
12 TRANSPORTATION RESEARCH RECORD 1120

• •
~~~~.--..,,.~1llllZ,~ ....... ...,......._""""';L-"""L-.A..Jl~.«-f.~&...l-JLL.J~::...L-.Ll~LL-~~~~~~~~~~ 

Operations for Motor Carriers Using 
Twin Trailers 
JONATHAN ECKSTEIN AND YOSEF SHEFFI 

Group line-haul operation Involves the dally movement of 
trailers between a central breakbulk terminal and a set of end
of-line satellite terminals. When each tractor can pull two 
trailers, there are many possibilities for creating tractor tours 
that accomplish the required pickup, delivery, and empty
balancing operations. The challenge is to create optimal tours 
that minimize transportation costs. An optimization procedure 
is described that is based on a branch-and-bound framework. 
It Involves Lagrangian rclaxotlon for lower bounds and two 
upper-bound heuristics for solving this problem. 

Less-than-truckload (LTL) motor carriers transport shipments 
(mostly ranging between a few hundred and a few thousand 
pounds) between many origins and destinations. Typically, 
large LTL carriers maintain a three-tiered network that operates 
as follows: 

1. Shipments are picked up from individual customers and 
taken a short distance to a local end-of-line (EOL), or city, 
terminal. 

2. Local shipments are consolidated in the EOL terminal 
and transferred to a regional breakbulk terminal, or "break," 
up to a few hundred miles away. There the incoming shipments 
are sorted and consolidated by destination into outbound 
trailers. 

3. Each shipment then travels over a network of main-line 
routes (interconnecting breakbulk terminals) until it reaches the 
break serving its destination region. 

4. In the reverse of Step 2, each shipment travels to the EOL 
terminal serving its destination city. 

5. In the reverse of Step 1, shipments are delivered to 
individual consignees. 

The focus of this paper is on the use of twin trailer trucks in 
the second step, known as group line-haul operations because 
LTL networks can be divided into groups, each containing a 
break and a set of EOL terminals connected to it. 

Over the past few years, regulatory changes have allowed 
twin trailer trucks to be used much more widely on U.S. 
highways. In such combinations, a single tractor may haul two 
28-ft trailers ("doubles" or "pups") instead of one 45- or 48-ft 
trailer (a van or "semi"). A tractor may also travel alone 
("bobtail") or pull just one short trailer. Doubles have proved 
extremely popular with LTL carriers, particularly on main-line 
routes [see report by Sheffi and Powell ( 1)]. There they provide 

Department of Civil Engineering, Massachusetts Institute of Technol
ogy, Cambridge, Mass. 02139. 

extra carrying capacity and improve the level of service with
out increasing costs. 

Although doubles cannot be used in city pickup-and-delivery 
operations, they have the potential for reducing the costs of 
group line-haul operations between the EOL terminals and the 
regional break. The means of achieving such savings are not 
always obvious because of the combinatorial nature of the 
problem. 

An optimization procedure is outlined for determining daily 
routes for twin trailer combinations in group line-haul opera
tions. It is based on a multicommodity aggregate flow formula
tion [see paper by Magnanti (2) for classification of methods]. 
The solution method combines a Lagrangian relaxation for 
calculating lower bounds with two incumbent generation 
heuristics to calculate upper bounds, all imbedded in a branch
and-bound (B&B) framework. First the problem is presented in 
detail; then it is formulated as an integer program. The 
Lagrangian relaxation is discussed, and the heuristics for the 
upper bound are described. The details of the B&B procedure 
are outlined, and, last, some nwnerical results and a concluding 
section are presented 

PROBLEM STATEMENT 

A group line-haul operation includes one break and a set (5 to 
50) of EOL terminals; the latter are responsible for delivery and 
pickup of shipments at customer locations during business 
hours. Consequently, the group line-haul operation takes place, 
for the most part, during the night. 

Each afternoon the line-haul planner, at the break, receives 
data on the nwnber of trailers to be picked up from and 
delivered to each EOL terminal. Because the operation is 
repeated nightly, the planner must also consider trailer balanc
ing--empty trailers should be removed from terminals when 
deliveries exceed pickups and supplied to terminals when 
pickups exceed deliveries. [In some cases (not considered here) 
empty trailers are balanced only on a weekly basis. In these 
cases the trailer inventory at each EOL terminal on each day is 
a decision variable.] 

Trailer movements are accomplished by tractors that can pull 
up to two trailers at a time. At each terminal a tractor may drop 
off or pick up either one or two trailers (or do both). The tractor 
pool must also be balanced daily. 

The objective is to cover all the required trailer movements 
with the minimum number of total tractor miles. The distances 
between all terminals (naturally) obey the triangle inequality. 



Eckstein and Shi!ffi 

These distances are typically small enough (and the supply of 
tractors is large enough) so that the minimum mileage solution 
can be executed in one day. 

Consider a group line-haul operation including one break 
and a set of EOL terminals numbered 1, 2, ... , n. Let P; denote 
the number of trailers to be picked up on a given day at EOL 
terminal i and let d; denote the number of trailers to be deliv
ered at i. 

To get a feel for the options available to the planner, consider 
two EOL terminals (1 and 2), each requiring delivery and 
pickup of a single trailer (i.e., p 1 = d1 = p2 = ~ = 1). If a tractor 
could haul only one trailer at a time, the solution would be 
simple. One tractor pulling outbound freight would be dis
patched from the break to each EOL terminal. Each of these 
two tractors would then drop off its outbound load and pick up 
an inbound load to take back to the break (Figure 1). 

If a tractor can haul two trailers, however, there is a lower
mileage solution using one tractor tour to visit both EOL 
terminals. The tractor is dispatched from the break pulling both 
outbound trailers. At the first EOL terminal, it exchanges one 
of these trailers for a trailer loaded with inbound shipments and 
then proceeds to the second EOL terminal. There it exchanges 
the second outbound trailer for an inbound one and then con
tinues to the break. This solution is shown in Figure 2. By the 
triangle inequality, there are fewer tractor miles in the second 
solution than in the first. 

Although this last example could be solved by inspection, 
larger problems are dramatically more complex. To see this, 
consider the four-EOL example shown in Figure 3. 

One of the possible solutions resulting in minimum tractor 
mileage for these data is shown in Figure 4, in which each 
trailer is represented by a box labeled with the destination of its 
contents, where B stands for the break and empty trailers are 

For EOL I EOL I 

EOL2 
For Break 

FIGURE 1 Group line-haul operation with two EOL 
terminals and one trailer per truck. 

EOL I 
For EOL 2 for EOL I 

For Breok For Break 

EOL 2 

FIGURE 2 Group line-haul operation with two trailers 
per truck. 

13 

unlabeled. Each set of two adjacent boxes represents a twin
trailer combination pulled by a tractor-trailer. Clearly, the com
binatorics of the problem can get quite involved, even for a 
case with so few nodes. 

The group line-haul problem addressed here exhibits many 
elements of classical vehicle routing problems: the objective is 
to create tractor tours from a depot (the break) visiting all 
customers (EOL terminals) and picking up and dropping off 
shipments (trailers). A comprehensive review of vehicle rout
ing and practice has been given by Bodin et al. (3). Note, 
however, that the group line-haul problem addressed here dif
fers from that body of literature in several important ways: (a) 
shipments (number of inbound and outbound trailers) are often 
larger than the vehicle size (trailer-pulling capacity), and (b) 
both pickups and deliveries as well as empty balancing are 
involved, rather than a single operation. 

A better background for the work reported here is provided 
by Magnanti's survey (2). The emphasis there is on formula
tions and mathematical programming issues related to basic 
vehicle-routing problems. 

A related and somewhat more general problem is railroad 
blocking. There the question is which set of freight cars should 
make up blocks on particular trains. This is a generalization of 
the group line-haul problem because locomotives can carry 
more than two cars and because cars move between multiple 
origin and destination yards (rather than in and out of a central 
terminal). Assad (4) explores several methods for dealing with 
that problem. 

FORMULATION 

Consider a terminal group with one break, numbered 0, and n 
EOL terminals (numbered 1, .. ., n as before) with pickups 
and deliveries P; and d;, respectively, at each i. Define 

n 

do= - I. d; 
i=l 

and 

T 
P = <.JJo, • • ., Pn) 

T 
d = (d0 , ••• , d11) 

n 

Po= - L P; 
i=l 

(1) 

(2) 

Further, define a complete network whose nodes are these 
n + 1 terminals. In this network let A be the node-arc incidence 
matrix and c be the vector of corresponding distances or costs 
(c;) of driving a tractor from node i to node j. 

Now define four different flow vectors t, x, y, and e over the 
network given by A. These vectors are all conformal to c: 

t is a vector of scalers tij, each giving the number of tractors 
on arc (i, J); 

x is a vector of scalers xij, each giving the number of 
outbound trailers (from the break to the EOL terminals} on arc 
(i, J); 

y is a vector of scalers Yij• each giving the number of 
inbound trailers (to the break) on link (i, J); and 

e is a vector of scalers eij• each giving the number of empty 
trailers moving on link (i, ;). 



14 TRANSPORTATION RESEARCH RECORD 1120 

.... ..... . .. .. ... .. .. .............. ... .... . ..... ..... . ... .. 

• • 0 • 0 I • • O I 0 4 0 " 0 o O O 0 • • O o 0 0 O O O O o O o 0 O O O O O o 0 o o • • O • • O o • I 0 O O O • • 

FIGURE 3 More complex example: four EOL terminals. 

FIGURE 4 Solution for example In Figure 3. 

The group line-haul problem can now be formulated as 
follows: 

t, x, y, e ~ 0 (3g) 

(3h) 
Minimize 

(3a) 

such that 

At= 0 (3b) 

Ax =-d (3c) 

Ay= p (3d) 

Ae=d-p (3e) 

2t- x - y- e ~ 0 (3f) 

t, x, y, e integer 

Constraint 3b guarantees the flow conservation for tractors, 
and constraints 3c and 3d guarantee that all pickups and deliv
eries are made. If Pi - di> 0, that number of empty trailers has 
to be supplied to terminal i, whereas if Pi - d; < 0, then IPi - dA 
trailers must be removed from i. Thus Equation 3e requires the 
trailer inventory to be stationary. Constraint 3f couples the 
tractor to the trailers. It says that a tractor can pull at most two 
trailers; that is, 

l/2(x;j + y,'j + ei) ~ tij V(i, J) (4) 

Equation 3f is a rearrangement of Equation 4 in vector form. 
Note that the optimum value oft is a flow vector and not an 

explicit set of driver instructions. [This formulation resembles 



Eckstein and Sheffi 

the one given by Gavish and Graves (5) for the traveling 
salesman problem.] To extract such instructions, the solution 
has to be decomposed into tours (typically all beginning and 
ending at the same terminal) and the trailers have to be as
signed to the legs of all such tours. Such an extraction is clearly 
possible: because t is a balanced flow with no exogenous 
sources or sinks, it can be decomposed into tours by a process 
very similar to that for finding a Euler tour of an even-degree 
graph. 

The solution method used here is based on a B&B method. 
The lower bound at every B&B subproblem is derived from a 
Lagrangian relaxation. whereas the incumbent generation is 
based on ad hoc heuristics. The details of the B&B implemen
tation are explained two sections later, after the relaxation has 
been outlined and the heuristics have been explained. 

THE LAGRANGIAN DUAL 

Program 3 consists of four separate network problems linked 
by additional constraints. A standard technique for dealing with 
problems with such recognizable embedded structure is to 
dualize the linking constraints (6, 7). This yields, for each 
nonnegative u E 9t(la+l)n [there are (n + l}n linking constraints], 
the following Lagrangian relaxation: 

(Sa) 

such that 

At= 0 (Sb) 

Ax=-d (Sc) 

Ay = p (Sd) 

Ae=d-p (Se) 

t, x, y, e ~ 0 (Sf) 

t, x, y, e integer (Sg) 

L(u) in Equation Sa is a lower bound on the optimum 
objective value for the original problem for all u ~ 0. The cost 
coefficients in Equation Sa can then be rearranged to emphasize 
the structure of four independent network problems. Further
more, because network problems have integer optima if their 
right-hand sides are integer, constraint Sg can be dropped from 
the formulation, which becomes 

such that 

At= 0 

Ax=-d 

Ay = p 

Ae = d- p 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 

15 

t, x, y, e ~ 0 (6f) 

The best lower bound (D) would be obtained as 

(7) 

By the strong duality theory of linear programming, D = ZLP• 

where ZLP is the optimum of the LP relaxation of program 3. 
Thus, the Lagrangian relaxation can produce a lower bound to 
program 3 that is only as tight as the LP relaxation of program 
3 (given the correct choice of u). 

As it turns out, it is possible to pick a priori the values of the 
multipliers u that yield the largest possible value of L(u). The 
appropriate choice is 

u* = (1/2) c (8) 

This gives each arc (i, J) an imputed tractor cost of 0 and an 
imputed trailer cost of c;/2. Essentially, one can think of this as 
attaching half a tractor to each trailer. The constraint 2t - x -
y - e ~ 0 is then automatically satisfied with zero slack, and 
trailers circulate in a shortest-path manner subject to a lowest
cost repositioning of empties. 

In order to strengthen relaxation 6, consider the original 
integer program (3). Note that if d; trailers must be delivered at 
EOL terminal i, at least f d;/2 l tractors must visit that terminal 
(where r · l denotes the upwards integer rounding function). 
Similarly, at least f dr/2 l tractor trips must be di patched from 
the break. An analogous argument applies to pickups, and so 
one can conclude that the minimum number of tractors to pass 
through terminal i is given by 

V; = Max {f IP;l/21. f Jd;J/2 l} for i = 0, 1, ... , n (9) 

This observation can be used to add the following set of (n + 1) 
constraints to program 3: 

~. t;j ~ v; for i = 0, ... , n 
1~· 

(10) 

Such "node-activity" constraints are redundant and may be 
added to the basic aggregate flow formulation without altering 
it. However, when the linking constraints are dualized, the 
node-activity constraints are no longer redundant: they alter the 
tractor part of the computation of L(u) considerably. With the 
addition of these constraints this part of the problem becomes 

Min (c - 2u)Tt (lla) 

such that 

At= 0 (1 lb) 

:I; ( .. > V· 
• • IJ - I 
1~· 

for i = 0, ... , n (1 lc) 

t ~ 0 (lld) 

Constraint 1 lc can be viewed as cutting planes that disallow 
the previous LP optimum, t* = 1/2(x* + y* + e*), unless it is 
integer (and hence optimal). The Lagrangian relaxation is thus 
strengthened by the addition of these constraints. By using a 



16 

Total inflow(= total outflow) 2: vj 

FIGURE S Before node splitting. 

i' 

:::::3 : ~M" ; 1nimum flow vi 

FIGURE 6 After node splitting. 

standard "node-splitting" technique (8), constraints llc may 
be handled without destroying the network structure of the 
tractor subproblem (Figures 5 and 6). In practice, the addition 
of the node-activity constraints improves the efficiency of the 
Lagrangian B&B method by a factor of approximately 5. 

CALCULATING THE LOWER BOUND 

At any given point in the B&B tree, Lagrangian 5 (along with 
constraints l lc and additional separation constraints) has to be 
solved. Note that the separation constraints include only upper 
and lower bounds on arc flows, and consequently they do not 
disturb the network structure of this program. Given u, L(u) 
can be computed by applying the primal network simplex four 
times (with the appropriate network modification for the tractor 
part to enforce the node-activity constraints). 

Given a solution to the program consisting of Equations 5 
plus constraints 1 lc plus separation constraints, L(u) is a lower 
bound to the program consisting of Equations 3 plus separation 
constraints. To get a set of multipliers that would give a better 
lower bound, one can use a subgradient method. With this 
method the new value of the multipliers is 

u: = u + sg, 

where the direction g is given by the subgradient 

g = x + y + e - 2t, 

and the step s is given by 

s = a Z!Nc - L(u) 

11 gll2 

(12a) 

(12b) 

(12c) 

This is a standard subgradient step, where a is the step size and 
the "target" value of L(u) is taken to be ZINc (the objective 
function value of the incumbent). This is the highest possible 
value one may choose for the target. It is reasonable only 
because the incumbents are usually very good. 

The initial value of u in a given subproblem of the B&B tree 

TRANSPORTATION RESEARCH RECORD 1120 

is taken to be the terminal u in the predecessor ("parent") 
subproblem. In the initial problem, best results were obtained 
with u = c/4. This is the center of the "box" {ulO Su S c/2} 
which, as shown in the following, approximates the dual feasi
ble region. 

If the convergence of the subgradient algorithm for a given 
subproblem is slow, it may be best to separate the subproblem. 
The rule used to terminate is the following: 

If for iteration m > K, 

L(u) - Zmc ~ 1 - m5, STOP 
L(uo) - ZINC 

(13) 

where Uo is the first multiplier vector used for the subproblem, 
and K and o are adjustable parameters. In other words, the 
algorithm has to go through at least K iterations. It then splits if 
the average improvement is no more than a fraction o of the 
way to the incumbent value per step. 

The reason that a minimum of K iterations must be per
formed before separation is that one cannol rely upon L(u) Lu 

increase at every step, even when it is far from its maximum 
value for the subproblem at hand. Without the m > K restric
tion, a single "bad" step at the outset of subproblem analysis 
would cause an immediate, unnecessary separation. Every such 
mishap would double the work the method must do to fathom a 
particular branch of the enumeration tree. Separations are thus 
costly and should be avoided unless they are absolutely neces
sary. On small test problems, values of K = 3 and o = 0.02 
proved efficient. 

Note that if at some iteration, as the result of a subgradient 
step, uij > c;j2 for some (i, J), the imputed cost cij - 2uij in the 
Lagrangian tractor network will be negative. Because this en
tails a high risk of creating a negative cycle in the imputed 
tractor costs, u should be restricted to the dual feasible region: 

U = {u 2: Ole - 2u has no negative cycles} (14) 

This region is a polytype, but it has an exponentially growing 
number of constraints. It is therefore easier to make the approx
imate restriction 

osusc/2 (15) 

which assures, more strongly, that c - 2u has no negative cost 
arcs. After each subgradient step, the resulting new value of u 
is projected onto this subset of the feasible region. Because t.l'1is 
region is box-shaped, the projection is simply 

uij : = Max{O, Min{uij• c/2}} 'V(i, J) (16) 

Strategies other than projection for enforcing that 0 S u S c/2 
(such as truncating the step) appear not to allow L(u) to grow as 
quickly. 

INCUMBENT GENERATION 

Given a solution to a relaxed subproblem, one needs to find an 
incumbent. With the Lagrangian-based lower bound, one ob-



Eckstein and Sheffi 17 

·------- -- -----------------~ 
f.\p1 = l 
\_Jdi=3 

n p? = :J 
~ d~ ;_ 3 

~--------------------- - ----~ 
FIGURE 7 Roundup falls-problem data. 

vious strategy presents itself. Given the (t, x, y, e) optimal in 
L(u), t can be replaced with the minimum-cost integer tractor 
flow vector t, required to support the trailer flows x, y, and e. 
On each link (i, J), this flow musl be at least (x;i + Y;i + e;i)/2, but 
also integer, hence at least r(x;i + yiJ + eij)/21. However, the 
tractor flow must also be balanced and consequently I, should 
be the optimal solution to the problem 

(17a) 

such that 

At= 0 (17b) 

t ~ r 1/2 (x + y + e) l (l 7c) 

Program 17 is a network circulation problem and may be 
solved by network simplex. The quadruplet (t,, x, y, e) is then a 

FIGURE 8 Roundup falls-Integer optimum. 

-ti~ = I 
."12= l 

FIGURE 9 Roundup fails--one possible routing from 
break to 2 In L(u). 

feasible solution to the integer program 3. Unfortunately, this 
simple roundup incumbent generation strategy is inadequate. 
To demonstrate this, consider the simple example problem in 
Figure 7. One of the two optimal solutions to this group line
haul problem is given in Figure 8. (In the other optimum, the 
roles of EOL terminals 1 and 2 are interchanged.) Because the 
algorithm separates only on the liJ (tractor) variables, as L(u) is 
computed, all trailers will still always be free to take the 
shortest path to their final destinations. For instance, all out
bound traffic for Terminal 2 could take the route shown in 
Figure 9 or, with a different u, the route shown in Figure 10. 
However, the IP optimum includes routings in which two 
different paths are used, such as the one shown in Figure 11. 

Splitting only on the t variables, the roundup heuristic never 
changes any trailer routes, so it can never discover the op
timum. Two courses of action can be used to detect the op
timum: separating on trailer variables and creating an incum
bent finder that intelligently alters trailer routes. The former 

FIGURE 10 Roundup fails-another possible routing 
from break to 2 In L(u). 

FIGURE 11 Roundup falls-a routing that cannot 
occur In L(u). 



18 

strategy puts most of the burden of finding a solution on the 
enumeration component of the algorithm-which may lead to a 
very large B&B tree. Consequently the second course of action 
was chosen. 

In the following sections two incumbent generation schemes 
based on local improvement heuristics are described. The focus 
in the first one is on developing a method that will run quickly, 
whereas the focus of the second is on getting accurate solu
tions. These methods are explained separately. 

Method 1: Simple Local Improvements 

The first heuristic takes the L(u) solution and makes some local 
modifications to it. The trailer routings are slightly perturbed 
[ignoring the t part of the L(u) solution] so that the minimum 
integer tractor movements needed to "cover" them can be 
reduced. In the combined x, y, and e solution to L(u), the 
method detects all patterns similar to those shown in Figure 12, 
where solid arrows represent arcs with an odd total number of 
trailers. 

The local improvements shown in Figures 13-15 are ap
plied, respectively, to each of the three patterns in Figure 12 
(dashed lines represent arcs whose trailer flows have been 
increased from odd to even values, and boxes represent particu
lar trailers). The modifications are then ranked by their total 
savings, that is, c0b in the first case, cdJ in the second, and 

~+~+~+~-~+~+~=~+~ 
-cab~o (18) 

in the third. These improvements are then implemented in a 
greedy manner, highest savings first, until no more can be 
implemented. (Note that some of the detected patterns might 
overlap so that performing one might preclude applying oth
ers.) After these modifications have been made, the flow-based 
roundup procedure (program 17) is performed to compute the t 
part of the candidate incumbent, this time using the modified 
trailer flows as input. 

As shown by Eckstein (9) the method described earlier 
cannot identify all the possible patterns that can be improved to 
generate a lower-cost tractor flow. More improvement patterns 
can be found if the minimum tractor covering is calculated first 
(given a solution of the Lagrangian relaxation) and then the 
resulting slack capacity is investigated for promising patterns. 
This is the basis of the second method for generating 
incumbents. 

0 0 

(I) (ii) 

FIGURE 12 Patterns recognized by simple local 
Improvement heuristic. 

TRANSPORTATION RESEARCH RECORD 1120 

Method 2: Cycle Splicing 

Given a "round-up solution" (t,, x, y, e), let the slack vectors 
be defined as 

s = 2t, - x - y - e (19) 

Since A ·t = 0 (see program 11) ands~ 0, a·s = 0. To see this, 
note the following: 

As = 2At, - Ax - Ay - Ae 
= 0 + d - p - (d - p) 
=0 (20) 

Thus, the vector of slack capacities s may also be considered a 
balanced "flow" in the interterrninal network. Now any bal
anced flow can be expressed as a sum of flows around simple 
directed cycles. (A simple cycle is defined as one that repeats 
neither arcs nor nodes.) 

Definition: A cycle decomposition of some balanced flow w 
(w ~ 0, Aw = 0) is a sequence H 1, •• ., H1 of (not necessarily 
distinct) simple directed cycles such that 

(21) 

where f(H1) denotes a flow vector that has a 1 in each position 
(i, J) corresponding to an arc of H1, and zeroes in all other 
positions. 

Note that (if c has no zero-cost cycles), swill always decom
pose into a sequence of distinct simple cycles. Moreover, if u is 
strictly triangular (which it is when u is proportional to c), this 
decomposition is unique. 

Consider two simple cycles, R and S in the decomposition of 
s, having the property that they cross only at the break. The two 
cycles can be combined in a splicing operation that inserts one 
in a given arc of the other. As an example, consider Figure 16, 
which shows two such cycles. Cycle S can be inserted into arc 
(i, J) to create the combined cycle shown in Figure 17 to create 
a substantial cost saving. In this example, the decrease in 
tractor costs is 

(22) 

which, iri general, may be positive, negative, or zero. 
Note that there are a variety of different splicing oppor

tunities because the roles of R and S may be interchanged, and 
the irisertion arc (i, J) may be varied. However, if the cycles are 
both short, there will only be a handful of possibilities, some of 
which will produce savings, whereas others will not. 

Note also that this method is applicable to cases in which R 
and S share some arcs (but there is a slack of at least 2 on all 
shared arcs). Essentially, each nonshared part of one cycle must 
be spliced into some nonshared arc of the other, and the number 
of tractors on all shared arcs is reduced by 1. For example, 
consider the problem shown iri Figure 18. The LP solution 
(ignoring node-activity constraints) is shown in Figure 19, and 
the corresponding slack is shown in Figure 20. This slack can 
be broken down into the cycles S = 0-1-0 and R = 0-2-1-0. 



( i) 

FIGURE 13 Local Improvement for pattern (I). 

(ii) 

FIGURE 14 Local improvement for pattern (ii). 

(iii) 

FIGURE 15 Local Improvement for pattern (Ill) . 

.. s 

FIGURE 16 Two cycles ready for splicing. 
FIGURE 17 Outcome of the splicing 
operation. 



20 

.. ' . . . ...... . . . .. .. . ... .. . . .. .. .. . . . . .... . . . . 

FIGURE 18 Splicing with shared arcs-problem data. 

FIGURE 19 ShaI"ed-al'c splklng
optlmum trailer flows. 

FIGURE 20 Slacks for shared-arc splicing 
example. 

Splicing the nonshared part of R, 0-2-1, into the nonshared arc 
(0, 1) of S, the IP optimum shown in Figure 21 is obtained. 

The cycle-splicing method works as follows: 

1. Given x, y, and e optimal in L(u), it solves the constrained 
roundup problem (Equations 11) and computes the resulting 
slack~. 

2. It decomposes s into a sum of simple cycles. 
3. For each pair of such cycles, it examines all the possible 

ways of splicing them together. For each pair, the heuristic 
identifies the most attractive splicing opportunity and records it 
in a list. 

4. It performs the recorded splicing operations in a greedy 
manner, starting with the one with the greatest savings and 
proceeding to the next most profitable one that is still allowable 
until the list is exhausted. 

Both the simple local improvement heuristic and the cycle
splicing heuristic take as input the x, y, and e arising from a 
solution of L(u). They then attempt to juggle some of the 
routings in order to reduce the cost of covering these trailer 
movements with tractors. Neither heuristic ever really changes 
some fundamental aspects of the incoming solution, in particu
lar the assignment of empty trailers. If some EOL terminal i 
receives a given number of empties from EOL j in the solution 

TRANSPORTATION RESEARCH RECORD 1120 

FIGURE 21 Outcome of shared-arc splice (also IP 
optimum). 

to L(u), it will still do so in the perturbed solution output from 
either heuristic. The only difference will be that certain detours 
may be inserted in paths taken by these trailers. 

In practice, the cycle-splicing heuristic works very well, as 
shown by Eckstein (9); under certain general conditions the 
cycles that arise in the decomposition of s are always short, 
allowing for efficient implementation. It is, however, somewhat 
slow, and implementing it for every subproblem actually slows 
down the overall run Lime of the Lagrangian B&B procedure 
(as compared with using Method 1). A more efficient approach 
is to use the cycle-splicing heuristic just once, at the very 
beginning of the algorithm., and the much fas ter simple local 
improvement heuristic (Method 1) at every iteration of every 
subsequent subproblem processed. In this way, one gets the 
advantage of a good initial incumhent wi1hout the computa
tional burden of running the cycle-splicing heuristic 
repetitively. 

LAGRANGIAN B&B PROCEDURE 

As mentioned in the first section, the Lagrangian relaxation and 
the heuristic incumbent generation methods are used within a 
B&B procedure. Figure 22 shows a general flowchart of the 
calculation involved in Lagrangian-based B&B methods fol
lowing Fisher (6). A des<..Tiplion has been given of how a u 
vector is chosen for each subproblem (block 2 in Figure 22), 
how L(u) is calculated for a given u (block 3), and how the dual 
iterations are performed (block 8) and when they aTC termi
nated (block 7). The generation of a new incumbent solution 
(block 5) was described in the previous section. Here, some of 
the implementation details of the B&B procedure are given. 

At each point in the solution procedure the B&B procedure 
deals with one subproblem (a point on the enumeration tree), 
that is, the original integer program with some added separa
tion constripnts. An active subproblem is one that has not been 
further separated and is thus an end point of the tree. At any 
given time, each subproblem q has some best lower bound 13q 
on its LP-relaxed objective value. This lower bound is the 
highest value of L(u) found for the subproblem, or any of its 
ancestors, for all the u's tried so far. The lowest value the 
global integer optimum could possibly have is 

13 =Min {13Jq an active subproblem} (23) 

The B&B method tries to increase 13 and decrease the upper-



Eckstein and Sheffi 

® 
Pick new u 

No 

CD 
PickaSubproblem ----~ 

Pick u 

® 
Compute L(u) 

@ Replace lncum· 
bent if newly 11en
e rated feasible 
solution is better 

Yes 
!"fothom'l 

® 
Separate 

Subproblem 

Yes 

FIGURE 22 General Lagrangian branch and bound. 

bound ZINC (the objective value for the incumbent) until they 
are near enough to conclude that ZINc is acceptably close to 
optimality. 

Fathoming 

' A subproblem is fathomed (removed from further considera-
tion) if a lower bound for its objective value provided by an 
L(u) computation is within P percent of the upper bound on the 
global optimum provided by the incumbent. Such a strategy 
guarantees that the final solution is within P percent of op
timality. The fathoming condition is the following: 

IL*u)h: (1 -~J ZINc 
100 

(24) 

The user-specified parameter P can be used to explicitly trade 
off between the accuracy of the solution and the speed of 
obtaining it. 

Separation 

If slow improvement is detected in solving the Lagrangian 
relaxation of a given subproblem, it is split in two. In practice, 
it seems most efficient to split on the tractor variables tij rather 
than on the trailer variables xij, Yij• or eij. Each split requires that 

21 

tij be less than or equal to some integer m in one offspring 
subproblem and greater than or equal to m + 1 in the other. 

Good computational experience was obtained by splitting on 
the l;j for the longest arc (i, J) for which the number of trailers 
in lhe current L(u) solution is odd Thus the following con
straints are added to the offspring subproblem: 

(25a) 

(25b) 

The value of m is chosen to be l.x;j + Y;j + e;jJ unless l;i bas been 
otherwise constrained (L·J denotes the floor or integer round
down function). 

The separation scheme used in practice is somewhat more 
complicated; a "scoring" method is used for choosing the 
splitting arc. Each arc with odd trailer flow is assigned a score 
based on its length, whether it emanates from or terminates at 
the break, and whether it was separated on before. The al
gorithm then splits on the arc with the highest score. This 
method provided only about a 10 percent run time improve
ment over the simpler "longest odd arc" method mentioned 
before. 

For the "lower" (t;j Sm) offspring, where at most m tractors 
are allowed on some arc (i, J), it is clear that there can be at 
most 2m trailers of each kind on (i, J). Thus the following 
redundant constraints can be enforced: 

(26a) 

YijS 2m (26b) 

(26c) 

These simple upper bounds strengthen the Lagrangian relax
ation and can be added without breaking network structure. 

Subproblem Selection 

After the algorithm has fathomed or separated a subproblem, it 
is faced with the decision of which subproblem to try next 
(unless there are none left unfathomed, in which case it termi
nates). The procedure uses here a simple rule of processing the 
problem, q, with the lowest pq. 

The algorithm also includes a feature that allows it to switch 
to high-PP subproblems in the event that there are so many 
active subproblems that the program is close to exhausting its 
virtual memory allocation. The intent is that these subproblems 
may be fathomed relatively quickly, freeing up memory for the 
more important ones. This feature allows the algorithm to 
handle larger problems with a given amount of memory, albeit 
with some speed penalty. 

Basis Preservation 

To improve run times the procedure uses information from 
earlier network simplex bases to speed up calls to the network 
simplex code. When L(u) is computed, four network simplex 

• 



• 

22 

optimizations must be performed. At each subgradient itera
tion, the previous four optimal bases for the subproblem are 
used as the four starting bases. Because the optimal bases for 
two consecutive values of u should resemble one another, 
fewer pivots may be needed than if all initial bases are con
structed from scratch. 

This idea is carried one step further: when L(u) is computed 
first for a subproblem, the procedure starts essentially with the 
four bases that were optimal in the last iteration of its parent. 
The slight difficulty here is that the added separation constraint 
may make one or more of the old optimal bases infeasible for 
the offspring. To see how this is handled, assume, for example, 
that a constraint tij ~ m was added to a parent problem in which 
tij = r > m, rendering the parent basis infeasible in the offspring. 
Now, all the network representations contain a "super trans
shipment" node connected to all other nodes by "artificial" 
arcs of very high ("big M") cost. To maintain feasibility in the 
child, the flows are perLUrbed as shown in Figure 23. 

By also setting the maximum flow capacity of the two 
artificial arcs to r - m, the procedure avoids having to add them 
to the basis (although either of them could already be in the 
basis in a degenerate manner), and the original spanning tree of 
the parent basis remains valid in the subproblem's perturbed 
network. Of course, when the network simplex routine is 
called, the artificial arcs will immediately have flow removed 
from them, because they have such high costs. Analogous 
techniques can be used for the addition of constraints of the 
form t;j ~ m + 1, and also for the x, y, and e bases. 

Old basis information could have been retained without 
perturbations by using a dual method to reoptimize the off
spring of a subproblem, as in standard B&B methods, but this 
would have required the in1plementation of bot..'1 primal ai1d 

dual network simplex algorithms. 
The drawback to using basis-preservation methods is that 

information must be stored for all active subproblems, increas
ing program memory requirements. This can be alleviated by 
using a depth-first tree exploration strategy in which the parent 
basis for one of the offspring of a subproblem is used without 
having to allocate any more memory, as long as that one 
offspring is analyzed immediately after separation. 

COMPUTATIONAL PERFORMANCE 

The Lagrangian B&B procedure described earlier was imple
mented on a VAX 11(780 minicomputer using VAX FOR-

~,__~_F_lo_w_r~~~~~CJ=> 

I Applytij~m<r 

11
Super" 
node 

Flowm 

.. ······ ·· .. : 
: · Ariitli:lai CiiC:5: 
: Flowr-m 
: Cost' big M" 

FIGURE 23 Basis modification 
for a violated upper bound. 

TRANSPORTATION RESEARCH RECORD 1120 

TRAN. (The computational power of this machine, at least for 
compute-bound numerical tasks, is now roughly matched by 
some of the recently released work stations and "high-end" 
personal computers.) 

The code was run on three sets of 20 randomly generated 
problems, one set with 4 EOL terminals per instance, one with 
8, and one with 16. For these problems, EOL terminals were 
uniformly distributed over the interstices of a 40-by-40 grid 
centered on the break, with all p/s and d/s drawn from the 
probability mass function (PMF) 

! 
0.4, x = 1 l 
0.4, x = 2 

p(x) = 
0.1, x = 3 
0.1, x = 4 

(27) 

This PMF resembles values that might arise in practice. Dis
tances were Euclidean, rounded up to integer values, with small 
adjustments and "stop-off" costs added to ensure that the 
triangle inequality was always strictly met. 

Each of the 4-, 8-, and 16-node problem sets was run at 
varying levels of the percentage-fathoming parameter P. For 
budgetary reasons, each individual problem run was limited to 
roughly 5 megabytes of virtual memory and 15 min of CPU 
time. In summary, results were excellent for the 4-node prob
lems, acceptable for 8 nodes, and somewhat disappointing for 
the 16-node examples. 

Table 1 gives the results for selected combinations of nwn
bers of EOL terminals and levels of P. It should be noted that 
runs were simply cut off if the available time or memory iimits 
had to be exceeded. The method is quite memory-intensive, 
because basis information is retained from subproblem to sub
problem. On the 8- and 16-node problems, upon reaching about 
300 active subproblems, the algorithm would often switch to 
the high-13q mode in which it attempted to fathom unpromising 
subproblems firs t in an effort to free up space. This procedure 
tended to slow down convergence and was sometimes unsuc
cessful in holding down memory requirements (when high-13q 
subproblems could not be fathomed), in which case the pro
gram simply halted upon reaching its 5-megabyte storage limit. 

As the results given in Table 1 suggest, the B&B procedure 
can easily solve small problems but does not perform well for 
large ones. In particular, the 16-node runs produce a duality gap 
only marginally smaller than that one would get by simply 
running the cycle-splicing heuristic and the LP relaxation and 
then comparing the two. None of the twenty 16-node cases run 
showed any improvement in the incumbent after the first itera
tion of the first subproblem, and the improvement in the lower 
bound attributable to enumeration was not very great. Thus, the 
best course in practice is to use the cycle-splicing heuristic as a 
stand-alone procedure and to optionally employ the rest of the 
algorithm as a means of assessing nearness to optimality . 

In a detailed analysis of the smaller problems, there appeared 
to be a strong dependence of run time on the initial value of u. 
On average, the best results were obtained with u = c/4. 
However, for individual. problems, differelll values would 
sometimes work better. This phenomenon, once understood, 
could perhaps be exploited to improve the updating of u. 



Eckstein and Sheffi 23 

TABLE 1 PERFORMANCE OF LAGRANGIAN B&B METHOD 

No. ofEOL Fathoming 
Run Time (sec) Duality Gap (%) 

Terminals Percentage P Mean 

4 0 16.7 
4 5 5.6 
8 0 439.0 
8 5 166.7 

16 5 900+ 

CONCLUSIONS 

A method for optimizing tractor-trailer and twin-trailer move
ments in a group line-haul operation has been described. The 
method is based on a B&B procedure in which the lower 
bounds are calculated by a Lagrangian relaxation. The first 
incumbent is generated by a cycle-splicing heuristic and the 
incumbents at every subproblem are generated by a simple 
local improvement heuristic. 

For small problems the B&B procedure worked well, but for 
larger ones the cycle-splicing heuristic should be used as a 
stand-alone method. The shortcomings of the B&B procedure 
may be alleviated by improving the dual step and thus setting 
the multiplier variables u in a more efficient way. 

Other solution methods for this problem may be based on 
extensions of the cycle-splicing heuristics in which a matching 
problem is solved in order to decide on the best splicing 
combinations (9). Alternatively one can think of a set covering 
formulations based on tractor tours (10, 11). 

ACKNOWLEDGMENT 

Several individuals from Consolidated Freightways, Inc., 
helped in the understanding of group line-haul operations and 
the problems involved. They include Lee Frazee, Robert 
McDonald, Philip Seeley, Robert Blackburn. Toby Asarese, 
and Al Delara. In addition, Gene Hughs and Tom Meyers of 
United Parcel Service helped in the understanding of the 
(somewhat different) UPS twin-trailer matching problem. 
Thanks ar~ expressed to all these individuals. 

Median Mean Median 

4.3 0.1 0.0 
0.9 5.0 5.0 

348.9 1.6 0.0 
32.9 5.2 5.0 

900+ 15.8 16.5 

REFERENCES 

1. Y. Sheffi and W. Powell. Interactive Optimization for LTL Net
work Design. Center for Transportation Studies Report 85-17. 
Massachusetts Institute of Technology, Cambridge, 1985. 

2. T. L. Magnanti: Combinatorial Optimization and Vehicle Aeet 
Planning: Perspectives and Prospects. Networks, Vol. 11, 1987, pp. 
179-213. 

3. L. Bodin et al. Routing and Scheduling of Vehicles and Crews: 
The State of the Art. CompuJers and Operations Research, Vol. 
10, 1983, pp. 63-211. 

4. A. A. Assad. Modeling Rail Freight Management. Ph.D. thesis. 
Sloan School of Management, Massachusetts Institute of Technol
ogy, Cambridge, 1978. 

5. B. Gavish and S. C. Graves. The Traveling Salesman and Related 
Problems. Working Paper OR 078-78. Operations Research Cen
ter, Massachusetts Institute of Technology, Cambridge, 1978. 

6. M. L. Fisher. The Lagrangian Relaxation for Solving Integer Pro
gramming Problems. Management Science, Vol. 27, 1981, pp. 
1-18. 

7. M. L. Fisher. An Applications Oriented Guide to Lagrangian 
Relaxation. Interfaces, Vol. 15, No. 2, 1985, pp. 10-21. 

8. B. L. Golden and T. L. Magnanti. Course Notes, Course 15.082. 
Sloan School of Management, Massachusetts Institute of Technol
ogy, Cambridge, 1985. 

9. J. Eckstein. Rowing Methods for Twin-Trailer Trucks. Master's 
thesis. Operations Research Center, Massachusetts Institute of 
Technology, Cambridge, 1986. 

10. M. L. Balinksi and R. E. Quandt. On an Integer Program for a 
Delivery Problem. Operations Research, Vol. 12, 1964, pp. 
300-304. 

11. F. H. Cullen, J. J. Travis, and H. D. Ratliff. Set Partitioning 
Heuristics for Interactive Optimization. Networks, Vol. 11, 1981, 
pp. 125-143. 




