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Mathematical Programming Formulations of 
Transportation and Land Use Models: 
Practical Implications of Recent Research 
STEPHEN H. PUTMAN 

The next generation of transportation, location, and land use 
models will most probably emerge from mathematical pro
gramming formulations. Presented are simple numerical ex
amples of trip assignment and population location, both de
scribed as optimization problems, In mathematical 
programming formulations. A trip assignment model with 
constant link costs ls described first, and then the same model 
is modified to show the consequences of a How-dependent link 
cost formulation. In similar fashion, a linear model of least cost 
population location is transformed into a nonlinear model that 
incorporates dispersion of location due to differences in loca
tors' preferences or perceptions. It ls then shown how the trip 
assignment model and the location model can be combined into 
a single nonlinear programming formulation that solves both 
problems simultaneously. In the final section of the paper, the 
theoretical advantages and practical disadvantages of this ap
proach are brlefty enumerated. This is followed by suggestions 
about the likely resolution of practical problems to allow use of 
these techniques in applied planning situations. 

There has been considerable refinement of practical methods of 
forecasting urban location and transportation patterns during 
the past 10 to 15 years. Although there is continuing discussion 
and development, and even the best of forecasts are far from 
perfect, there appears to be a greater consensus on what 
methods are clearly outmoded and in what directions future 
efforts should move. This author's views on general progress in 
the field have already been published (1). Among the most 
sophisticated practical methods of transportation and land use 
forecasting are the extended spatial interaction models, es
pecially when they are included in comprehensive integrated 
model systems [see paper by Bly and Webster in this Record 
and Putman (2)]. 

In addition to these practical developments there have also 
been important theoretical developments. On the transportation 
side these include the development of discrete choice models, 
especially for travel demand and mode choice (3 ), and the 
development of mathematical programming formulations of 
the traffic assignment problem (4). On the location side the 
development of utility theory as a basis for location models (5) 
and the general discussion of mathematical programming mod
els as alternate or underlying structures for spatial interaction 
models (6) were major developments. Some of these develop
ments are important principally because they provide an im
proved underpinning of existing practical methods; some have 
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shown the existence of clear errors in prior practice; and others 
may offer substantial improvements for future applications. 

Past experience suggests that there is a lag of 10 years, 
sometimes more, between the initial development and subse
quent practical application of new techniques in transportation 
and land use forecasting. Thus, although there have been some 
attempted applications of these methods (7, 8), they are far 
from being the accepted norm. The purpose of this paper is to 
present some illustrations of the mathematical programming 
formulations along with some simple numerical examples. The 
intent is to show some of the benefits, both practical and 
theoretical, of these formulations and to provide the practical 
planner with an introduction to this promising new area. 

NETWORKS AND TRIP ASSIGNMENT 

In the discussion that follows, extensive use will be made of the 
data describing Archerville, a simple five-zone numerical ex
ample. Table 1 give the land use and socioeconomic data for 
Archerville. Figure 1 shows the Archerville highway system. 

Shortest Path Problem 

A frequently encountered problem in transportation and loca
tion analyses is that of finding the shortest path from one node 
to another over the links of a network. This is a problem that 
can be considered as a linear programming problem. The equa
tion form is 

subject to 

{ 

1 if i = origin 
I: xk' - I: xk' = - 1 if i;;;: destination 
• I k I 

1 0 otherwise 

Xii~ 0 (Vi,;) 

(1) 

(2) 

(3) 

where Cij is cost of traversing link i, j and Xij is flow (trips) on 
link i, j. 

The objective function is straightforward: simply to mini
mize the sum of the link cost times the trips incurring that cost. 
The principal constraint equations (Equations 2) are a set of 
flow-balance relationships that ensure that the flows, at each 



TABLE 1 ARCHERVILLE-LAND USE AND SOCIOECONOMIC DATA 

Land Use Data Socioeconomic Data 

Resi- Commer- Indus- Commercial Industrial Total 
Zone dential cial trial Vacant Total Employment Employment Employment 

1 2.5 1.0 1.0 0.5 5.0 150 150 300 
2 3.0 1.0 1.5 0.7 6.2 200 150 350 
3 1.0 2.0 3.0 0.8 6.8 100 400 500 
4 2.5 1.0 0.0 4.5 8.0 200 0 200 
5 1.5 0.5 0.0 6.6 8.6 100 _Q 100 

Total 750 700 1,450 

Employee-Household Cross Tabulation Employee-Household Conversion Matrix 

LI Hl Total 

Commercial 400 350 750 
Industrial 400 300 700 

800 650 1,450 

Norn: LI = low-income and Hl = high-income. 
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FIGURE 1 Archerville highway system. 
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Ll House- Hl House- Total 
holds holds Population 

200 100 860 
300 50 1,050 
150 50 585 
100 300 550 
50 150 515 

800 650 3,560 
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network node, balance. Thus for each node the total flow of 
trips into the node minus the total flow of trips out of the node 
must equal the net trips supplied (or demanded) at the node. 
The last constraint equation (Equation 3) is simply the non
negativity requirements that prohibit negative flows. It can 
readily be seen that writing the shortest path problem in this 
form yields a rather good sized problem. In the objective 
function the number of terms equals the number of links in the 
network. There must be a constraint equation (Equation 2) for 
each network node and a constraint equation (Equation 3) for 
each network link. 

For practical applications there are many fast algorithms for 
solving this problem. However, it is worth noting here that, 
because this is just a simple linear program, it can be solv¢ by 
the well-known simplex method. If it were done that way, it 
would be necessary to solve the problem once for each origin
destination path that was wanted. Further note that this problem 
only addresses the situation for fixed link costs and flow vol
umes, which must, of course, be known in advance of any 
attempt to solve for the minimum path or paths. 

Minimum-Cost Flow Problem 

Another type of linear programming problem is that known as 
the minimum-cost flow problem. The Archerville data may be 
used as an example. Assume that there are a known number of 
households of each income group in each zone and a known 
number of employees of each type working in each zone. 
Implicitly there is a zone-to-zone matrix of home-to-work trips 
that can be estimated by standard techniques. Suppose now that 
the location of households in Table 1 and the location of 
industrial employment in the same table are taken as given. By 
first assuming that there will be one employee per household 
and then applying the Employee-Household Conversion Matrix 
given in Table 1, the number of industrial employees residing 
in each zone may be calculated. These were 146, 173, 98, 188, 
and 95, respectively. Note that the number of industrial em
ployees working in each zone is 150, 150, 400, 0, and 0, 
respectively. 

It is possible to consider the proposal that each employee is 
to choose a place of work such that the total travel cost for all 
employees is minimized. If network link capacities, and the 
consequent congestion, are ignored for this illustration, this 
problem may be stated as a linear program 

Min: Z = E Ee .. x .. 
j j IJ IJ 

(4) 

subject to 

{ 

O; if i = origin 
Ex .. - EXk. = - D. if i = destination 
· IJ k I I 1 0 otherwise (5) 

(6) 

where O; is net trips leaving node i and D; is net trips arriving at 
node i. 

Equations 4, 5, and 6 are the general minimum-cost flow 
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problem. If there were specified link capacities (V;j) for each 
link, which could not be exceeded, then another set of con
straints would be substituted for Equation 6. This new set of 
constraints would be of the form 

(7) 

Note that the objective function here is the same as that for the 
shortest path problem given in Equation 1. The constraints, 
Equations 5, are a set of flow-balance relationships similar to 
those of Equations 2. 

Because the intrazonal travel costs are 1.0 for each zone, 
clearly the first consideration is that all employees residing in 
any zone first be assigned to jobs in that zone. Given the 
Archerville data, Zone 1 requires 4 workers and Zone 3 re
quires 302. Zones 2, 4, and 5 have 23, 188, and 95 surplus 
workers, respectively. The link flows produced by the simplex 
algorithm to solve this problem are shown in Figure 2. Note 
that if it were desired that some of the network links have a 
maximum allowable flow, then some constraints of the form of 
Equation 7 would have to be added. 

Nonlinear Minimum-Cost Flow Problem 

The minimum-cost flow problem described here can be recon
sidered as a nonlinear programming formulation. In the pre
vious formulation the linear objective function, Equation 4, 
was simply the sum of the trips (flows) on each network link 
times the travel cost of the link. The link costs were fixed, 
remaining constant regardless of link flows (though it was 
shown how the link flows could themselves be restricted by use 
of additional constraint equations). Suppose the more realistic 
view was taken that link costs depend on link flows. For the 
sake of illustration consider the following function, where link 
cost varies with link flow 

C;i = c~ (LO + ox\) 

where 

Ci = "congested" or flow-related link travel cost, 
Cu = free-flow link travel cost, 
xij = link flow volume (trips), and 

'O = a parameter. 

(8) 

With this function the link travel cost is equal to the free-flow 
cost when the link flow volume is zero. As link flow volume 
increases, link travel cost increases too. 

In the linear version of this problem the solution involved 
only the finding of the minimum paths and the subsequent 
routing of trips along those paths. If there were specific link 
flow volume constraints, then the excess trips would be re
routed to the second shortest path. When link flows determine 
link costs the essential nature of the problem changes. The 
solution becomes a matter of adjusting volumes, observing the 
resulting costs, and then adjusting the volumes again. Thus, in 
a very real sense, even for the small problem size of the 
Archerville data the complexity of the problem begins to defy 
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FIGURE 2 Archervllle trip ftows resulting from minimum-cost ftow assignment algorithm 
with constant link costs. 

solution by inspection. The introduction of simultaneity or 
nonlinearity, or both, to a problem often transforms the prob
lem into one that lies beyond intuitive solution. 

Incorporating Equation 8 into the original objective function 
of Equation 4 yields 

Min: Z = I: I: [Cf? (1.0 + ~X~.) x..J 
j j IJ IJ IJ 

(9) 

and thus the objective function becomes a cubic equation. The 
same linear constraints as before (Equations 5, the flow-bal
ance relationships) still hold true, as do the nonnegativity 
constraints of Equation 6. This new set of equations is a 
nonlinear programming (NLP) problem with a nonlinear objec
tive function and linear constraints. 

It was necessary to set a value for the parameter ~- A value 
of 0.0002 \11.ras selected so that link flo\v volumes on t.lie order 
of 100 trips would result in a tripling of link cost. At this scale, 
link costs increase significantly, but not astronomically, with 
link flows on the order of those observed in the linear form of 
the problem described previously. The flows on the network 
that result from this new nonlinear problem are shown in 
Figure 3, and the link volumes, free-flow link costs, and con
gested link costs are given in Table 2 (only those links that have 
flows are included). The results hold no great surprises but do 

show a clear response to the reformulation of the problem so 
that link costs are a function of link flows. 

It is interesting to compare the results shown in Figure 3 
from the NLP solution with those in Figure 2 from the linear 
programming (LP) solution. The NLP solution, due to the 
effects of congestion on link travel costs, shows much greater 
utilization of network links. For the LP solution only 11 links 
were used whereas for the NLP solution 20 were used. As a 
result, the trips on links X11,10 andX10,12, which were 188 in the 
LP solution, are only 112 in the NLP solution. 

These examples only hint at the substantial additional work 
that has been done with user equilibrium and stochastic user 
equilibrium formulations of the traffic assignment problem as a 
mathematical program. Yet, they do give a clear way of seeing 
the assignment problem, as well as networks in general, ex -
pressed in equation form. This will be particularly helpful in 
analyzing ways of linking transportation and location models. 
This insight also provides a much easier way of comprehending 
the problems of traffic assignment than did the "black-box" 
approach of traditional all-or-nothing assignment procedures. 
In the next section of this paper simple examples will be 
presented of location models presented as mathematical 
programs. 
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FIGURE 3 Archerville trip flows resulting from minimum-cost flow assignment 
algorithm witll variable link costs. 

TECHNIQUE FOR THE OPTIIvlAL PLACEMENT 
OF ACTIVITY IN ZONES: TOPAZ 

TOPAZ is a mathematical programming technique that was 
originally proposed in the late 1960s and early 1970s (9, 10). 
The most complete discussion of the applications of the model 
is to be found in the book by Brotchie et al. (11). The model 
was originally proposed as a method for determining least cost 
allocations of activities to zones. Perhaps the most recently 
published work on TOPAZ is by Sharpe et al. (12) from which 
the formulation used here is adapted. 

To begin, the model was abbreviated to a form for residence 
location only. Further, it was assumed, as is customary in these 
examples, that there is one employee per household and thus 
one work trip per household. The Archeiville data show 0.55 
low-income households per 1.0 employee and 0.45 high
income households per 1.0 employee. Thus the new, simplified, 
problem formulation becomes 

Min: Z = t T 'f T;jl C;j1 + t T b;i X;i 

subject to 

r Tijl - S; xij = 0 

~ r .. , - r; x, = 0 j I) 

(10) 

(11) 

(12) 

~ x .. =A j I) I 
(13) 

(14) 

(15, 16) 

where 

Ai = regional total of activity i, 

bij = unit cost less benefit of locating activity 
i in zonej, 

cijl = unit cost less benefit of interaction for 
activity i between zone j and zone /, 

S; = level of interaction (trips generated) per 
unit of activity i, 

ri = trips attracted by employment per unit 
of activity i, 

Tiil = level of interaction (trips) of activity i 
between zone j and zone l, 

xii = amount of activity i to be allocated to 
zonej, and 

zi = capacity of zone j. 

Note that the second term in the objective function is simply 
a minimum-cost location term. The first term is the linear 



44 TRANSPORTATION RESEARCH RECORD 1125 

r Tii1 - X;i = 0 TABLE 2 ARCHERVILLE--COMPARISON OF 
FREE-FLOW AND CONGESTED LINK COSTS 
FOR NONLINEAR OBJECTIVE FUNCTION or, in words, the sum over all possible destination zones l of all 
=========i~~~==:::::;;;:;;;::::;;:;;:;;;:;;==----1LrLUipS--Ot-type-i-l~t0011Ged-i~&M-j-mus f!Ultl-ltte-----flr:t:c:filow Congested 
Link Volume Cost Cost 

Xz,9 23 1.00 1.11 

X4.11 188 1.00 8.07 

Xs,1s 95 1.00 2.81 

X61 4 1.00 1.00 

x6:1 10 2.00 2.04 

x6,12 21 5.00 5.44 

X1,s 10 2.00 2.04 

Xs,12 10 2.00 2.04 

x9,6 35 4.00 4.96 

X9,12 38 7.00 9.07 

X10,11 112 2.00 7.06 

X11 ,9 50 5.00 7.52 

X11 .10 112 1.00 3.53 

X11.14 25 4.00 4.52 

X11.3 302 1.00 19.24 

X 13,12 58 2.00 3.33 

X14,11 63 6.00 10.74 

X1s.14 37 2.00 2.56 

Xis,16 58 2.00 3.33 

X16,13 58 4.00 6.65 

"transportation" problem. Taking the location problem first, it 
is clear that developing the necessary "data" raises some 
difficult issues. The net benefits (b;j) are supposed to be the net 
of the costs and benefits of locating a unit of activity type i in 
zone j. In many TOPAZ applications the virtual impossibility 
of measuring benefits resulted in the b1i being simply a cost of 
location, to be minimized. For the Archerville example several 
possibilities existed. The easiest way was simply to create an 
average annualized house cost variable, realizing that then the 
model would attempt to locate all households in the zone with 
the lowest house cost. All that prevents this location are the 
constraints on the amount of activity that can be accommodated 
in each zone. 

Raising the issue of zonal constraints raises, in tum, the issue 
of converting activity types into land consumed. Here again, 
there were several possible ways to proceed: (a) regional land 
consumption rates by activity type, (b) zonal land consumption 
rates by activity type, or (c) exogenously developed housing 
stock estimates. For this illustration of the model a set of 
regional land consumption rates was assumed, and their values 
were set so as to allow all households to be accommodated by 
existing residential land in the region. The rates were 0.00525 
land units per low-income (LD household and 0.00646 land 
units per high-income (HD household. The cost of location by 
zone was taken to be the average annualized house cost by 
zone, which was set to $7,800, $7,200, $7,600, $6,800, and 
$9,668, respectively, for the five zones. 

Next the transportation. or interaction. cost term in the ohiec
tive function (Equation 10) was exarni.ned This requir~d· the 
specification of data for the trip end constraints (Equations 11 
and 12) as well. As mentioned previously, it was assumed that 
there was only one employee per household and that there were 
0.55 LI and 0.45 HI households per employee. Recalling that, 
in this example, only home-to-work trips are being dealt with 
and there is only one employment type, then both s; will equal 
one, so that the constraint equations (Equation 11) will be 

trips of type i generated in zone j. In this example the trips of 
type i (i.e., household type i) generated in zone j equal the 
number of households of type i living in zone j. 

Following the same reasoning, the r; will be equal to the 
household-type-per-employee ratios, so that the constraint 
equation (Equation 12) will be as given earlier, with r; = 0.55, 
R2 = 0.45, andX1 =total employment in zone l. Then, in words, 
the sum over all possible origin zones j of all trips of type i 
terminating in zone l must equal the total households of type i 
attracted to employment in zone l. The total households of type 
i attracted to employment in l is simply the conversion rate 
times the employment. 

An extensive series of test runs was done with this model 
with varying weightings multiplied times one or another of the 
two components of the objective function. At the extremes, a 
location-cost-only solution and a transportation-cost-only solu
tion were found. The minimum transport cost solution gave 
somewhat more dispersion of households to zones than did the 
minimum location cost solution. This was due in large part to 
the exogenously determined location of employment. Were 
employment to be less dispersed, then, subject to the land use 
contraints, residential location would be less dispersed as well. 

Another matter that will have interesting consequences for 
the next set of tests, in which both location and interaction 
costs are used along with a dispersion term to determine resi
dential location, was that even though the location cost compo
nent was almost four times larger than the transport cost com
ponent, the transport cost portion of the objective function 
completely dominated the model solution. In several more test 
runs the weighting of the location cost term in the objective 
function was varied from 0.01 to 2.00. 

Over the range from 0.045 to 1.00 the location cost multi
plier resulted in a more or less gradual shift from the transport
cost-only solution toward the location-cost-only solution. From 
a value of slightly less than 1.0 to a value of 1.1852 the 
multiplier causes no change in the model solution. At a value of 
1.1855 the multiplier results in a model solution identical to 
that of the location-cost-only solution. Thus at some critical 
point where the multiplier of the location cost tenn in the 
objective function is between 1.1852 and 1.1855, there is a 
sudden shift in the model solution from an apparently stable 
intermediate solution to the location-cost-only solution. Al
though it is presented as an aside here, clearly the matter of 
model sensitivity and solution stability is an area for future 
research. In any case, for a midrange weighting of 0.70, the 
results of the TOPAZ model solution were as given in Table 3. 

Numerkai Exampie Incorporating Dispersion 

The location patterns produced by the linear programming 
version of this model, particularly when examined at the zone
to-zone trip level, are rather lumpy. The addition of a nonlinear 
dispersion term to the objective function can make a noticeable 
difference. This is achieved by substituting a constrained grav
ity model for the linear "transportation" model portion of the 
objective function. 
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TABLE 3 ARCHERVILLE-LOCATION OF HOUSEHOLDS BASED ON LOCATION COST PLUS 
TRANSPORT COST COMPONENTS OF MODEL <A.i = 0.70) 

Households 

Zone LI HI Total 

1 0 294 294 
2 359 173 532 
3 0 155 155 
4 441 28 469 
5 0 0 0 

N01"B: A.i = location cost multiplier in objective function. 

The standard doubly (or fully) constrained spatial interaction 
model has the form 

where 

Tj1 = number of trips between zone j and zone /, 
oj = trips generated in (originating from) zone j, 
D1 = trips attracted to (terminating in) zone /, 
c;i = zone-to-zone travel cost, and 
p = a parameter; 

and where 

Ai = [ r B1 D1 exp(~ci1) J-1 

(17) 

(18) 

(19) 

It has been shown by Murchland ( 13) and Wilson (14) that this 
model can be derived from an equivalent optimization prob
lem. The form of that problem is 

Max: S = - f r Ti1 In ~' 

subject to 

:r. r., = o. 
I J J 

~ Ti1 = D1 
J 

I. I. C·1 T -1 = C j I J J 

(20) 

(21) 

(22) 

(23) 

where the only new value is C, taken to represent the total 
system travel cost. 

There is a relationship between pin Equations 17-19 and C 
in Equation 23. The ~ in the spatial interaction model produces 
a dispersion of trips away from the optimum or minimum-cost 
solution. What human behavior might account for this disper
sion is unspecified but presumably includes such factors as 
variables not in the model, as well as variations in individual 
perceptions of costs and differences in individual utility 
functions. 

To introduce the spatial interaction model into TOPAZ in 
lieu of the minimum-cost "transportation" model requires that 
the model of Equations 20-23 be substituted for the transport 
cost term in the TOPAZ objective function. Following al
gebraic manipulations, this yields (after changing signs to al
low minimization) 

Households, Showing Place of Work 

LI HI 

0 1-135 3-69 4-45 5-45 
1-166 2-193 2-157 4-16 
0 3-155 
3-276 4-110 5-55 4-28 
0 0 

Min: s = .!. :r. :r. :r. r .. , In r. ., 
~ j j I I) IJ 

+ :r. :r. :r. T. ., c .. , + :r. :r. b .. x .. 
j j I I) IJ j j I) IJ 

subject to 

I. Tiil - r; X1 = 0 
j 

I. x .. =A. j I) I 

(24) 

(25) 

(26) 

(27) 

(28) 

(29, 30) 

The Archerville data were again used for tests of the model, 
which now required a numerical value of p. This, however, 
raises an interesting question, which relates directly to the 
previously described experiments with weightings or multi
pliers of the terms in the objective function. To simplify the 
coming discussion it will be convenient to think of the objec
tive function, Equation 24, as having three components: 

(31) 

where A.1, Ai. and "'3 are arbitrary weights, and where U1 is the 
transport cost term, U2 is the location cost term, and U3 is the 
entropy term. The no-dispersion solution given in Table 3 was 
for A.1 equals one, Ai equals 0.70, and "'3 equals zero. 

The value of "'3 as discussed here is the inverse of the p of 
Equation 17 and thus will directly affect the extent to which 
location is dispersed from the no-dispersion case where "'3 = 0 
and thus p = oo. With a "'3 of 20 and thus ~ = 0.05, the 
dispersion shows quite clearly in the results given in Table 4. A 
further increase in "'3, to 30, giving p = 0.033, yields even 
greater dispersion. Numerous tests were run with different 
combinations of values for A.1, Ai. and "'3· In all cases increas
ing values of "'3 produced increased dispersion of household 
location. The most dispersion was achieved with values of A.1 
equal to one, Ai in the vicinity of 0.3, and "'3 equal to 30 or 
more. The conclusion here is simple, the addition of a disper
sion term to the objective function of a mathematical program
ming model of residence location results in a more even dis
tribution of residents to zones and is probably a more realistic 
representation of actual human behavior. 
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TABLE 4 ARCHERVILLE-LOCATION OF HOUSEHOLDS BASED ON LOCATION COST 
PLUS TRANSPORT COST COMPONENTS OF MODEL (Az = 0.70), 
INCORPORATING DISPERSION, WITH ~ = 0.05 

Households Households, Showing Place of Work 

Zone LI HI Total LI HI 

45 258 302 1-42 3-3 1-128 2-21 3-84 
4-14 5-11 

2 319 205 524 1-105 2-181 3-25 1-6 2-135 3-17 
4-4 5-4 4-32 5-15 

3 20 138 158 1-1 3-19 3-117 4-12 5-9 
4 416 49 465 1-18 2-11 3-230 3-6 4-33 5-10 

5 0 0 0 0 

Norn: A.z = location cost multiplier in objective function. 

COMBINED ACTIVITY LOCATION AND TRIP 
ASSIGNMENT MODEL 

Having shown in the preceding two sections of this paper how 
both a traffic assignment model and an activity location model 
could be formulated as mathematical programming problems, 
it is now possible to consider linking them together into a 
single model to solve both problems simultaneously. 

First, note that the original transport cost term in the location 
model objective function is simply the sum of all trips between 
origins j and l, times the cost of those trips. It is reasonable to 
assume that, regardless of whether a congested or uncongested 
network is being used in the model, the costs used will be those 
of the minimum paths through the network. In the location 
model the zone-to-zone costs used are the exogenously deter
mined minimum costs given as input to the calculations. The 
minimum-cost flow problem determines the set of minimum 
cost paths through the network. Given that these minimum 
paths are the same, the flow cost produced by the minimum
cost flow problem solution should be identical to the transport 
cost term in the location model objective function. 

In the nonlinear version of the location model the entropy 
term of the cost function takes care of keeping the zone to zone 
trips in the objective function, thus the transport cost term can 
be replaced by the objective function from the minimum-cost 
flow problem. It will, of course, be necessary to add the flow 
balance constraints in order to describe the network, and to set 
them equal to what is now a variable set of trip origins and 
destinations. These are now variable because the activity loca
tions, and thus the trip matrix, are to be determined as part of 
the model solution. Thus the combined model has the follow
ing form: 

Min: S = ~ I. I. dmn Fimn 
l m n 

1 + - I. I. I. T .. 1 ln T .. 1 + I. I.b .. x.. (32) 13 i j I IJ IJ i j IJ IJ 

subject to 

~~ 'C' l:~ i ;;' .. imn --- i n. 

)ps; X;m- r; E~ 
=lo m>J (33) 

m~J 
J;' 

1. inm 

I. Tiil -r; E1 = 0 
j 

I. x .. =A· j IJ I 

0 
4-106 5-51 

(34) 

(35) 

(36) 

(37) 

(38, 39, 40) 

where the variable names d and F (link cost and link flow) are 
substituted for the c and X used in the minimum-cost flow 
problem equations. J is the number of zones (load nodes). In 
addition employment in zone l is represented by E1 in Equation 
35 to avoid confusion. 

The objective function now has three terms, minimum-cost 
flows, entropy or trip dispersion, and minimum-cost location. 
A new set of constraints (Equations 33) is added to the previous 
set of location model constraints to incorporate the flow-bal
ance portion of the minimum-cost flow problem. This being 
done it is possible to solve the combined problem for both link 
flows and household location. Now it is possible to include 
congestion in this prohlem too. The first term in the ohjective 
function (Equation 32) is modified as per Equation 9 to make 
link cost a function of link volume (flow). The remainder of the 
objective function and all of the constraints are unchanged. 

CONCLUSIONS 

The work described in this paper is only a brief introduction to 
the topic, yet certain conclusions can now be clearly drawn. 
The first of these is that numerous model tests using the kinds 
of models described here indicate that linear mathematical 
programming models of location are inherently umealistic. The 
least-cost zone will get all possible locators even if the next-to
least-cost zone is only marginally more expensive. The objec
tive function component weighting problem implies that an 
arbitrary difference in units of measurement (e.g., between 
hundreds of dollars or thousands of dollars for annualized rent) 
can result in one component of a model solution's being domi
nani uvt:r anoiht:r. 

To a rather considerable degree the constraint equations of 
a linear programming model can ameliorate some of these dif-
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ficulties. This is, however, a mixed blessing. That they 
can ameliorate some of the difficulties also points up the 
rather considerable extent to which they determine the model 
solution. The constraints (e.g., available residential land per 
zone) must be exogenously determined, yet their determina
tion, in and of itself, implies a difficult forecasting problem. 
The availability of data for constraints during the development 
of a mathematical programming location model can give a false 
sense of confidence in the model's predictive power if the 
problems of forecasting the constraints are not taken into 
account. 

Another major issue is that of obtaining the necessary data. 
Housing costs are notoriously difficult to estimate. With the 
TOPAZ model the literature suggests that it has often been so 
difficult to estimate the benefits of location or interaction that 
only costs were used. Yet, both versions of TOPAZ would 
certainly have given different results if some locational advan
tage variable had been used to yield a "net" location cost 
variable for the location cost term in the objective function. 

Finally there is the computational problem. The GAMS 
package (15) was used for all of the Archerville tests reported 
here. The linear formulations were run on an IBM PC with 
640K of memory and a hard disk drive. These runs took just a 
few minutes each. The nonlinear formulations were problem
atic on the PC; some took 2 or more hours to solve, and others 
would not run at all. Finally, a version of GAMS for the IBM 
3081 GX mainframe was used for the nonlinear formulations. 
Jn the combined model there were 622 variables in the objec
tive function. The objective function for the final nonlinear 
version of TOPAZ, alone, had 110 variables, but, if there were 
a 30-zone region to be analyzed, the objective function in the 
nonlinear TOPAZ model would have 3,660 variables. This is a 
rather sizable problem, and yet a 30-zone spatial interaction 
model is really too highly aggregated for most policy analysis 
purposes. Further, the examples presented used only two 
household types and no housing stock consideration. Current 
transportation and location modeling applications tend to have 
from 200 to 300 zones. With no increase in activity types, 250 
zones would yield 250,500 variables in TOPAZ. The model 
formulations that combine location and trip assignment are 
even larger. Problems of this size are really quite impractical 
for direct solution. The problems of solving optimizing models 
of a realistic (from the applications point of view) size can be 
dealt with by decomposition procedures if it is desirable to 
maintain the mathematical programming formulations. The 
possibility of transforming programming models into spatial 
interaction models as briefly mentioned earlier offers another 
avenue of approach. Both of these approaches will be exam
ined in future research. 

Despite these concerns there are several important points to 
be learned from these experiments. Perhaps the most important 
is that developing these model formulations and then testing 
their behavior gives wonderful insight into various hypotheses 
about locational behavior. The eminent sensibility of describ
ing locational behavior as an optimizing process is beyond 
reproach. The effects, and general importance, of constraints in 
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such formulations became clearly evident in these experiments. 
At the same time the experiments clearly illustrated the need 
for inclusion of dispersion terms in such models. The inference 
is that although locational behavior may be said to be, in 
principle, an optimizing process, in actuality there are ob
viously other factors that result in a dispersion of locations 
around a simple "least-cost" optimum. Yet the optimizing 
process provides a model-building rationale that can be par
ticularly helpful in understanding the implications of model 
structure and can thus, in turn, be expected to improve model
ing practice as well. 

REFERENCES 

1. S. Putman. Future Directions for Urban Systems Models: Some 
Pointers from Empirical Investigations. In Advances in Urban 
Systems Modelling (B. Hutchison and M. Batty, eds.), North
Holland, Amsterdam, The Netherlands, 1986. 

2. S. Putman. Integrated Urban Models. Pion Ltd., London, England, 
1983. 

3. M. Ben-Akiva and S. Lerman. Discrete Choice Analysis. MIT 
Press, Cambridge, Mass., 1985. 

4. Y. Sheffi. Urban Transportation Networks. Prentice-Hall, Inc., 
Englewood Cliffs, N.J., 1985. 

5. A. Anas. Residential Location Markets and Urban Transportation. 
Academic Press, New York, 1982. 

6. A. Wilson, J. Coelho, S. Macgill, and H. Williams. Optimization in 
Locational and Transport Analysis. John Wiley & Sons, Chiches
ter, England, 1981. 

7. D. Boyce and R. Eash. Application of a Combined Residential 
Location, Mode, and Route Choice Model to Strategic Planning 
for the Northeastern Illinois Regional Transportation 
Authority. Presented at 66th Annual Meeting of the Transportation 
Research Board, Washington, D.C., 1987. 

8. P. Prastacos. Urban Development Models for the San Francisco 
Region: From PLUM to POLIS. Presented at 64th Annual Meet
ing of the Transportation Research Board, Washington, D.C., 
1985. 

9. J. Brotchie. A General Planning Model. Management Science, 
Vol. 16, 1969, pp. 265-266. 

10. R. Sharpe and J. Brotchie. An Urban Systems Study. Royal Aus
tralian Planning Institute Journal, Vol. 10, 1972, pp. 105-118. 

11. J. Brotchie, J. Dickey, and R. Sharpe. TOPAZ. Lecture Notes in 
Economics and Mathematical Systems 180. Springer-Verlag, 
Heidelberg, Federal Republic of Germany, 1980. 

12. R. Sharpe, B. Wilson, and R. Pallot. Computer User Manual for 
Program TOPAZ82. Division of Building Research, Common
wealth Scientific and Industrial, Research Organisation, Highett, 
Victoria, Australia, 1984. 

13. J. Murchland. Some Remarks on the Gravity Model of Trip Dis
tribuJion and an Equivalent Maximizing Procedure. LSE-TNT-38. 
London School of Economics, London, England, 1966. 

14. A. Wilson. A Statistical Theory of Spatial Distribution Models. 
Transportation Research, Vol. 1, 1967, pp. 252-269. 

15. D. Kendrick and A. Merraus. GAMS, An Introduction. The World 
Bank, Washington, D.C., 1985. 

Publication of this paper sponsored by Committee on Transportation 
and Land Development. 




