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Nonlinear Analysis of Highway Bridges 

}IANHUA ZHOU AND ANDRZEJ S. NOWAK 

A nonlinear procedure is developed for the derivation of the 
load-deflection relationship for highway bridges. The ap
proach is based on the finite difference method. The algorithm 
is described. A closed-form expression is developed to model 
behavior of a girder section. The procedure is demonstrated on 
a composite steel girder bridge. 

There is a growing need for more accurate methods of bridge 
evaluation. Live-load spectra have changed, with amounts of 
load usually increased. Bridges are subjected to deterioration. 
On the other hand, costs of repair or strengthening are often 
prohibitively high. Therefore, a tool to reveal the actual 
strength of a bridge and to predict its serviceable life time is 
useful. 

A procedure was developed for the flexural and torsional 
analysis of simply supported highway bridges. The structure is 
modeled as an orthotropic plate. The finite difference method is 
used to calculate the nonlinear bridge responses. 

The objective of the paper is to present the developed pro
cedure. The general steps and formulas are described; the 
approach is also demonstrated on a composite steel girder 
bridge. The method is simple to use and requires less comput
ing time than the FEM or grillage method. 

SECTION ANALYSIS 

The purpose of the section analysis is to develop force-defor
mation rel&tionships for the bridge elements considered. In 
particular, moment-curvature (M-<j>) and torque-twist relation
ships are considered. 

The M-<j> curve can be determined using the computer pro
gram developed by Tantawi (1). In his approach, the section is 
idealized as a set of uniform layers, as shown in Figure 1. 
Strain is increased gradually in increments. At each strain level, 
the corresponding moment is calculated using nonlinear stress
strain relationships for materials such as steel and concrete. 

To simplify the calculations, a closed-form expression was 
derived to represent M-<I> curves for the slab and composite 
girder section: 

where 

elastic bending rigidity, 
applied moment, and 
yielding moment. 

(1) 

Department of Civil Engineering, University of Michigan, Ann Arbor, 
Mich. 48109. 
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FIGURE 1 Typical composite section and strain 
diagram. 

C1 and C2 are constants determined by solving the following 
two equations: 

(2) 

(3) 

The resulting C1 and C2 are 

(4) 

(5) 

in which 

Mu = ultimate moment, 
<l>y = curvature at yielding, and 
<l>u = curvature corresponding to ultimate strength. 

For composi te girders, C2 ranges f rom 20 to 24 and C1 from 
25 to 28 x 10-5 fr 1. For slabs, C2 is about 22 to 26 and C 1 27 to 
30 x 10·5 fr1. 

An M-<I> curve for a typical composite girder is presented in 
Figure 2. For comparison, an M-<I> curve calculated using 
Tantawi 's program ( 1) is also shown in Figure 2. A torsion
twist curve for the same composite girder is shown in Figure 3. 
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FIGURE 2 M--<!> curve for a typical composite section. 

80 Torque (k-ft) 

70 • 

60 · 

50 

40 

30 

20 

10 

7in 

83in 

~>------.--~ 

W33x130 

0 · -------+-- -t----t---r----t--...---....----1 
0 50 100 150 200 250 300 350 400 450 

Twist (0.00001 rad.fin) 

FIGURE 3 Torsion-twist curve for a typical composite 
section. 

FINITE DIFFERENCE ANALYSIS 

Based on the assumptions made by Heins and Yoo (2) and 
Heins and Kuo (3 ), the system of girders, diaphragms, and slab 
is represented by an orthotropic plate. Segments of the longitu
dinal and transverse members and slab are shown in Figure 4. 
The corresponding plate elements are also shown in Figure 4. 
In Figure 4, mx, mxy and qx are the bending moment, torsional 
moment, and shear, respectively, exerted on the transverse 
member and slab; my, myx and qy are the bending moment, 
torsional moment, and shear, respectively, exerted on the longi
tudinal member and slab. The equilibrium differential equation 
for the plate element is 

-P(x, y) = 'iJ2Mxlax2 + a2Mx/axay + a2M.y)ayax 
+ a2M/ay2 (6) 

where 

Mx = the bending moment per unit width of the 
section in x direction, 

My = the bending moment per unit width of the 
section in y direction, 

Mxy = the twisting moment per unit width of the 
section in x direction, 

Myx = the twisting moment per unit width of the 
section in y direction, and 

P(x, y) = the applied load per unit area. 
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mxy + dmxy 

FIGURE 4 Orthotroplc plate element. 

The total load per plate element PT can be divided into three 
components exerted on the girder, diaphragm, and slab. 

A system of differential equations was developed that ex
presses the compatibility conditions in force and displacement 
equations between plate elements. This system can be ex
pressed in the following matrix form: 

[K] {w} = {P} 

where 

[K] = stiffness matrix, 
{ w} = vector of grid point deflections, and 
{P} = vector of loads. 

(7) 

From these equations, the unknown grid point deflections 
{w} were calculated. Then moments (Mx, MY, Mxy, Myx) and 
shear forces (Qy, Qx) were derived from the following 
equations: 

M = -D a2wta2x x x (8) 

M = -D a2w/a2y y y (9) 

Mxy = -Dxya2w1axay (10) 

MY" = --Dyxa2w/ayax (11) 

Qy = aM xylax + aMy1ay (12) 

Qx = aMyxlay + aMi/ax (13) 

where the various order derivatives can also be evaluated using 
the finite difference method. 

In the finite difference analysis, special mesh patterns were 
developed that allow for a considerable reduction of computing 
time. The details of these patterns are given by Zhou and 
Nowak (unpublished). 



Zhou and Nowak 

BRIDGE STRENGTH EVALUATION 

Based on the finite difference formulation, a procedure was 
developed to evaluate the ultimate capacity of bridge struc
tures. The evaluation involves a considerable nonlinear struc
tural analysis. The available procedures, such as the Newton
Raphson algorithm and the modified Newton-Raphson al
gorithm or incremental method (4), require excessive computa
tional effort. Therefore, a special computer time saving pro
cedure was developed for this study. 

The developed incremental-iterative approach includes 
seven major steps. First, elastic stiffness is used to evaluate 
bridge responses under dead loads. Then truck load is increased 
by increments. The incremental load tiP1 is determined as a 
function of the initial load increment !!.P 0 and number of 
iterations nJ-1 in the previous load increment, 

(14) 

Using Equation 1, the tangent stiffness matrix is formed, 
corresponding to the deflections { w) due to truck load level Pi" 
The tangent stiffness K1(w1) is defined in Figure 5. 
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FIGURE S Evaluation of 
tangent stiffness. 

Iterations are carried out to compute deflections and curva
tures corresponding to the increased load level using the finite 
difference formulas 

(15) 

where { 8i} is the unbalanced force resulting in the previous 
iteration. 

Then the secant stiffness corresponding to deflections 
{wi+l}• Ks(wi+1), is derived, as shown in Figure 6. The unbal
anced force resulting in this iteration is evaluated, see Figure 7 
as 

(16) 

If the unbalanced force is not close to zero, the next iteration is 
carried out. The tangent stiffness, as in the first iteration, is 
used. This process significantly reduces computation time. The 
calculations are continued until convergence criteria are satis
fied and the unbalanced force is close to zero. 

After each load increment, failure criteria are checked. The 
calculations are terminated when the permanent deflection ex
ceeds 1 percent of span length or concrete crush occurred. 
Otherwise another cycle of iteration is carried out using a next 
load increment. The algorithm is presented in Figure 8. 
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FIGURE 6 Evaluation of 
secant stiffness. 

Deflection 

FIGURE 7 Solution process using Incremental
iterative method. 
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FIGURE 8 Flowchart for 
Incremental-iterative method. 

NUMERICAL EXAMPLE 
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The developed procedure is demonstrated on a composite steel 
girder bridge designed according to AASHTO guidelines (5). 
The span is 60 ft; the cross section is shown in Figure 9. 
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FIGURE 9 Cross section for a typical 
composite girder bridge. 
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FIGURE 10 Load-deflection curve for a typical 
composite girder bridge. 
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AASHTO (5) truck HS-20 wheel configurations and load 
proportions were used, with the transverse position as shown in 
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Figure 9. The curve for the resulting live load of total truck 
weight versus deflection is presented in Figure 10. 

CONCLUSIONS 

A numerical procedure was developed for nonlinear analysis of 
girder bridges. The approach based on the finite difference 
method allowed for evaluation of the ultimate strength of the 
structure. 

A closed-formula expression was developed to model M-1J 
curves for composite girder or slab sections. The formula 
permitted considerable computing time saving compared to 
other available methods. 

A load-deflection curve was calculated for a typical com
posite steel girder bridge to demonstrate the developed 
procedure. 
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