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Sight Distance Relationships Involving 
Horizontal Curves 
GARY R. WAISS! AND DONALD E. CLEVELAND 

Recent AASHTO design policy developments and research 
have Increased needed stopping sight distance lengths on hori­
zontal curves. The mathematical methodology recommended 
by AASHTO for calculating needed sight clearances across the 
Inside of horizontal curves exists only for the case where the 
curve is longer than the needed sight distance. There is no 
explicit exact solution available for the case where the sight 
distance Is longer than the curve, a situation expected to hap­
pen more frequently as sight distance needs are increased. This 
research provides exact solutions for the case where the sight 
distance Is greater than the curve length for a moving observer. 
It relates the available sight distance; horizontal curve geo­
metric elements; and location of observer, road object, and 
clearances to an obstacle to vision located Inside the driving 
path of the observer. The lesser clearances required for these 
cases are often as much as 50 percent smaller than those 
obtained using the longer curve case. User-friendly design 
procedures and aids using these results have been developed 
and are presented in the paper. They are easily programmable, 
and can, hence; serve as a part In a decision support system. 
The methodology should be valuable In evaluation of safety 
and operation of critical highway locations. 

Stopping sight distance SSD, as defined by AASHTO in 1940 
and later (1-4), is the minimum sight distance that allows a 
vehicle traveling at or near design speed to stop just before 
reaching an object in its path. It is one of the most fundamental 
criteria controlling the geometric alignment of roads and 
streets. If this criterion is to be met, the available sight distance 
S must exceed the needed SSD. S is related to the horizontal 
alignment by the design parameters of the curve, the position of 
the driver and the road object, and the location of sight-limiting 
obstacles inside the curve. These obstacles to vision are created 
by cut slopes, foliage, and structures of all types. The other 
sight distances used in street and highway design, passing and 
decision sight distances, use S measured in almost the same 
way, although the determinations of the needed values result 
from different models of driver behavior. 

This paper is a major extension of stopping sight distance 
research conducted in the University of Michigan Transporta­
tion Research Institute (UMTRI), completed for the NCHRP 
(5, 6). It presents many new results involving the line of sight, 
travel path, distance of an obstacle to vision from the travel 
path, and effects of lateral observer eye position and road 
object position on sight distance availability. For reference 
purposes, it also restates some earlier findings. 

G. R. Waissi, School of Management, University of Michigan, Dear­
born, Mich. 48128. D. E. Cleveland, Department of Civil Engineering, 
University of Michigan, Ann Arbor, Mich. 48109. 

Sight distance availability on horizontal curves is developed 
by considering geometric and trigonometric relationships in­
volving the elements shown, for example, in Figure 1. 

Table 1 presents the effect of different SSD values on M, the 
maximum lateral required clearance, for three representative 
long rural curves. It compares the M values for the AASHTO 
SSD recommendations from the current 1984 AASHTO policy 
with the values recommended by UMTRI (2, 4, 5). Clearances 
as great as twice those of the current policy value are found. In 
addition, Neuman et al. (7) have shown the need for even 
greater values than those shown in the table for horizontal 
curves where the stopping distance is increased because of the 
lesser friction available for stopping because of lateral stability 
friction requirements. They cite a curve of high design speed 
for which the needed clearance is more than tripled. 

AASHTO presents the maximum clearance requirement M 
for SSD sight obstructions inside horizontal curves only for the 
case S ~ L, where L is the length of the curve, and both observer 
and road object are on the curve (4 ). For the other case S > L for 
which the needed clearance is less, no mathematical relation­
ship is presented. AASHTO recognizes that the needed clear­
ance is less when the observer or road object is near the ends of 
the curve (4, p. 247). For both of these situations, AASHTO 
recommends use of straightforward graphical procedures with 
scaled plan sheets or of Raymond's empirically developed 
curves, particularly where spiral transitions are being used (8). 

This research was undertaken to derive relations involving M 
and S for all known practical cases. A search of the literature 
revealed no closed form solutions except for some of the 
simplest approximating cases. 

Figure 2 shows the way in which the maximum needed 
clearance varies on and near the curve for the 60-mph design 
speed curve for the two SSD values S = 850 ft (256.0 m) and 
S = 650 ft ( 198.1 m) used in Table 1. It is similar to the SSD 
profile presented by Neuman et al. (7). When the observer is on 
the tangent within a distance S from the point of curvature (PC) 
of a long curve, the largest value of m needed to have a clear 
line of sight varies nonlinearly from 0 (at a point S in advance 
of the PC) to M (when the observer is at the PC or beyond it on 
the curve). All points on the curve closer than S/2 to the PC 
also need a clearance less than M. In the paper (7), deriva­
tions are given and findings are presented for the following: 

1. Relationships involving the geometric design parameters 
of the curve R (hence D), L, I, the lateral clearance m, and the 
available sight distance SD as measured along a straight line 
from the observer to the road object that touches the obstacle to 
vision. 
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FIGURE 1 Case 4: both observer and road object off the horizontal curve. 

2. Relationships as the preceding but with the available 
sight distance S measured along the road from the observer to 
the road object. 

3. Relationships involving the maximum value of the lateral 
clearance m* for a specified curve and S. 

4. Chord approximations for some of the exact solutions 
developed. 

5. A recommended curve design and existing curve evalua­
tion procedure including graphical design aids. 

GEOMETRIC RELATIONSHIPS 

Figure 1 shows the geometric relationships among the locations 
of the observer, obstacle to vision, and road object. As the 
observer moves along the road centerline, the farthest point 
at which a road object can be seen also changes, and the 

magnitude of the available sight distance change clearly de­
pends on the curve, geometry properties. The geometrical rela­
tionships among the factors affecting this sight distance varia­
tion for horizontal curves consisted of four cases as follows: 

Case 1: Observer and object in the horizontal curve. 
Case 2: Observer before the PC and object in the horizontal 

curve. 
Case 3: Observer in the curve and object beyond the point of 

tangency PT of the curve. 
Case 4: Observer before the PC and object beyond the PT. 

PC and PT are interchangeable in these cases. 

Geometrical relationships are derived for these cases for a 
single obstacle to vision inside the curve, and the results are 
measured along the line of sight SD. The derivation is divided 
into three parts as follows: 

TABLE 1 EFFECT OF STOPPING SIGHT DISTANCE ON REQUIRED CLEARANCE 

Design Speed and Typical Degree of Curve 

50 MPH 80 60 MPH 50 70 MPH 40 
(81 kmh) (97 kmh) (113 kmh) 

SSD M SSD M SSD M 
ft ft ft ft ft ft 

(meters) (meters) (meters) (meters) (meters) (meters) 

AASHTO 475 40 650 47 850 64 
1984 (144.8) (12.2) (198.1) (14.3) (259.l) (19.5) 
Upper 

UMTRI 560 56 850 80 1200 128 
Upper (170.7) (17.1) (259.1) (24.4) (365.8) (39.0) 
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FIGURE 2 Examples of horizontal curve clearance needed for V = 60 mph, 
D = 5°, R = 1,126 ft, L = 1,200 ft, and I= 60°. 

1. Derivation of the line-of-sight distance component SD• 
from the observer to the vision obstacle. 

2. Derivation of the line-of-sight distance component SD0 
from the vision obstacle to the road object. 

3. Obtaining the total line-of-sight distance SD =SD•+ SD0• 

Derivations for the four cases follow: 

Case 1: Observer and Road Object In the Horizontal Curve 

Case 1 can be obtained from Figure 1 by setting both £i2 and 
L21 equal to zero. The notation used in the derivation is also 
shown in that figure. The vision obstacle is located inside the 
curve with radius R at a distance m from the centerline (CL) of 
the lane. Observer and object are both assumed to be located on 
the CL. 

Derivation of SDe 

Using Figure 1, with Liz = 0 and £i1 = 0, the sight distance 
component SD. from the observer to the vision obstacle is 

SD, = SD1 + SD2 = R sin (/1 - / 2) + (R - m) sin (/z) (1) 

where 

(2) 

in which L01 is the distance from the observer to the station of 
the vision obstacle along the CL, as shown. /2 can be obtained 
from Figure 1 using the trigonometric relationship for h, the 
shortest distance from the center point of the curve perpendicu­
lar to the line of sight, setting the expressions for h equal, and 
solving for /2• Then 

(3) 

Derivation of SD0 

Using the results just obtained and Figure 1, the sight distance 
component SD0 from the vision obstacle to the road object is 

Derivation of SD 

Using the results just obtained and Figure 1, the total sight 
distance SD, for the case when both observer and road object 
are in the horizontal curve, is 

SD= SD,+ SD0 = 2SD1 = 2R sin (/1 - /z) 

where / 1 and / 2 are as derived in Equations 2 and 3. 

Case 2: Observer Before the PC and Road 
Object In the Horizontal Curve 

(5) 

Case 2 and the notation used are shown in Figure 1 when 
setting only Ln equal to zero. The derivation follows the 
previous three steps. 

Derivation of SDe 

The sight distance component SD. from the observer to the 
obstacle derived from Figure 1 for L22 = 0 is 

SD.= SD 1 + SD2 =sin (/1 - /z) (R2 + L21
2

)
1fl 

+ (R - m) sin (/2) 

From trigonometry, 

(6) 
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12 can be obtained from Figure 1 using h: 

12 = tan-1 {[R - m - (R2 

+ Li12)1/2 cos (/;)]/[(R2 

+ Li12)l/2 sin (/1)1l 

Derivation of SD0 

(7) 

(8) 

The available sight distance component SD0 from the obstacle 
to vision to the road object is obtained using Figure 1 with 
L,.2 = 0. Thus, 

SD0 = Z - SD2 = [(R2 + l,.12) sin2 (/1 - /2) 

- L21
2]1/2 - (R - m) sin (/2) 

Derivation of SD 

(9) 

The available total sight distance SD for the case where the 
observer is on the tangent in advance of the PC or beyond the 
PT and the road object is in the curve is developed using the 
results obtained in Equations 6 and 9. 

SD =SD.+ SD0 = (R2 + l,.1
2)1fl sin (/1 - /2) 

+ [(R2 + L2i2) sin2 (/1 - 12) - li1211/2 (10) 

where/1 and/2 are as given in Equations 7 and 8. Whenl,.1=0, 
Equation 10 reduces to the sight distance formula derived in 
Case 1. 

Case 3: Observer In the Curve and Road Object 
on the Tangent Beyond the PT of the Curve 

Case 3 can be obtained from Figure 1 by setting L21 = 0. The 
notation used is from Figure 1. The derivation is similar to that 
for Case 2 with only the locations of the observer and the object 
being interchanged 

Derivation of SDe 

The sight distance component SD. from the observer to the 
obstacle to vision is 

SD,= SD1 + SD2 = R sin (/1 - 12) + (R - m) sin (/0 

where 

/ 1 = 180(L0if7tR) 

/2 = tan-1 ( {R[l - cos (11)) - m}/[R sin (/1))) 

Derivation of SD0 

(11) 

(12) 

(13) 

The sight distance component SD0 from the obstacle to vision 
to the road object is 

SD0 = Z - SD2 = [R2 sin2 (/1 - /2) + L2/11/2 

- (R - m) sin (/0 (14) 
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Derivation of SD 

The total available sight distance SD, when the observer is in 
the curve and the road object is beyond the PT, is obtained 
using the results obtained in Equations 11 and 14. Thus, 

SD =SD,+ SD0 = R sin (/1 - 12) + [R2 sin2 (/1 - /2) 

+ L 2/11fl (15) 

where / 1 and /2 are as given in Equations 12 and 13. 
When L,.i = 0, Equation 26 reduces to the available sight 

distance formula for Case 1. 

Case 4: Observer Before the PC and Road Object 
Beyond the PT 

In this case, both the observer and the road object are on the 
tangents of the horizontal curve, and hence Lzz and L21 are both 
strictly greater than zero. Case 4 and the notation used in the 
text are shown in Figure 1. The derivation is similar to those 
described previously. 

Derivation of SDe 

The sight distance component SD• from the observer to the 
vision obstacle is obtained from Figure 1. Thus, 

SD.= SD1 + SD2 = (R2 + L,.1
2)1fl sin (/1 - /2) 

+ (R - m) sin (12) 

where 

/1 = 180 (L02/1tR) + tan-1 (l,.1/R) 

12 = tan-1 {[R - m - (R2 + L212)1fl 

cos (/1)]/[(R2 + l,.1
2)1fl sin (/1)]} 

(16) 

(17) 

(18) 

L02 is the distance from the PC to the station along the path of 
travel at the radial location of the obstacle. 

Derivation of SD0 

The sight distance component SD0 from the obstacle to vision 
to the road object is obtained from Figure I. Thus, 

SD0 = Z - SD2 = [Lzz2 - l,.1
2 + (R2 + L21

2) sin2 (11 - /2)] 112 

- (R - m) sin (10 (19) 

where L,.1 is as defined earlier, L,.2 is the distance from the PT 
to the road object, and / 1 and /2 are as given in Equations 17 
and 18. 

Derivation of SD 

The total available sight distance SD, for the case in which 
neither observer nor object are on the curve, is 

SD =SD.+ SD0 = (R2 + L,.i2)1fl sin (/1 - /2) 

+ [l,.i2 - L212 + (R2 + li12) sin2 (/1 - l2)]lfl (20) 
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By setting Ln = 0, one obtains Case 2; by setting Lz1 = 0, 
Case 3; and by setting both Lz1 and Lzi. = 0, Case 1. Hence, 
Equations 20 covers all cases for all locations of observer, 
obstacle to vision, and object on road. 

The relationship for the line-of-sight distances SD can be 
transformed to the sight distances along the observer's travel 
path. These sight distance formulas are presented in Tables 2 
and 3 for all four cases. Lzi is the distance between the observer 
and the PC when the observer is on the tangent before the PC. 
L22 is the distance between the PT and road object when it is on 
the tangent. These distances are shown in Figure 1. Further, in 
Tables 2 and 3 the various central angles of the line of sight 
used in the derivations, as shown in Figure 1, are labeled / 1 
through /4• In Table 3, Loi represents the distance from the 
observer to the centerline station of the obstacle to vision when 
the observer is in the curve, and L00 is the distance from the PC 
to the vision obstacle station when the observer is at or before 
the PC. 

The distance traveled by the vehicle along the curve is 
considered as the sight distance in horizontal curve analysis 
because it is the vehicle stopping distance. In the following, 
results for SD are transformed to results for S, the travel 
path. 

Case 1: Observer and Road Object In the Horizontal Curve 

Using the notation of Figure 1 with Lzi. = 0 and Lz1 = 0, the 
sight distance S along the path traveled becomes 
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S = (/1 - /';) (1tR/90) (21) 

where / 1 and /2 are from Equations 2 and 3. 

Case 2: Observer Before the PC and Road Object In the 
Horizontal Curve 

The notation of Figure 1, with Ln = 0, is used. S1, S2, and S3 
denote the sight distance components along the path traveled. 
S1 consists of a sight distance component in the curve S1c and 
on the tangent S 11, S 1 = S le + S 1r Each sight distance component 
can be obtained using the geometry of Figure 2. Hence, 

The total available sight distance is then 

(22) 

where / 1 and /2 are from Equations 7 and 8, and 

(23) 

TABLE 2 SUMMARY OF SIGIIT DISTANCE FORMULAS FOR HORIZONTAL CURVES ALONG THE PATH 
TRAVELED 

Location of 
* Case Observer/Object Sight Di!'t~nc:e Formu1a 

1 Curve/Curve S=(I 1-I 2 )(~R)/90 

2 Tangent/Curve S=[2(I 1-I 2 )-I 3 J(~R)/180+L21 

3 Curve/Tangent S=[2(I 1 -I 2 )-I 4 ]C~R)/180+L22 

4 Tangent/Tangent S=[2(I 1-I 2 )-I 3-r 4 J(~R) / 180 

+L21+L22 

General Sight Distance Formula 
for Horizontal Curves 

The distance between the observer and PC, and PT and 

object respectively for observer before the PC and 

object beyond the PT, as shown in Figure 2. 

I. for i=l to 4 = Central angle of the line of sight used ln the 
1 

derivations as shown in Figure 2. 
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TABLE 3 SUMMARY OF EQUATIONS FOR / 1, / 2, 13, AND 14 

Eq. 
Case Number Equation 

l 4 Il = 180(L
01

)/(7TR) 

8 

I2 
-1 

=tan {[R(l-cos(I
1

))-m]/[R sin(I
1

)]} 

2 13 

17 

37 

3 4 

8 

39 

4 13 

17 

37 

39 

Case 3: Observer in the Curve and Road Object 
Beyond the PT of the Curve 

Il = 

I2 = 

I3 = 

Il = 

I2 = 

I4 = 

Il = 

I2 = 

I3 = 

I4 = 

In notation of Figure 1 with £21 = 0, S1, S2, and S3 again denote 
the sight distance components along the travel path. S3 consists 
of sight distance components S3c in the curve and S31 on the 
tangent; S3 = S3c + S31• Each sight distance component can be 
obtained using the geometry of Figure 1. Hence, 

S1 = (/1 - / 2) (7tR/180) 

S2 = 12 (7tR/180) 

S3 = S3c + S31 = (/5 - 14 - / 2) (7tR/180) + Lll 

180(L
02

)/(7T R) + -1 
tan (L 2/R) 

tan-1{[R-m-(R2+L 2 >112 
21 

cos(I
1
)]/ 

[(R2+L212)1/2sin(Il)]} 

-1 
tan (L 2/R) 

. 
180(L

01
)/(7TR) 

-1 
tan {[R(l-cos(I

1
))-m]/[R sin(I

1
)]} 

-1 tan (L
22

/R) 

180(L
02

)/(7T R) + tan-1 (L
2
/R) 

tan-1 {[R-m-(R2+L 2
>
112 

21 cos(I
1

) ]/ 

[(R2+L212)1/2sin(Il)]} 

-1 
tan (L 2/R) 

-1 
tan (L2/R) 

where 15 = /1 - 12• 

The total available sight distance then becomes 

where / 1 and / 2 are from Equations 12 and 13, and 

14 = tan-1 (£22/R) 

Case 4: Observer Before the PC and Road Object 
Beyond the PT 

(24) 

(25) 

In the notation of Figure 1, S1, S2, and S3 again represent the 
sight distance components along the path traveled. S 1 and S3 
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consist of sight distance components S k and S3c in the cmve 
and S11 and S3, on the tangent. S1 = S1c + S1,; S3 = S3c + S3,. 

S2 = 12 (1tR/180) 

where 15 = /1 - / 2• 

The total available sight distance then becomes 

S = S1 + S2 + S3 = Lz1 + (2(/1 - /z) - /3 - / 4] (1tR/180) 

+ L22 (26) 

where / 1, / 2, / 3, and /4 are from Equations 41, 42, 23, and 25, 
respectively. 

Equation 26 is the general sight distance formula for hori­
zontal curves for given travel path distances. It covers all cases 
of available sight distance with respect to locations of observer, 
vision obstacle, and road ohject. It is accordingly named the 
"general horizontal curve sight distance formula." With this 
relationship, S can be calculated for any combination of the 
locations of observer and vision obstacle in a horizontal curve. 

Methodology and Nomograph for S and m 

A calculation procedure was developed to determine available 
sight distances on horizontal curves using this 
general sight distance formula. It is given for the two possible 
observer position cases and the two road object position cases. 
The two observer cases arc (a) observer on the tangent before 
the PC or beyond the PT, and (b) observer in the curve or at the 
PC or PT. For these locations, the following two positions of 
the road object are (c) road object on the tangent beyond the PT 
or PC, and (d) road object in the curve or at the PT or PC. 

The calculation procedure involves the following five steps: 

1. Determine central angles / 1 and /2. 

2. If Case a applies, determine central angle /3• 

3. Determine central angle lob· 

4. Determine the location of the road object with respect to 
the PT (Case c or d). 

5. Determine the total available sight distance S. 

To calculate the available sight distance S, the geometric 
characteristics of the horizontal curve R (or D), L, I, and m, the 
radial distance of the vision obstacle from the observer's path, 
must be known or measured. Similarly when a required value 
of S is given, m needed for the curve with given R and L can be 
easily calculated. In a typical geometric design application, the 
required curve radius R can be found when m, S, and I are 
given. 

Lateral Clearance m 

Relationships for lateral clearance m for the four cases of Table 
2 are now derived using Equations 3 and 8 and the results are 
summarized in Table 4. 
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Case 1: Observer and Road Object Jn the 
Horizontal Curve 

From Equation 3, m becomes 

(27) 

where / 1 = 180 (L01/1tR), L01 is the distance from the observer 
to the station of the obstacle along the CL, and /2 can be 
obtained from Equation 21: 

/ 2 = /1 - (90S/1tR) (28) 

Case 2: Observer Before the PC and Road Object in the 
Horizontal Curve 

Solving m from Equation 8, one obtains 

m = R - (R2 + Li.12)112 [cos (/1) 

+ tan (/z) sin (/1)] 

where 

/1 = 180(L02/1tR) + tan-1 (L21/R) 

/2 = /1 - 90(S - L21 /1tR) - / 3/2; / 3 = tan-1 (L21 /R) 

Case 3: Observer in the Curve and Road Object 
Beyond the PT of the Curve 

From Equation 3, m becomes 

(29) 

(30) 

where / 1 is as in Case 1, and / 2 can be obtained from Equation 
24. 

12 = /1 - 90 (S - Lzz/1tR) - 14/2 

where /4 = tan-1 (Lz2/R) 

Case 4: Observer Before the PC and Road Object 
Beyond the PT 

Solving for m from Equation 8, one obtains 

where 

/ 1 = 180(L02/1tR) + tan-1 (L21/R) 

12 = 11 - 90(S - Lz1 - L22/7U?) - /3/2 - /4/2 

with /3 as in Case 2 and / 4 as in Case 3. 

Critical Lateral Clearance m* 

(31) 

(32) 

Every curve has a largest critical value of m, here called m*. 
Where S < L, this value is M as presented by AASHTO for two 
SSD values (4, p. 244-245). Where the needed S is greater 
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TABLE 4 SUMMARY OF EQUATIONS FOR LATERAL CLEARANCE m 

Case 1 
and 
Case 3 

Case 2 
and 
Case 4 

Equation 

where: 

Case 1: I 1=180(L 01 )/(rrR) 

I 2 =I 1-(90 S)/(rrR) 

Case 3: I 1=180(L 01 )/(rrR) 

I 2=I 1-90(S-L22 )/(rrR)-I 4/2 

where: 

Case 2: 
-1 

I1=lBO(Lo2)/(rrR)+tan (LZl/R) 

I 2=I 1-90(S-L21 )/(rrR)-I
3

/2 

-1 Case 4: r 1=180(L 02 )/(rrR)+tan (L
21

/R) 

I 2=I 1-90(S-L21-L22 )/(rrR)-I 3/2-I 4/2 
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than the curve length L, m* for that curve can be determined 
using the nomograph of Figure 3, which was prepared as a 
design aid to relate S to .m* when S > L. In addition, Figure 3 
can be used to determine the critical value of any of the four 
independent parameters m*, R (or D), I, and S, when the other 
three are given. L is not an independent parameter, being fully 
specified by I and R. 

Table 5 presents both the exact and chord approximation 
results for m* and M. In Table 5, the central angle of the line of 
sight corresponding to total sight distance S is denoted by /*. 
These chord approximations were shown to have an error of 
less than 0.5 ft for all curves with radii in excess of 400 ft. The 
error overstates the needed clearance. 

The formulas form* are summarized in Column 2 of Table 5 
for the following three cases: 

1. S < L, I* < I. 
2. S = L, I* = I. 
3. S > L, I* > I. 

Cases 1 and 2 are covered in the 1984 AASHTO policy guide 
(4); Figure 4 can be used for Case 3. 

The three cases S < L, S = L, and S > L for chord approxima­
tion are as follows: 

1. S < L 

From Figure 3(a), by the right triangle relationships, 

(c/2)2 + M2 = (S/2)2 

(c/2)2 + (R - M)2 = R2 

(33) 

(34) 
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FIGURE 3 Critical lateral clearance m• as a function of I, R, L, and S. 

Solving for c/2 and substituting in Equation 34, 

M = S2/8R 

2. S = L 

(35) 

3. S>L 

From Figure 3(c), 

S=L+2T 

From Figure 3(b) and the previous case, 

0 = S2/8R = L2/8R (36) 

(S/2)2 = K2 + m2
, K2 + (R - m)2 

= E2
, and fl + R2 = E2 

TABLE 5 CRITICAL HORIZONTAL CURVE CLEARANCES 

Exact Chord 
Case Solution Approximation 

(1) (2 ) ( 3) 

5<1 
* s2/(8R) M = R(l-cos(I / 2)) M = 

5=1 
* 12/( BR ) M = RC 1-cos (I / 2)) M = 

5>1 
* * m = Rsin ( I / 2 ) tan[ ( I -I )/2] 

+ R (1-cos(I / 2 )) 
* m = 1(25-1)/(BR) 

(37) 

(38) 
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FIGURE 4 Chord approximations for M for 
horizontal curves: (a) S < L, (b) S = L, and (c) S > L. 

where m is the maximum value for this case. 
Eliminating K, E, and T from Equation 38, 

m = L(2S - L)/8R (39) 

When S = L, Equation 36 can be obtained from Equation 35 or 
38. 

For the case S > L, one can compare the result with the case S 
< L by use of the ratio 

m/M = [L(2S - L)/8R]/[S2/8R)] = (L/S)(2 - LIS) (40) 

For example, consider a 2° curve [R of 2,865 ft (873.3 m)], 900 
ft (274.3 m) long with a required S = 1,150 ft (350.5 m). Then 

M = l,15<>2/[(8)(2,865)) = 58 ft (17.7 m) 

mlM = (900/1,150)[2 - (900/1,150)) = 0.953 

m = (0.953)(58) = 55 ft (16.8 m) 

The elasticity of the offset M with respect to S for S < L is 2, 
indicating that a 1 percent increase in sight distance increases 
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M by 2 percent. In the case S > L, the change is always greater 
than 1 percent. 

Figure 5 shows the reduction in m* as a percentage of M for 
various ratios of sight distance to curve length. This curve was 
developed from the chord approximation. For example, on 
short curves where Sis twice the curve length, m* is only 75 
percent of M. 
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FIGURE 5 S > L: maximum obstacle clearance m* as a 
percentage of M. 

STEP 1: Determine 11 and 12• 

Case A: Observer before the PC (L21 > 0): 

11 = 180(£02/nR) + tan-1 (L21/R) (41) 

12 = tan-1 {[R - m - (R2 + li12)1a cos (11) )/[ (R2 + li12)lfl 

sin (11)]} (42) 

Case B: Observer in the curve (L21 = 0, 13 = 0) or at the PC 
or PT: 

11 = 180 (L01/1tR) 

12 = tan-1 ({R[l - cos (11)) - m}/R sin (/1)) 

Go to Step 2. 

(43) 

(44) 

STEP 2: If Case A holds, then determine 13; otherwise go to 
Step 3. 

13 = tan-1 (L21/R) 

Go to Step 3. 

STEP 3: Calculate lob· 

Case A: Observer before the PC (li1 > 0): 

10 b = (180L/nR) + tan-1 (li1/R) (45) 

Case B: Observer in the curve (L21 = 0, 13 = 0) or at the PC or 
PT: 

(46) 

Go to Step 4. 
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STEP 4: Ter.t location of road object with respect to PT. 

Object is beyond the PT if and only if l 0 b < 2(/1 -12). 

Object is at the PT if and only if l 0 b = 2(11 - 12)· 

Object is in the curve if and only if l 0 b > 2(11 -12). 

Go to Step 5. 

STEP 5: Calculate total sight distance S using the general sight 
distance formula of Tables 2 and 3. 

If Case A: Set Lz1 equal to the distance from the observer to 
the PC. If object is beyond the PT, then calculate Liz and 14• 

L22 = [R cos (/') - h]/sin (/') 

14 = tan-1 (L22/R) 

where I'= lob - (11 - IJ and h = (R - m) cos (12). 

(47) 

I ob is obtained from Equation 45, 11 and 12 from Equations 41 
and 42. Otherwise, set L22 = 0 and obtain 11 and 12 from 
Equations 41 and 42. 

If Case B: Set Lz1 = 0. If object is beyond the PT, then 
calculate Lzz and 14: 

L22 = [R cos (/') - HJ/sin (/') 

14 = tan-1 (Lnf R) 

where I'= lob - (/1 - Ii) and h = (R - m) cos (12). 

(48) 

(25) 

l 0 b is obtained from Equation 46, 11 and 12 from Equations 43 
and 44. If the object is not beyond the PT, set L22 = 0 and obtain 
11 and 12 from Equations 43 and 44. 

Calculation Procedure for Critical Lateral Clearance 
Values 

The three cases S < L, S = L, and S > L are considered. 

CASE 1: S < L and I* < I 

Calculate m* using the following formulas or use AASHTO 
(4, pp. 244-245): 

m* = R [l - cos (l*/2)] 

S = (1tRi*)/180 for I* < I 

R1 =R -m* 

1ben 

m* = R[l - cos (90S/1tR)] (49) 

Maximum lateral clearance m* talces a constant value in a 
section of length a and starts at distance b measured from the 
start of the curve, where a= 7tR(l - l*)/180andb=1tRl*/360. 
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The starting and end points of the section with maximum 
lateral clearance are connected to points located at the required 
sight distance before and after the curve using transition 
curves. For the transition curve from R = infinity to R = R 1, the 
distance from the baseline at R1 is h = R - R1 cos (l*/2); or in 
general (I -:t-1*), the distance from the baseline at R1 is h = R -
R1 cos (1/2). 

CASE 2: S =Land I* = I 

Calculate m* using the following formulas or AASHTO 
(4, pp. 244-245): 

m* = R[l - cos (1/2)] (50) 

S = 7tR//180 for I* = I 

R1 = R- m* 

The maximum value for m occurs at the midpoint of the curve. 
This point is connected to points located at the sight distance 
before and after the curve using transition curves. For the 
transition curve from R =infinity to R = R 1, the distance from 
the baseline at R1 is h = R - R1 cos (1/2). 

CASE 3: S > L and I* > I 

Calculate "'"max using the following formulas or use Figure 4. 

mmax = R tan [(I* - /)/2] sin (1/2) + R [1 - cos (//2)] (51) 

S = S, + 7tRl/180 for I* > I 

where S, is the sight distance component on the tangent R1 = R 
- "'max· The maximum value for m occurs at the midpoint of the 
curve. This point is connected to points located at the required 
sight distance before and after the curve using transition 
curves. For the transition curve from R =infinity to R = R1, the 
distance from the base line at R1 is h = R - R1 cos (1/2). 

Example of the use of Figure 4 (5, 6): 

1. Determine required sight distance S. Check that I* >I and 
S>L. 

2. Enter the diagram with the difference S - L (in feet) 
between the sight distance and the curve length and read for 
appropriate curve radius R or curvature D the (I* - /)/2 value. 

3. With this (/* - /)/2 value, enter the right bottom part of 
the figure and using the central angle I of the curve read for the 
radius R the critical lateral clearance m* (ft), or read as the 
maximum m value the scale with m expressed as a fraction of 
the radius R and multiply this m value by radius R to obtain the 
critical value of m (in feet). 

For example, if S - L = 300 ft (91.4 m), R = 800 ft (243.8 m), 
I = 15°; follow the dashed line and read m* = 0.033R or m* = 
26.5 ft (8.1 m). 

Effect of Spiral Transition 

The spiral transition curve affects the need for clearance on the 
inside of the path of travel when the driver is on the tangent or 
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spiral portion of his path. The magnitude of this effect was 
developed in the UMTRI research for a range of typical 
AASHTO transition curve designs for speeds from 50 to 70 
mph (80.5 to 112.6 km/hr) (5). The maximum effect on m was 
about 3 ft (0.9 m). It is suggested that this value be used in such 
situations. 

Eye and Object Location 

Current design practice generally places both the observer and 
the road object on the centerline of the inside lane (4). For a 
case and sensitivity study of the effect of placing these ele­
ments at another pair of lane locations, the findings were that S 
is not affected significantly by such changes, and further, that 
even this small effect decreases with increasing S (5). 

DISCUSSION 

It is believed that the results of this research will be of value to 
practicing design and traffic engineers concerned with achiev­
ing adequate stopping sight distances at horizontal curves in 
new design and in adjusting speeds or clearances on existing 
roads. These models can easily be merged in a sight distance 
design and evaluation system incorporating results developed 
for vertical curve sight distance, as described in previous re­
search undertaken at the University of Michigan (6). It is no 
longer necessary to rely on graphical techniques executed on 
plan sheets or to use values for an inappropriate case that has 
been shown to be excessive. 

For passing and decision sight distance analyses in which 
needed values of S may be twice as great as those found in 
stopping sight distance applications, the usefulness of these 
relationships should be even greater because these sight dis­
tances exceed the length of the horizontal curves in almost all 
cases, and significant reductions in roadside clearing expense 
and possibly even land acquisition or sight easement costs 
could be achieved. 

The researchers have compared current and possible stop­
ping sight distance policy values with information on the geo­
metric characteristics of many rural highway curves and have 
found that smaller clearances are needed than those given by 
the AASHTO-treated case at more than half of the curves. 
This strongly supports the early use of this labor saving 
technique. 
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SUMMARY 

This research was initiated because of a concern with the 
needed large increases in roadside clearances to obstacles limit­
ing sight distance on the inside of horizontal curves that result 
from increases in recently adopted AASHTO stopping sight 
distance policies and from changes recommended in recent 
NCHRP research. AASHTO does not provide mathematical 
solutions for this type of design problem in which the sight 
distance is longer than the curve. It was also found that by 
ignoring the greater available sight distance when the driver or 
road object is off the curve, current AASHTO methodology for 
calculating the relationships involving sight distance, curve 
parameters, and clearance inside the curve leads to the selec­
tion of excessive needed clearance distances. 

Several relationships were derived and brought together with 
earlier work that provide analytic, closed-form, and easily 
usable tools for the designer concerned with maintaining or 
achieving adequate clearances to sight obstacles based on sight 
distance needs and considerations. 
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