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Urban Traffic Network Flow Models 

JAMES C. WILLIAMS, HANIS. MAHMASSANI, AND ROBERT HERMAN 

Addressed in this paper are the development and comparative 
assessment of macroscopic network-level traffic flow models, 
which describe the behavior and interrelation between traffic 
variables defined at the network level. These variables include 
average speed, concentration, flow, the fraction of vehicles 
stopped in the network, and the two-fluid running time vari
ables. Three alternative sets of interrelated models, each with a 
different starting postulate, are presented and tested in terms 
of their performance against a series of microscopic simulation 
runs corresponding to different concentration levels. In each 
model system, a different functional form is postulated for 
either the speed-concentration relation or the fraction of vehi
cles stopped versus concentration relation. The functional 
form for the other relation is then derived from the postulated 
model by invoking the two-fluid theory of town traffic. The 
models are calibrated and tested using the simulation results. 
The analysis indicates that the network-level traffic variables 
are interrelated in a manner similar to that captured by the 
traffic models established for individual road sections. In par
ticular, a well-known linear speed-concentration model as well 
as a nonlinear alternative are found to be generally applicable 
at the network level. 

Macroscopic models of traffic flow in urban networks describe 
the behavior and interrelation between traffic variables defined 
at the network level. The development of such network-level 
models remains in its infancy, especially in con1parison to the 
extensive body of work, conducted over the past three decades, 
that addresses traffic in individual components of the network, 
such as arterials or intersections. Network-level characteriza
tion of traffic has important practical implications in terms of 
measuring traffic quality of service, comparing it with other 
cities, monitoring over time to evaluate the effect of various 
improvements, identifying deficiencies at the network level, 
and so on (1, 2). 

The most developed network-level traffic modeling ap
proach is based on Herman and Prigogine's two-fluid theory of 
town traffic (3, 4), which postulates a relation between the 
speed of moving vehicles and the fraction of running vehicles 
in a street network. Extensive field studies have been con
ducted in conjunction with this theory (2, 4, 5) supporting the 
validity of its basic premise and the resulting relation between 
the average running time per unit distance (the conditional 
expected trip time per unit distance taken only over moving 
vehicles) and the average total trip time per unit distance in the 
network. The sensitivity of the model's parameters to various 
physical and operational network characteristics has also been 
explored using simulation experiments (6). 

The latter approach actually circumvents what is undoubt
edly the major obstacle hindering the development of network
level models, namely, the cost and difficulty of obtaining reli
able data at the network level. The feasibility of using micro-
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scopic simulation as a tool to investigate network flow relations 
has been established by the authors in previous work, based on 
the NETSIM simulation package (1, 6). In addition to the 
obvious cost and resource considerations, this approach allows 
the researcher a degree of experimental control that is not 
practical in actual traffic systems, as well as the ability to 
explore a wider range of situations than can be observed in field 
work. 

Recently, Ardekani and Herman (7) extended the two-fluid 
modeling framework to include a set of relations between the 
principal network traffic variables. These relations are derived 
from a postulated functional relation between the average frac
tion of vehicles stopped in a network and the prevailing con
centration, modifying an earlier form suggested in Herman and 
Prigogine 's original work ( 3 ). A speed-concentration model 
can then be derived from the postulated relation, provided that 
the two-fluid assumptions hold. Ardekani and Herman also 
calibrated the parameters of the postulated model, though only 
limited aerial photographic data were available for this 
purpose. 

From a theoretical standpoint, network-level relations be
tween flow, speed, and concentration cannot be analytically 
derived from models developed for individual components. On 
the one hand, there are issues in the very definition of the 
networkwide averages, as different averaging procedures could 
be devised. Moreover, the existence of "nice" relations among 
these quantities cannot, a priori, be taken for granted because 
the complexity of network interconnections effectively pre
cludes the mathematical derivation of such models from basic 
principles or established road link and intersection level rela
tions. However, earlier exploratory work by the authors has 
been encouraging in this regard. Definitions for average speed, 
concentration, and flow, all at the network level, have been 
presented, and the results of simulation experiments strongly 
suggested that these quantities appear to be related in a manner 
not unlike their counterparts at the individual road or arterial 
level (1, 6). 

The development and comparative assessment of network
level traffic flow models are traced in this paper. Three alterna
tive sets of interrelated models, each with a different starting 
postulate, are presented and tested in terms of their perfor
mance against a series of microscopic simulation runs corre
sponding to different concentration levels. Each set of models 
constitutes a system of relations that comprehensively describe 
the joint behavior of the average speed, flow, and concentra
tion, as well as the average fraction of vehicles stopped in the 
network, and the two-fluid stopped and running time variables. 
The next section presents the common theoretical background 
underlying the derivation of each set of models, given the 
starting postulate, and reviews the methodological approach 
followed in the supporting simulation experiments. The three 
model systems are subsequently presented in turn, and their 
parameters are calibrated using the results of the simulations. 
The evaluation of each model system's ability to provide a 
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macroscopic characterization of network traffic flow phe
nomena can thus be performed. Concluding comments are 
presented in the closing section of the paper. 

THEORETICAL FRAMEWORK AND 
METHODOLOGICAL APPROACH 

In this section the networkwide variable definitions are re
viewed; then the principal relations comprising each model 
system are conceptually described, along with the analytical 
steps involved in the derivation of the models from a starting 
functional form relating any two of the variables. This is 
followed by pertinent information on the simulation experi
ments that provide the observations needed for the calibration 
of the various models. An initial presentation of the simulation 
results is also included to further examine the identity of flow 
to the product of speed and concentration for the definitions of 
the networkwide variables adopted here. 

Definition of Networkwide 
Traffic Variables 

The three fundamental traffic variables (speed, concentration, 
and flow) have been generalized to the network level in pre
vious work (1 ). For completeness, these definitions are briefly 
reviewed here. All three are defined as average quantities taken 
over all vehicles in the network over some observation period 
't. Average speed V [in miles per hour (mph)] is then obtained 
as the ratio of total vehicle miles to total vehicle hours in the 
network during the period 't. The average concentration K (in 
vehicles per lane mile) for the same period is the time average 
of the number of vehicles per unit lane length in the system; it 
can be simply calculated by dividing the total vehicle hours 
(during 't) by 't L, where L is the total lane miles of roadway. 
One of the key advantages of using simulation experiments is 
that the analyst can maintain a constant concentration level in 
the network by keeping the number of circulating vehicles 
constant over the period 't. This strategy, followed in previous 
work, is also adopted in all the experiments discussed in this 
paper. The concentration is then simply equal to the known 
total number of vehicles in the network divided by L. 

Average network flow Q is interpreted as the average num
ber of vehicles that pass by an average point of the network, 
and given by ('f.l;q;)/('I. l;). where q; and l; denote the average 
flow (during 't) and th~ length of link i, respectively, and the 
summations are taken over all network links. 

Another key variable of interest is fs, the average fraction of 
stopped vehicles over the observation period. It is an important 
descriptor of the productivity of an urban traffic network, and is 
suggested by the dichotomization of traffic in the network into 
moving and stopped vehicles introduced by the two-fluid the
ory (3). The variation offs with the prevailing network con
centration K is one of the principal relations considered in this 
paper, as seen later in this section. Other two-fluid variables of 
interest here are the average running time T,, stopped time T,, 
and total trip time T, all per unit distance; of course, 
T = T, + T,. The main result of the two fluid theory is a model 
relating T, to T (or T,), which is invoked in all the following 
derivations. A detailed presentation of the two-fluid model 
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assumptions and derivations is provided elsewhere (3, 4, 6); 
the results necessary for the derivations in this paper are pre
sented in the next subsection. Note that one pertinent result was 
used in the simulations to calculate fs, namely, that fs = T,JT, 
derived mathematically by Herman and Ardekani under steady
state conditions (4), and verified numerically in earlier simula
tion experiments. 

The Traffic Models and Their Interrelation 

The model systems of interest can be derived by first specifying 
a functional relation between any two of the following vari
ables: V, K, Q, and f,. The remaining relations can then be 
analytically obtained by invoking one or both of the following: 

1. The identity Q = KV, known to hold for individual roads 
but not formally established at the network level, has been 
numerically verified in earlier simulation work for the preced
ing network-level variable definitions (6). This point is further 
addressed in this paper for a new set of simulations. 

2. The two-fluid model relating T,, T, and T, was defined 
earlier. However, because T, = l/V, (by definition) and 
fs = T,JT, there is a relationship between/, and V, (see Equation 
4), which ultimately leads to a relation between/, and V. In all 
three model systems discussed, the two-fluid model is assumed 
to hold. Comments about the range of applicability of this 
assumption are also given on the basis of the simulation results. 

In each of the three model systems discussed in this paper, a 
different functional form will be postulated for either the V-K 
relation, or the fs-K relation. The functional form for the other 
relation is then derived from the postulated model by invoking 
the two-fluid relation. 

The relations composing each model system are 

V = f(K) (1) 

Q = g(K) (2) 

and 

f, = h(K) (3) 

In addition, as noted previously, the following are assumed 
to hold in all cases: 

Q =KV 

and 

where 

V, = the average speed of the moving vehicles in 
the network over the observation period, 

V m = a parameter that can be interpreted as the 
average maximum running speed in the 
network (without any stopping), and 

n = a parameter that captures the sensitivity of 

(4) 
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running speed to the fraction of vehicles 
stopped in the network and can serve as an 
indicator of quality of traffic service in a 
network. 

Equation 4 is the fundamental assumption of the two-fluid 
model, specifying the dependence between the average speed 
of the moving cars and the fraction of cars that are moving, 
fr= 1 -/~. 

The functions shown in Equations 1 through 3 are different 
in each of the three model systems, as they depend on the 
starting assumption regarding either Equation 1 or Equation 3. 
Then, because v = v /, = vr (1 - !,) (by definition of the cor
responding averages), the following is obtained using Equation 
4: 

(5) 

Then, if h(K) is given, substituting it for f, in Equation 5 
yields V = f(K), as follows: 

v = vm [l - h(K)]11+1 (6) 

Similarly, if f(K) is given, substituting it for Vin Equation 5 
allows the derivation of a functional form for f, = h(K): 

f(K) = V m (l - /,)11+1 (7) 

which can be rewritten as 

(8) 

The function Q = g(K) can then be easily obtained by sub
stituting f(K) into the identity Q = KV. Similarly, a relation 
between Q and V can also be easily derived, but will not be 
pursued further in this paper. Before the specific functional 
forms of each model system are discussed, the simulation 
experiments conducted to calibrate the models are described. 

The Simulation Experiments 

The same methodological approach used in earlier work is 
followed in this paper, and will therefore not be detailed here 
(1, 6). A series of six simulation runs was performed to evalu
ate the network flow models of interest. Each of these runs used 
the same basic network configuration and features, but in
volved a different vehicular concentration level. As noted ear
lier, the network is treated as a closed system, with a fixed 
number of vehicles maintaining a constant concentration 
throughout the observation (accumulation) period. The circula
tion of the vehicles is controlled by an elaborate set of detailed 
microscopic rules (governing car following, queue discharge, 
lane switching, gap acceptance, and so on) embedded in the 
NETSIM package (8, 9). Note that some modification of the 
code was necessary in order to keep track of stopped versus 
running time in a manner that is consistent with the two-fluid 
definitions of these variables. 

Essentially, each simulation run yields one data point, con
sisting of values of the desired network-level average quantities 
taken over the observation period [generally about 15 min of 
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accumulation, following an initial startup and loading period 
ranging from 5 to 15 min (l)]. The basic network configuration 
is the same as that used in previous work, and consists of 25 
nodes, arranged in a 5-node by 5-node square, connected by 
two-way, four-lane streets forming a regular grid similar to that 
in the central business district (CBD). Each two-way street is 
represented by a pair of directed (one-way) links (80 in all). All 
links used in these simulations are 400 ft long, with no special 
geometric features such as turning bays or grades. Vehicles are 
injected into the network via 12 additional entry links placed 
around the perimeter, three to a side, with each entry connect
ing a source node (not part of the 25 network nodes) to a 
noncorner boundary node. 

When the desired number of vehicles entered the network, 
they were not allowed to exit (no sink nodes were specified), 
thereby maintaining a constant concentration. At the interior 
intersections 10 percent of the traffic turned left, 15 percent 
turned right, and the remaining 75 percent continued straight 
through. When vehicles reached a boundary node, they divided 
equally between left and right turns, except at the corner nodes 
where no choice is available. These traffic movements were 
used throughout the work reported herein. 

Each network node corresponds to a signalized intersection, 
except for the four corner nodes, which are unsignalized be
cause they present no conflicts to the drivers. Timing of signals 
at the interior nodes followed a two-phase timing scheme with 
a 50/50 split and no protected turning movements. Three-phase 
signals were used at the boundary nodes, providing a protected 
left turn for vehicles reentering the interior of the system, with 
the green time nearly equally allocated to vehicles leaving the 
interior of the network and those reentering it from the bound
ary. Two-way progression at the mean desired speed (35 mph in 
this case) was provided along the interior arterials by using 40-
sec cycle length with single alternate operation. 

The network concentrations in these runs are approximately 
10, 20, 40, 60, 80, and 100 vehicles per lane-mile (the actual 
values, determined by simulation input practicalities, are 9.90, 
19.80, 41.58, 61.38, 81.18, and 100.65 vehicles per lane-mile), 
representing a range from very light to extremely heavy traffic. 
For comparison purposes, the highest concentration observed 
in related field work (7) was approximately 30 vehicles per 
lane-mile in the Austin CBD during peak traffic conditions. For 
all practical purposes, network concentrations in excess of 50 
vehicles per lane-mile can be considered as very high, and are 
rather unlikely in actual operations. Therefore, the simulation 
results permit an exploration of network behavior over a wide 
spectrum of concentrations, including conditions near satura
tion, which may not be easy to observe in actual street 
networks. 

The basic network-level results of interest from these runs 
are presented in Figures 1-4. The variation of speed and flow 
with concentration is shown in Figures 1 and 2, respectively; 
the corresponding variation of speed with flow in these runs is 
shown in Figure 3; and the variation of the fraction of vehicles 
stopped with concentration is shown in Figure 4. The general 
similarity of the K-V-Q patterns to their characteristic counter
parts for individual road sections is striking; this observation 
forms the basis for two of the suggested models explored in the 
following sections. The results of the simulations are first 
examined to verify that the Q = KV identity holds for the 
network flow under consideration. 
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The Q = KV Identity 
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FIGURE 1 Plot of speed versus concentration for 
simulation experiments. 

In earlier simulation experiments, the basic traffic flow identity 
relating speed, flow, and concentration was verified at the 
network level as well, for the proposed definition of the net
workwide averages (1 ). This identity and the procedure for 
measuring the variables are briefly addressed here for the new 
simulations, particularly because this identity plays a very 
important role in the development of the network flow model 
systems. The average flow Q (in vehicles per lane-hour) for 
each run is estimated by averaging, over the accumulation 
period, the minute-by-minute average flows taken over all 
links, based on the number of vehicles discharged from the 
downstream end of each link (each minute). Each link's dis
charge is first divided by two to obtain the flow on a per-lane 
basis. Note with regard to the expression given earlier in this 
section for Q that the link length /i is the same across all links in 
these experiments. The other network variables, K and V, are 
obtained as described earlier in this section. The product KV 
can then be compared with the independently estimated Q. 
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FIGURE 2 Plot of flow versus concentration for 
simulation experiments. 

The results of this comparison for the six runs are given in 
Table 1, clearly illustrating the closeness of the two quantities. 
The small numerical discrepancies are mostly due to the 1-min 
discretization used in estimating Q, whereas Vis determined 
from semicontinuously accumulated quantities. The largest dif
ferences occur at the high concentration levels, where network 
operation is least stable. These results, coupled with earlier 
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FIGURE 3 Plot of speed versus flow for simulation 
experiments. 
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FIGURE 4 Plot of fraction of vehicles stopped (/,) versus 
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TABLE 1 RESULTS OF TIIE Q, KV COMPARISON 

KV 
K (vehicles (vehicles Q (vehicles Percent Dif-
per lane- V (miles per lane- per lane- ference 
mile) per hour) hour) hour) [(KV - Q)IQ] 

9.90 16.836 166.7 168.6 -1.1 
19.80 15.418 305.3 309.6 -1.4 
41.58 10.904 453.4 453.0 0.1 
61.38 7.592 466.0 473.1 -1.5 
81.18 5.751 466.9 454.5 2.7 

100.65 2.881 290.0 300.3 -3.4 

similar results (1 ), further confirm the appropriateness of 
Q = KV for the networkwide averages defined in this work. 

Next, the three model systems are presented and discussed 
on the basis of their calibrated performance against the obser
vations generated by the simulations. The first is from Ar
dekani and Herman (7), which starts with a postulated func
tional form for the Is = h(K) function. The other two are based 
on functional forms for the V-K relationfiK); these forms are 
well-known for this relation on individual road segments, and 
their appropriateness at the network level will be examined. 

MODEL SYSTEM 1 RESULTS 

Model system 1 was derived by Ardekani and Herman (7), who 
started with the following postulated functional form for h(K), 
which specifies the ls-K relation: 

Is = ls.min + (1 - ls.min) (K!K/ (9) 

where 

!,,,,.;,. 

Ki 

7t 

= 

= 

= 

a parameter intended as the minimum fraction 
of vehicles stopped in the network; 
a parameter intended as the "jam" 
concentration at which the network is 
effectively saturated; and 
a parameter that determines the fraction of 
vehicles stopped at a given partial 
concentration (K/K). and could serve as a 
measure of the quality of service in a 
network. 

The principal assumptions of this relation are reflected in its 
boundary conditions. In particular, it recognizes that in an 
urban street network, even under very low concentrations, there 
is some nonzero ls.min fraction of stoppage that is inevitable in 
the network (unless traffic control is fully responsive, unlike 
any currently in operation, or drivers do not obey traffic laws), 
as suggested by simulation results (see Figure 4) and field 
studies (7). On the other hand, Is goes to 1, meaning that all 
vehicles are stopped, as K goes to Ki Thus, Equation 9 states 
that Is is an increasing function of K that varies in the range 
from Is.,,.;,, to 1 as K goes from zero to Ki 

Following the steps presented in the previous section, 
V = fiK) can then be found by substituting Equation 9 into 
Equation 6, yielding 
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V = V,,. (1 - J,,,,.;,,y<+1 [1 - (K!K/tr+1 (10) 

The flow-concentration model is then easily found using 
Q = KV, as shown in the previous section: 

Q = KV,,. (1 - ls.,,.;,,r1 [1 - (K/K}ltrl (11) 

The estimation of parameters of Equation 9 can be per
formed by rewriting the equation as Is= a + bK", where a 
equals !,,,,.;,, and b equals (1 - f,,,,.;n)IK/, Nonlinear least 
squares estimates can then be obtained for a, b, and 7t, from 
which the original parameters can be recovered, yielding for 
the set of observations generated from the simulation experi
men~: /,,,,.;,, = 0.187, i.j = 134.12 vehicles per lane-mile, 
and 7t = 2.08. Figure 5 depicts the curve corresponding to the 
estimated parameter values, and also includes the points ob
served in the simulation experiments for comparison pur
poses. It appears that the estimated model somewhat over
estimates ls,,,.;,,· More seriously, between (the practically mean
ingful) concentrations of 20 and 80 vehicles per lane-mile, it 
predicts the opposite concavity to that suggested by the ob
served values. 

In order to examine the ability of this model to describe the 
V-K pattern, by comparing the resulting Equation 10 with the 
observed simulation results, it is necessary to estimate the two
fluid parameters n and T ,,.. These can be found by performing a 
least-squares estimation of the linear regression equation 
(4, 6): 

lnT, = [l/(n + 1)] lnT,,. + [n/(n + 1)] lnT (12) 

With all six data points, the two-fluid parameter estimates 

were found to be ~ = 1.051 and T,,. = 2.692 min/mile. How
ever, it should be noted that, in this analysis, the two-fluid 
model is assumed to hold at very high concentrations, which 
have simply never been encountered in the extensive and suc
cessful field validation studies. Moreover, the ability of the 
simulation package, which is clearly in agreement with the 
two-fluid assumptions over the range of practically meaningful 
concentrations, to reliably simulate what happens at very high 
concentrations, where conditions are inherently unstable, can
not be taken for granted. The two-fluid model assumes the lnT, 
versus lnT trend to be linear; however, the plot of the six 
observed points (Figure 6) suggests that the sixth point (repre
senting the highest concentration examined) deviates from the 
linear trend established by the other five points. Therefore, T 111 

and n were reestimated, omitting the sixth point, yielding 1.809 
min/mile and 2.349, respectively. 

The resulting curves for the speed-concentration relation are 
shown in Figure 7, where the curve labeled Method 1 refers to 
the case where the estimated values of n and T 111 are based on all 
six data points, and Method 2 refers to the case in which the 
sixth point was omitted from the estimation data. Both curves 
exhibit the same basic shape, although several predictable 
differences can be seen. In particular, because of the underlying 
calibration, the Method 1 curve can be expected to provide a 
better fit to the observed values at very high concentrations 
(greater than approximately 70 vehicles per lane-mile), while 
the Method 2 curve performs better in the lower-to-medium 
concentration ranges. However, neither curve fits the observed 
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data particularly well: at most, the model overpredicts speed at 
medium concentrations (30 to 60 vehicles per lane-mile), but 
underpredicts speed at lower concentrations. These discrepan
cies correspond to those encountered in connection with the 
plot of the fraction of vehicles stopped versus concentration in 
Figure 5, as discussed earlier. Finally, the flow-concentration 
relation (Equation 11) is shown in Figure 8 for both sets of two
fluid parameter estimates, along with the observed values. 
Neither curve fits the data particularly well, exhibiting the same 
kind of problems seen with the V-K relation, especially in the 
medium concentration range. The next two model systems, 
which directly specify the V-K equation, perform considerably 
better in this regard as will be observed. 

MODEL SYSTEM 2: LINEAR V-K 

The starting point for this set of models, as well as for the one 
discussed in the next section, is a postulated functional form for 
f(K), which specifies the network-level speed-concentration 
relation. As mentioned earlier, the plots in Figures 1 through 3 
remarkably evoke the patterns encountered for individual road 
facilities. Two well-known forms used in conjunction with 
individual facilities are therefore calibrated and evaluated for 
the network-level variables. The first, which forms the basis of 
this model syslem, is Greenshields' widely used linear speed
concentration relation, namely (10): 

V = VJ(l - K/K) (13) 

where VJ and Ki are parameters to be estimated and interpreted 
as the mean free speed (experienced when interference from 
other vehicles in the traffic stream is virtually nonexistent) and 
the "jam" concentration, respectively, defined earlier. 

Note that the V, parameter is distinct from the two-fluid 
parameter V,,., the average maximum running speed (equal to 
l{I' ,,.), which according to Equation 4, occurs when/, equals 
zero, that is, when no vehicles are stopped in the network. As 
stated in the previous section, this condition does not occur in 
existing urban traffic systems over any meaningful length of 
time, even at very low concentrations, because of the presence 
of the traffic control system. Therefore, because the average 
travel time corresponding to the free mean speed will exceed 

the nurumum running time T,,. usually by some nonzero 
stopped time, VJ ~ V,,. will always exist, and, in most cases, 
VJ < V,,.. Note that in Ardekani and Herman's model system 
discussed in the previous section, VJ= Vm (1 - J,,min)"+1 (by 
setting K = 0 in Equation 10). 

The functional form for h(K), thef,-K relation that is com
patible with the foregoing linear V-K model and the two-fluid 
model, is found following the steps presented earlier. In other 
words, substituting Equation 13 into Equation 8 yields 

f, = 1 - [(V jV,,.) (1 - K/Ki)] 11(n+I) (14) 

The boundary conditions of this function are similar to those 
of Ardekani and Herman 's function because /, = 1 -
(V JV,,.) l/(n+l) for K = 0, and /

1 
= 0 for K = Ki. However, for the 

former, the minimum fraction of vehicles stopped, ls.min• is 
explicitly stated in terms of the speed parameters VJ and V ,,.. For 
instance, it becomes clear in this expression that if VJ = V ,,., 
then!,= 0 at K = 0. 

Finally, the flow-concentration relation is again obtained by 
applying Q = KV: 

(15) 

Least squares estimates of the model parameters can be 
easily obtained because Equation 13 is linear in K, and can be 
rewritten as V = b0 + b1 K. The original parameters can then be 
recovered from the estimated values as VJ= b0 and 
K- = - \f/b1• With the observed simulation data of Figure l, the 
e~timated paramelers are ~J= 18.02 mph and ki = 116.3 vehi
cles per lane-mile. The resulting calibrated functions, along 
with the observed values, are plotted :0 Figures 9 and 10, for 
Equations 13 and 15, respectively, indicating in both cases a 
rather close fit to the data. Moreover, the mean free speed does 
not appear to be underpredicted; however, because Equation 13 
ignores the slight nonlinear trend exhibited by the K-V data, 
the speed is slightly overpredicted in the middle concentration 
range, resulting in an overprediction of the flow in the same 
range (Figure 10). 

Note that there is no need to exclude the sixth data point (for 
the highest K) as in Method 2 in the previous section when 
estimating the parameters of Equation 13 because the postu
lated K-V model and resulting Q-K relation appear to be 
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FIGURE 9 Comparison of linear V-K model with observed 
simulation results. 
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FIGURE 10 Comparison of Q-K model derived from linear V-K 
relation with observed simulation results. 

consistent with the pattern exhibited by the data, including the 
range corresponding to that high concentration point. The main 
justification for excluding that point in the previous section is 
that the discrepancy appears with regard to the two-fluid model 
assumption's applicability at higher concentrations. Because 
the V-K function has been specified directly here, this assump
tion has no direct bearing on the parameter estimates presented 
so far in this section. However, this is not the case when 
Equation 14 is evaluated for the f.-K relation because this 
function's parameters are not estimated directly on the /, - K 
data but from the two-fluid and V-K models separately (just as 
the parameters of Ardekani and Herman's V-K model were not 
directly estimated using the corresponding V-K data). 

Evaluation of the f.-K function in this model system requires 
the estimation of the two-fluid parameters, n and T ,,.. Those 
found by Methods 1 and 2 in the previous section are both used 
here. The results are plotted, along with the observed data, in 
Figure 11. If Method 2 is used in the two-fluid estimation, the 
resultingf.-K curve provides a much better fit to the data, up to 
a concentration of about 80 vehicles per lane-mile, than that 
obtained by Method 1. As with Ardekani and Herman's model, 
this model's concavity is opposite to that exhibited by the data 
in the middle range of concentrations. What is interesting, 
however, is that this model's fit to the f.-K data, with which it 
was not directly calibrated, is almost as good as that obtained 

with Equation 9, which was directly calibrated using that data. 
Actually, neither model seems capable of reflecting the con
cavity of the data over the middle range of concentrations, or 
the apparent inflection point before the higher concentration 
values. 

MODEL SYSTEM 3: NONLINEAR V-K 

The second postulated functional form for the V-K model is a 
nonlinear bell-shaped function originally proposed by Drake et 
al. for arterials (10, 11), which could capture the apparent 
shape of the speed-concentration data in Figure 1: 

(16) 

where V1 (previously defined), K,,., a, and d are parameters Lo 
be estimated. The resulting expressions for the f s-K and Q- K 
models are then obtained as shown previously, yielding 

f. = 1 - {(V JV,,.) exp[-a. (K/K,,.yd]} l/(n+l) (17) 

and 

(18) 
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FIGURE 11 Comparison of f,-K model derived from linear V-K 
relation with observed simulation results. 

It can be shown, by solving dQ/dK = 0, that Km is the con
centration at which maximum flow occurs in the network. 

Estimation of the parameters of Equation 16 can be accom
plished by nonlinear least squares after some manipulation. 
Taking the natural logarithms of both sides of the equation, and 
rearranging the last term on the right-hand side (RHS) yields 

(19) 

which is of the form ln V = c0 + c1 Kd. Nonlinear least squares 
estimates can then be found for c0, c1, and d, and it is then 
possible to recover VJ = exp(c0). But, because c1 = (a/I<.'/,.), 
and only c 1 and d are known, it is not possible to 
obtain unique values of a and Km. However, this is not par
ticularly problematic from the standpoint of the model's perfor
mance because only the value of c1 is necessary. With the 
observed simulation results, the parameter estimates obtained 
by the foregoing technique are d = 1.49, VJ = 17.95 mj/hour, 
and ~ 1 = 1.83 x 10·3• In order to gain an idea of the approxi
mate magnitude of a, the property that Km represents, the 
concentration at maximum flow, can be used. Noting from 
Figure 2 that the maximum flow seems to occur for a con
centration between 60 and 65 vehicles per lane-mile, a range of 
a. can be calculated given the estimated values of c1 and d, 
yielding a range from 0.81 (for Km= 60) to 0.91 (for Km= 65). 
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In Figure 12 it can be seen that this model provides a very 
close fit to the observed data throughout its range; it also 
provides a reasonable estimate of the free mean speed. The 
resulting flow-concentration model, given by Equation 18, is 
plotted in Figure 13, along with the observed points. Unlike the 
relation derived from the linear V-K model, Equation 18 is not 
symmetric, and exhibits asymptotic decay of flow as the con
centration increases. The model does, however, provide a close 
fit to the observed data (the one near miss being at K = 80 
vehicles per lane-mile, apparent in both Figures 12 and 13). 

The estimated values of the two-fluid parameters are again 
used to examine the descriptive ability of the f

3
-K relation 

derived in this model system (Equation 17). This function is 
plotted in Figure 14 for the two sets of two-fluid parameter 
estimates presented earlier. The curve with the parameters 
found by Method 2 (excluding the last data point) fits the 
corresponding five points in Figure 14 much better than that 
with parameters found by using the Method 1 estimates be
cause the latter seem to be noticeably influenced by the highest 
concentration point. Unlike the previous two model systems 
discussed in this paper, maximum/, (which, for plausible signs 
of the parameters, tends to 1 in the limit) is approached 
asymptotically. Whether this behavior is correct or not is diffi
cult to determine, given that it requires loading the network to 
very unrealistic levels. Moreover, the performance of the f,-K 
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FIGURE 12 Cumparison oi bell-shaped V-K modei with observed 
simulation results. 



Williams et al. 87 

500 

:; 
0 

400 
.c • c • 300 'ii • u 
:;:: 
• 200 ,. 
:r: 
0 ... 100 ... 

30 60 90 120 
CONCHlTRATION ( vehlcles/lane-mlle) 

FIGURE 13 Comparison of Q-K model derived from bell-shaped 
V-K relation with observed simulation results. 
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FIGURE 14 Comparison of f,-K model derived from bell-shaped 
V-K relation with observed simulation results. 

model does not depend only on the postulated V-K function, 
but also on the two-fluid model that is invoked in its derivation. 
As seen earlier, the simulation data appeared to significantly 
depart from the two-fluid trend at higher concentrations. More 
importantly, Equation 17 seems to provide as good a fit as any 
of the other models, and in some cases better, for the range of 
concentrations that are likely to be encountered in actual urban 
traffic networks. 

CONCLUDING COMMENTS 

The most important conclusion from the work presented in this 
paper is that it is possible to characterize traffic flow in urban 
street networks using relatively simple macroscopic models 
relating the principal networkwide traffic variables. These rela
tions extend beyond the established two-fluid model to include 

.average network speed, concentration, flow, and the fraction of 
vehicles stopped in the network. Furthermore, it is remarkable 
that these relations appear to be not unlike those that have been 
established at the individual facility level. As illustrated in this 
paper, the characteristic shape of the fundamental traffic rela
tions encountered for highways and arterials, and on which 
traffic engineering procedures have been built, seem to be 
present at the network level as well, despite the complex 
interactions that take place in urban street networks. 

In terms of the relative performance of the model systems 
presented in this paper, all three seem to provide a more or less 
reasonable approximation of the patterns exhibited by the sim
ulated data, at least over certain ranges of concentration. Model 
Systems 2 and 3 provided a much better fit to the speed-con
centration data (compared to the derived model in the first 
system) over the full range of observations; however, this is to 
be expected because these model systems were calibrated using 
that data. Generally, the relation between the fraction of vehi
cles stopped and concentration remains the most problematic in 
terms of finding a model that is sufficiently convincing over the 
full concentration spectrum. If one limits the comparisons to 
concentrations up to about 80 vehicles per lane-mile, which 
already exceeds realistic values in actual networks, then the set 
of models based on the nonlinear (bell shaped) V-K relation is 
probably the best performer overall, especially in terms of 
capturing the shape of the V-K pattern. However, the linear 
approximation for that same relation, on which the second set 
of models was based, has the advantage of familiarity and ease 
of comparability. 

Still focusing on the range of less than 80 vehicles per lane
mile, the results in this paper provide another demonstration of 
the two-fluid model's validity. This model served as the princi
pal theoretical bridge between the postulated function (gener
ally selected to fit one particular relation) and the derived 
function in each of the three model systems. In all three cases, 
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the derived function performed remarkably well against the 
observed data, even though it was not directly calibrated using 
that data. However, the behavior of various network variables 
at very high concentrations remains to be understood. Based on 
the simulation results presented here, the applicability of the 
derived functions at these levels decreased markedly in all 
three cases, suggesting that the two-fluid assumptions might 
not be directly extended to these high concentration levels. For 
instance, it is possible that the relation between lnT, and lnT 
may be nonlinear over the full spectrum of concentrations, 
although it can be treated as effectively linear over most of the 
practically meaningful range of concentrations. 

Naturally, because the results presented here are based on a 
limited set of simulated experiments, they must be interpreted 
in an exploratory sense aimed at stimulating further inquiry 
into this problem area. Nevertheless, the same general patterns 
described here were also observed in a large number of other 
simulations conducted by the authors as part of an ongoing 
study of the sensitivity of network relations to various network 
characteristics. These simulations were still performed for rela
tively small networks, under controlled conditions, and subject 
to the microscopic rules embedded in the NETSIM package. 
However, these simulations have been instrumental in support
ing the derivation of network-level traffic flow relations and the 
investigation of their properties. Although simulations in 
larger, more elaborate networks will undoubtedly provide use
ful information to advance knowledge on this topic, it is essen
tial to obtain networkwide data on the operation of actual urban 
traffic systems. The cost and the scale of the problem may 
appear discouraging; however, technological developments in 
remote-sensing, telecommunications, and optoelectronics, 
among others, offer challenging opportunities for learning 
about the workings of traffic in urban areas. 
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