Past state estima­
tion efforts (1-5) have centered around developing optimal 
estimators. For example, Gazis and Szeto (5) developed an 
optimal estimator using traffic counts and speed measurements 
based on Kalman filter theory. The estimation approach 
adopted here is suboptimal using constant gain Kalman filters . 
Furthermore, Gazis and Szeto depended on the volume and 
occupancy measurements typically generated in operational 
surveillance systems. The performance improvements yielded 
are relative to current operational practice and entail a light 
computational burden and simple structure as compared to 
optimal state estimation methods. These estimators are able to 
accommodate the nonlinear state and measurement equations 
associated with freeway state estimation and produce adequate 
suboptimal performance to provide density and speed estimates 
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of sufficient quality to enable effective demand-responsive 
control. 

The relationship of the state estimation surveillance function 
to the demand-responsive control problem is shown in Figure 1 
where a control approach using a linear regulator from optimal 
control theory has been adopted (6). The regulator compares 
state estimates obtained from the surveillance software to ex­
pected traffic states to generate adjustments to the ramp meter­
ing rates. 

The development and testing of improved algorithms to 
support the surveillance functions associated with demand­
responsive ramp control are discussed in the remainder of this 
paper. First, the surveillance problem is defined in terms of the 
aggregate variables, dynamic equations, and measurement ob­
servables associated with a macroscopic freeway representa­
tion. The dynamical equations used by the estimators are the 
same equations used by the macroscopic simulation program 
FREFLO (7). Then, the algorithms for the improved state 
estimators are presented. A simple estimator is used for full­
count detector stations with a more sophisticated estimator 
used in the case of partial-count detector stations. Lastly, the 
results of estimator testing on data sets generated by the micro­
scopic simulation program INTRAS (8) are discussed. 

SURVEILLANCE PROBLEM 

The aggregate variables associated with the jth freeway section 
at time n are shown in Figure 2. The freeway segment is 
divided into sections defined by section boundaries at xi, j = 1, 
2, .. . N. The time period is divided into uniform time inter­
vals of length tJ..t. Within the jth section defined by the interval 
(xj-l• x), the following variables are defined. 

lj = 
tuj = 
pj = 

uj = 

number of lanes, 
section length (miles), 
section density at time n (vehicles per lane 
per mile), and 
section space-mean speed at time n (miles per 
hour). 

At the section boundaries, the following are defined: 

qJ-1 = section entry flow rate over time slice n 
(vehicles per hour), 

qj = section exit flow rate over time slice n 
(vehicles per hour), and 

nll 
Oj = section exit occupancy over time siice n 

(percent). 
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FIGURE 1 Relation of the surveillance state estimation function to demand­
responsive control using a linear regulator approach. 
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FIGURE 2 Aggregate variables. 

Where appropriate, the following are defined: 

f?N,11 = 
J 

f!FF,11 = 
J 

on-ramp flow rate over time slice n 
(vehicles per hour), and 
off-ramp flow rate over time slice n 
(vehicles per hour). 

This is the generic form of a section used by FREFLO (7). 
By definition, section boundaries coincide with detector station 
locations. Ideally, detector stations are located immediately 
upstream of on ramps and downstream of off ramps. In actual 
practice this may not be the case and more than one on or off 
ramp may exist in any given section. The FREFLO model may 
accommodate this situation by aggregating the effect of multi­
ple on or off ramps. In addition, the FREFLO model will 
include an auxiliary lane in the section lane count lj if the 
auxiliary lane is sufficiently long, relative to the section length, 
to have a pronounced effect on section dynamics. 

Dynamic equations for density and speed are needed for the 
estimators. These are the discrete-time macromodel equations 
included in FREFLO. The first equation expresses the conser­
vation of vehicles: 

Pt1 = pj + (Mll/!1.J1) 

X ( <17~11 + ff?N.n+l - qf!+l - ff?FF,11+1) 
J J J 

The second equation is the dynamic speed relationship: 

un+l = 
j 

u'! + M [-u'!(u'! - U:
1
.jtu) 

J J J 

- (l/"1/lx,) x (un. - u.(p'!)) 
J J 

- (KufKr) (P}+1 - Pj)/AxJ 

with boundary conditions u~ = u7 and PN+l = PN 
where 

"-., = 

relaxation coefficient (hours per mile), 
equilibrium speed for section j at density 
IY,', and 
aiiticipation coefficient (square miles per 
hour). 

(1) 

(2) 

Use of the equilibrium relation to relate flow to density and 
speed is also helpful: 

qtl = (1 - f3)lj P'j+l u;+1 (3) 

where f3j equals fraction of flow in section j, which exits the 
section via an off-ramp. 

Freeway surveillance systems typically make measurements 
of flows and occupancies at loop detector stations located along 
the freeway. Loop detectors are deployed on freeways in three 
basic configurations: full-count stations, partial-count stations, 
and speed traps. 
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F1GURE 3 Survelllance sectlonallzatlon of a segment of the Harbor Freeway 
showing full- and partial-count sections. 

A full-count station is a set of sensors placed at a given point 
on a freeway with one active detector in each lane. A partial­
count station contains active detectors in some, but not all, 
lanes. Obviously, full-count stations provide a more accurate 
account of flow and occupancy at a given point in a freeway 
than partial-count stations. A speed trap contains two closely 
spaced detectors in a single lane. The purpose of the speed trap 
is to allow direct measurement of speed, which enables estima­
tion of the reciprocal vehicle-sensor length (G-factor) that aids 
in density estimation. 

The basic surveillance scheme is shown in Figure 3. The 
freeway segment is divided into sections with boundaries de­
fined by detector count stations. For each individual section, a 
state estimator is used to estimate section density and space­
mean speed from volume and occupancy measurements. 

Given lj noisy measurements of vehicle counts per lane, zJ.:1, 

m = 1, 2, ... , lj, leaving section j over time lice n+l , the 
measurement equation for the volume leaving section j is 
formed as 

I; 
zi:i+t = L a. t'.'+1 = q:+1 + cx.~+1 
J m=I l·"' l·"' J J 

= (1 _ A.) /. nn+l un+I + ex."+! 
..,, J t'j j j 

where 

aj,m 

ex.~+! 
J 

= 
= 

mth lane exit flow rate measurement 
weighting factor (aj,m ~ 0), and 
exit flow rate measurement error, section j, 
time slice n+ 1. 

(4) 

The purpose of the weighting factors is to compensate for 
partial count detector stations (the number of lanes with active 
presence sensors less than 9. In this case, the weighting factors 
for the inactive lanes equal zero, and those for the active lanes 
are chosen to reflect the traffic distribution across the lanes at a 
given detector station. In the case of a fuH-cmmt detector 

station, the lj weighting factors across the lanes are all chosen 
to equal 1. 

Given 1
1
· noisy measurements of lane occupancy, ff.+1

, m = 
l·"' 

1, 2, ... , lj, leaving sectionj over time slice n+l, the mea-
surement equation for the occupancy in section j is formed as 

where 

= mth lane exit occupancy measurement 
weighting factor, Sf'..ction j (0 ~ bj,m !!. 1), 
the mean reciprocal vehicle-sensor length 
relating occupancy to density, and 

G = 

r+1 = 
J 

section occupancy measurement error for 
section j, time slice n+ 1. 

(5) 

Note thal the weighting factors bj.m are used for occupancy 
measurements to compensate for partial counl detector stations . 
This measurement equation conforms to the off-ramp place­
ment convention used by FREFLO and for surveillance testing 
on INTRAS data. In other words, if an off-ramp exists in a 
given freeway section it is located immediately upstream of the 
downstream section boundary. 

ESTIMATORS 

This section outlines the algorithms for the Single-Section 
Estimator (SSE), Multi-Section Estimator (MSE), and G-Fac­
tor Estimator (GFE). A complete development of these al­
goritl'i.ms is described elsewhere (5). 
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SSE 

The dynamic speed relation produces a model for a freeway 
segment consisting of coupled sections. In particular, the speed 
in a given section is modeled as a function of upstream speed 
and downstream density. Decoupling of the section parameters 
would allow a simple estimator to be used independently on 
each section. This is the approach used by the SSE. The 
conservation equation and standard equilibrium flow relation 
are used in lieu of the dynamic speed relation to yield a simple 
estimator depending only on first-order dynamics to estimate 
an individual section's density and speed independently of 
upstream or downstream parameters. 

The SSE is actually composed of three estimators. Each 
estimator is executed separately in the following order: flow 
estimator, density estimator, speed estimator. 

Assuming the volume measurement errors to be small in 
magnitude, zero mean, white, and mutually independent, a 
reasonable estimator for section volume is the weighted sum of 
the measured lane-vehicle counts. 

q~+l = t'+l 
J J 

qn+l - n+l 
j-1 - zi-1 

(6) 

(7) 

The density estimator is determined from the steady-state 
solution to the scalar Kalman filter (9). Using the conservation 
equation to model the density dynamics, the density estimator 
then has the form 

(8) 

where 

c'.'+l = (Mil· !!..x)(q?+1 + joN,n+l _ q?+l 
J J J J-1 J 

_ j.OFF,n+l ), 
J 

k = ph/(h2p + r) = steady-state gain, 
h = (1 - f3i)(ljGlj- 1) = measurement scalar, 
p = (q + (q2 + 4rq/h2)1fl)/2 = steady-state 

estimate error variance, 
r = var("( ~+I) = measurement error, and 
q = variarlce of model error. 

In Jazwinski's study (9), the first term of the right-hand side 
(RHS) is the previous density estimate; the second is the 
correction resulting from the net inflow into the section; the 
third provides a correction resulting from the discrepancy be­
tween the measurement and the previous density estimate. 

Finally, the speed estimator in the SSE simply uses the 
estimates of density and volume in the equilibrium relationship 
to predict the new speed as 

(9) 
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MSE 

Nonuniformities in traffic flow and partial-count surveillance 
stations present potential sources of errors in estimating traffic 
parameters. In particular, nonuniformities in traffic flow here 
mean discontinuities in the gross features of the traffic stream, 
for example, as associated with the passage of a shock wave 
generated by a traffic incident. An MSE has the potential to 
overcome these problems. 

A multi-section surveillance configuration for three con­
tiguous sections of the freeway is shown in Figure 4. Note that 
the borders of the center section are depicted as having partial­
count sensor stations. They could have equivalently been pic­
tured as full-count sensor stations with a nonuniformity in 
traffic flow occurring in the center section. This example shows 

D D 

D D D D 

D D 
PARTIAL FULL 
COO NT COO NT 
STATION STATION 

FIGURE 4 Multisection surveillance configuration. 

principally that the volume and occupancy information either 
entering or leaving this section is poor. If the SSE is used on the 
center section, poor estimates of section density and speed will 
result because they are derived from volume and occupancy 
measurements having large errors. The concept of the MSE is 
to couple the three sections together through the dynamic 
equations so that good-quality information at the full-count 
sensor stations can be used to augment the information in the 
center section, which has only partial-count stations. 

The MSE algorithm uses a constant gain Kalman filter to 
estimate section speeds and densities from noisy measurements 
of lane volumes and occupancies. The state consists of the 
densities and speeds for the N sections of the freeway segment 
of interest: 

(10) 

and the control consists of the m on-ramp flow rates in the 
freeway segment: 

,.., = tlON,n IVN,n IVN,n)T !:. v1· •Ji , ... •J; (11) 

where m SN. 
The state dynamics as defined by Equations 1 and 2 are 

nonlinear and may be linearized about a nominal state !_0 and 
control ~·· The resultant first-order perturbation equations in 
vector form become (6) 

&"+1 = A&" + Bfnl' + w" - - (12) 
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where 

St' = :x!' - x*' 
s;n = ? - ~·. 

A = matrix of state partial derivatives, 
B = matrix of control partial derivatives, and 

w" = mismodeling noise process. 

Similarly, the measurement equations as defined by Equa­
tions 4 and 5 are nonlinear and may also be linearized about 
nominal conditions: 

(13) 

where 

5,l"+l = 
H = 

( s:a11+l i:M+I s: 11+1 'O n+l)T 
VQI ' ••• 'VQN 'vzl ' ••• ' ZN ' 

matrix of measurement partial derivatives, 
and 

ss+1 = measurement of noise process. 

Note{~"} and{!!'} are assumed to be a mutually independent 
sequence of zero-mean, white, Gaussian noise with corre­
sponding covariance Q and R. 

Then, given the estimate at time n of the perturbation in the 
state o? =? - ~·. the MSE estimates pert-w-bations in the 
state at time n + 1 to be 

0!:+1 = AS!: + B5f' + K(5f+1 
- HA5? - HB'61f) (14) 

where 

K = PJlf(HPJlf + R)-1, the steady-state gain; and 
P = APAT - APJlf (HPJlf + R)·l HPAT + Q, the 

steady-state estimate error covariance. 

The state estimate at time n+ 1 may be recovered by adding 
the nominal state to the perturbation estimate: 

(15) 

The nominal state (of section densities and speeds) is defined 
as the steady-state freeway condition associated with a given 
demand level. It is produced by running FREFLO to steady 
state using the on-ramp rates produced by the allocator for a 
given demand level and the origin-destination distribution (6). 
The nominal state is assumed constant over a 30-min time 
horizon because demand levels typically will not change appre­
ciably over these time periods. 

Note that the MSE (Equations 14 and 15) implies a very 
light, real-time computational burden because the steady-state 
gain is computed off line. 

GFE 

One of the principal sources of error involved in estimating 
traffic parameters is an inaccurate determination of the mean of 
the vehicle-sensor length distribution or its reciprocal, the 
G-factor (4). The accuracy ?1it.'l which t..i.c G-factor is deter-
mined directly affects the accuracy of all traffic parameter 
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estimates involving density or speed. It is therefore essential 
that a means be devised to provide an accurate determination of 
the G-factor. Moreover, it should be recognized that the G-fac­
tor will vary by location, even by lane, and with time will 
reflect both variations between detectors and variations in the 
composition of traffic, particularly in terms of the fraction of 
heavy-duty vehicles. 

It is not possible to determine the G-factor in any direct way 
from data from a single presence detector. How.ever, by using 
data from a pair of presence detectors (from a speed trap) it is 
possible to make measurements of individual vehicle-sensor 
lengths from which an estimate of the G-factor may be 
computed. 

The G-factor is a scaled version of the reciprocal mean 
length of the vehicle-sensor length distribution. B_ecause it is 
recognized that the mean vehicle-sensor length A. should be 
allowed to vary with time, it may be computed as a moving 
average over N samples. Given measurements (estimates) of 
the vehicle-sensor lengths, l(i), i = 1, 2, ... , associated with 
a particular speed trap, the moving average is specified by 

II " 
~n; N) = (l/NJ I A. (i), n ;;:.: N 

i=n-N+l 
(16) 

This formulation suggests that distinct G-factors can be deter­
mined for distinct speed traps corresponding to different lanes 
on the freeway. 

The estimate of the G-factor after the nth sample at the 
particular speed trap is then 

G(n; N) = 52.8/ ~ (n; N) (17) 

One disadvantage of using a moving average to estimate I, 
as in Equation (16), is the necessity of storing N measurements. 
This problem may be overcome by using a recursive form for 
the estimator (6). 

TEST RESULTS 

The results of surveillance algorithm testing using detector data 
produced by the microscopic traffic simulation program IN­
TRAS (8) are described next. In lieu of real data, the benefits 
associated with estimator testing using INTRAS data are 
twofold: 

1. INTRAS provides realistic representations of detector 
data compared to actual data produced by current freeway 
surveillance systems, and 

2. INTRAS provides the true values of section space-mean 
speeds and densities associated with the detector data so es­
timator performance may be directly compared to truth. 

The performance of three estimators for estimating freeway 
densities and speeds from volume and occupancy measure­
ments can be compared using the INTRAS data sets. These 
three estimators are Scaled Occupancy Estimator (SOE), SSE, 
and MSE. 

The SOE, which reflects the state estimator performance of 
cu..1ent operational surveillance sysicn , uses scaled occu­
pancy to compute density estimates: 
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" " ~ = G~ (18) 
J J 

and the equilibrium relation to compute speed estimates: 

A A R A 
un = q"/(1 - .,)I·~ 

j j J J J 
(19) 

The results of G-Factor Estimator (GFE) testing are pre­
sented next. The section begins with a description of the test 
scenarios and measurement generation methodology used for 
surveillance algorithm testing. 

Test Scenarios 

Surveillance testing was performed on a 30-min data set con­
sisting of nonincident traffic flow data for the Shirley Highway 
generated by the microscopic simulation program INTRAS. A 
5-mi section of the northbound Shirley Highway (1-395) in 
Arlington and Fairfax counties, Virginia, was chosen. Detector 
data were available from Nodes 8 to 22 on the highway (Figure 
5). The location of the detector stations used for testing are 
indicated. Unless otherwise indicated, all detector stations are 
of the full-count, single-loop variety. Several full-count, dou­
ble-loop detector stations (speedtraps) are included in the data 
set at Nodes 8 and 15. 

The location of the detector stations is approximately coinci­
dent (6 ft downstream) with the network node locations. The 
detector locations define the boundaries of the sectionalization 
of the freeway, which correspond in this case to the link 
boundaries. The SOE, SSE, and MSE produce estimates of 
speed and density for each freeway section. The correspon­
dence of section and link boundaries was chosen to facilitate 
comparison of section state estimates with known link aggre­
gate speeds and densities. 
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The seven test scenarios used for surveillance algorithm 
testing on the INTRAS data sets are given in Table 1. Six 
scenarios were used for comparative testing of the SOE, SSE, 
and MSE, and one scenario was used for the GFE testing. 

Generation of Measurements 

The detector data generated from INTRAS come in the form of 
on and off times associated with a car passing through a 

TABLE 1 TEST SCENARIOS FOR 
SURVEILLANCE ALGORITHM TESTING 
USING INTRAS DATA SETS 

Estimator Full-Count Partial-Count 
Type Detectors Detectors 

SOE x x 
SSE x x 
MSE x x 
GFE x 

presence detector. From these on/off times, the measurement 
software provides measurements of detector volumes (counts) 
and occupancies, which are used by the SOE, SSE, and MSE to 
estimate section density and speed. For the purpose of estima­
tor testing, volumes and occupancies were produced every 30 
sec from the INTRAS data. Consequently, the estimators will 
produce traffic state estimates every 30 sec coincident with the 
measurement times. The 30-sec sampling interval was chosen 
to facilitate comparison of state estimates with true states 
because the INTRAS truth values are also produced every 30 
sec. Furthermore, the 30-sec sampling rate is a typical sampling 
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FIGURE 5 Network representation of 1-395 (Shirley Highway), inbound in Virginia. 
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time for freeway surveillance systems. Additionally, similar 
estimation performance as illustrated here should be achievable 
for 1- to 2-min sampling rates. 

Measurement volumes are determined from the number of 
counts that are registered at a detector over the 30-sec sampling 
interval. The flow measurements become the 30-sec counts 
multiplied by 120 (to yield flows in units of vehicles per lane 
hour) and are tagged with the time at the end of the sampling 
interval. Occupancy represents the percentage of time the de­
tector is on (registering the presence of a car) during the 30-sec 
sampling interval. 

Sample volume and occupancy measurements obtained from 
a detector station in the Shirley Highway data set generated by 
INTRAS are shown in Figure 6. The measurements are charac­
terized by large variations in both volume and occupancy over 
time. These are typical measurement sets that are used by the 
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FIGURE 6 Sample volume and 
occupancy measurements from a 
detector station. 

surveillance algorithms to estimate section space-mean speed 
and density. 

Sections 3, 4, 5, and 6 were chosen as being representative of 
typical length sections encountered in real surveillance systems 
and correspond, respectively, to links (10,11), (11,14), (15,15), 
and (15,16) in Figure 5. The length of the sections vary from 
long (0.67 mi) to average (0.41 and 0.47 mi) to short (0.20 mi) 
for Sections 3, 4, 5, and 6, respectively. A constant G-factor 
(G = 2.26) was used for all plots and was determined em­
pirically from the data set. A description of the determination 
of the G-factor and the resulting errors in density estimates that 
the errors in the parameter G induce follows. 

Th" SSF "1P.~rlv nroviilP.~ hP.ttP.r ilP.n~itv P.~timMP.~ (thM i~ ---- --- -----,, r-- ----- ------ -------.1 ----------- ,------ --., 

closer agreement to truth) than the SOE for the long- and 
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medium-length sections (Sections 3, 4, 5). This is to be ex­
pected, because scaling the occupancy at the downstream sec­
tion boundary cannot accurately reflect the section density 
when the section length exceeds the distance the cars can travel 
during the 30-sec count time. That is, some of the cars in the 
section at the beginning of the count time will not be able to 
traverse the length of the section and be registered at the 
downstream detector during the count time. The SSE uses an 
aggregate model based on Lhe conservation of flow in a..Tld out 
of the section during the count time and is able to overcome 
this deficiency. The performance of the SSE and the SOE for 
density estimation on short sections (e.g., Section 6) are noted 
as similar. 

Both the SSE and the SOE use the equilibrium equation to 
compute speed estimates from density and volume estimates. 
Additionally, both methods simply use measured counts for 
volume estimates. Thus, because the SSE is able to produce 
equal or better density estimates than the SOE, SSE speed 
estimates should be equal or better than those produced by the 
SOE. This claim is confirmed in Table 2, which gives the root 
mean square (rms) errors in density and speed estimates pro­
duced by the SSE and SOE for both full- and partial-count 
detector stations. These values represent the average error in 

TABLE 2 RMS ERROR IN DENSITY AND SPEED ESTIMATES 
FOR SURVEILLANCE ALGORITIIMS (Absolute/Percent) 

Estimation 
Technique 

SOE 

SSE 

MSE 

Full-Count Detectors 

O"P = 8 vplm/27% 
cr. = 12.8 mph/28% 
O"P = 6 vplm/20% 
cr. = 7 mph/15% 
O"P = 5 vplm/17% 
cr. = 3 mph/7% 

Partial-Count Detectors 

crP = 9.4 vplm/3 1 % 
cr. = 17 mph/38% 
crP = 7 vplm/23% 
cr. = 10 mph/22% 
O'P = 5 vplm/17% 
cr. = 3 mph/7% 

density and speed estimates observed over all 12 sections of the 
Shirley Highway data set. The average fluctuations in flow are 
1,200 vph for full-count detector stations and 1,900 vph for 
partial-count stations. 

As indicated in the table, the SSE produces better speed and 
density estimates than the SOE for both full- and partial-count 
detector stations. The SSE partial-count results, particularly the 
10 mph speed error, are improved by the MSE. 

The SSE and the MSE were compared in the partial-count 
detector station configuration where full-count stations are lo­
cated every 1 to 2 mi with partial-count stations in between. 
Such conditions yield about the worst expected detector config­
uration to be found in practice. A partial-count station consists 
of a single active detector in the center lane. Results from 
Sections 3, 4, 5, and 6 of the Shirley Highway are used again 
for illustrative purposes. The estimation error is defined as the 
difference between the state estimate and the true value of the 
state as determined by INTRAS. Perfect state estimation would 
result in a zero estimation error for all time. 

The improvements in both density and speed estimation of 
the MSE over the SSE for partial-count stations is evident from 
Table 2, which summarizes the root mean square errors in 
ilP.n~itv ~nil ~"""ii P.~timMP.~ nroilnr.P.tl for hoth fnll- ~nil n~r-- -----,, ---- -r---- ----------- c-------- --- ----- ----- ----- c---

tial-COUnl detector stations. These figures represent the average 
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error in density and speed estimates observed over all 12 
sections of the Shirley Highway data set. 

For the partial-count detector case, a dramatic reduction in 
speed error from 10 mph for the SSE to 3 mph for the MSE is 
noted. Substantial reductions in density error [7 vehicles per 
lane-mile (vplm) to 5 vplm] are also realized in switching from 
the SSE to the MSE. Additionally, as indicated by the results in 
Table 2, the MSE in the partial-count configuration outper­
forms the SSE in the full-count configuration. This is attributed 
to the use by the MSE of the dynamic speed equation in state 
estimation. 

It was found that the full-count MSE estimation errors are 
practically identical to the partial-count MSE errors for both 
density and speed. This is a result of a measurement error 
induced by modeling volume at a detector station in terms of 
section density and space-mean speed through the equilibrium 
relation. This mismodeling error, due to the nonhomogeneity of 
real flow, dominates the measurement error induced by partial­
count measurements. The equivalent MSE performance for 
full- and partial-count stations (Table 2) indicates that, due to 
model limitations, it is unnecessary to upgrade from partial- to 
full-count detector stations to realize the full potential of the 
MSE. 

GFE Results 

The G-factor was modeled as a constant both temporally and 
spatially along the freeway for this surveillance algorithm test­
ing. The distribution of vehicles of various lengths in the 
INTRAS data sets was held constant over the simulation time 
period (see Table 3). Thus, all deviations in the G-factor were 
presumed to be white noise. If the time period had been divided 
into subintervals with varying inputs, holding the G-factor 
constant may not have resulted in such a good approximation. 
An assessment of the corresponding density estimation errors 
made by the surveillance algorithms using a constant as op­
posed to a temporally or spatially variable G-factor was then 
made. 

The variation of the G-factor over all detectors displayed in 
the moving average plots is shown as follows with standard 
deviation of parameters indicated in parentheses. 

Average Average 
Data Set G-Faclor rms Error 

Shirley 
Highway 2.26 0.25 

(.005) (0.31) 

The average G-factor and average nns error in G-factor over all 
tested detectors for the respective data sets are listed. The 
standard deviations of these averages are also noted and are 
good indications of the spatial variation of these parameters. 
The small size of the standard deviations indicates little varia­
tion in the average G-factor or rms error in the G-factor (that is, 
temporal variation) from detector to detector. The errors in­
duced in density estimation due to these small spatial variations 
are negligible and support the use of a spatially constant 
G-factor. 

The temporal variation in the G-factor as indicated by the 
average rms error in the preceding table represents a substan-
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tially larger error in density estimation results. For the Shirley 
Highway data set, the 0.25 rms error from using a constant 
G-factor translates into a 3-vplm density error for a 12 percent 
occupancy level, which is a typical occupancy for the Shirley 
Highway data set. However, the error in density estimation due 
to modeling the G-factor as temporally constant does not domi­
nate the total density error, which at best is 5 vplm for the MSE. 
Other error sources (e.g., the volume measurement model) 
contribute the dominant portion of the error (4 vplm). 

Thus, modeling of the G-factor as a constant induces rela­
tively small errors in density estimates while contributing mini­
mum estimator complexity to the surveillance algorithms. The 
specific G-factors and corresponding density errors presented 
here are only indicative of the INTRAS data sets. Different 
variations may occur under real freeway conditions due to less 
uniform vehicle length distributions. 

TABLE 3 DIS'IRIBUTION OF VEHICLES OF VARIOUS 
LENGTHS IN INTRAS DATA SETS, SHIRLEY HIGHWAY 

Vehicle Length Distribution 
Vehicle Type (ft) (%) 

Low-performance 
passenger car 20 48 

High-performance 
passenger car 20 48 

Intercity bus 43 I 
Heavy single-unit 

truck 26 2 
Trailer truck 53 I 

The G-factor estimator also has the ability to count vehicles 
of various lengths, such as trucks and buses, over time. This 
capability is shown in Figure 7. A single sample moving 
average was used to estimate the reciprocal vehicle-sensor 
length for each vehicle passing through the speed trap. The 
GFE easily discriminates among passenger cars, heavy single­
unit trucks, intercity buses, and trailer trucks due to their 
different vehicle lengths. The GFE cannot discriminate be­
tween low-performance and high-performance passenger cars 
because they both have the same vehicle length. 

CONCLUSIONS 

The various surveillance algorithms observed over all 12 sec­
tions of the INTRAS data set indicate that 

• The SSE produces better speed and density estimates than 
the SOE, 

• The MSE is needed in partial-count detector situations 
especially for speed estimation, 

• The performance of the MSE is substantially the same for 
partial and full-count detector stations, and 

• The modeling of the G-factor as a constant induces rela­
tively small errors in density estimates while contributing mini­
mum estimator complexity to the surveillance algorithms. 
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FIGURE 7 Ability of G-factor estimator to count trucks and buses. 

In a recently completed study (6), development of a demand­
responsive control strategy using a linear regulator from opti­
mal control theory revealed that 

• In light congestion, the regulator performance was insen­
sitive to the level of surveillance hardware (density of detec­
tors) and algorithm (SOE, SSE, and MSE), and 

• In moderate congestion associated with constrained traffic 
conditions, a significant increase in regulator performance was 
achievable using superior-quality surveillance provided by the 
MSE. 

Real traffic data needs to be examined to check these 
conclusions. 
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