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A Conceptual Framework for the Development 
of Performance-Related Materials and 
Construction Specifications 

PAULE. IRICK 

In this paper, pavement design and performance concepts that 
provide a systematic basis for the development of specifications 
for materials and construction (M&C) factors are identified. It is 
assumed that the conceptual framework for specifications 
development includes eight sets of relationships among the 
process variables and nine sets of inputs or outputs for the 
relationships. Independent variables are selected that have 
predictable effects on performance-related output variables. 
From these independent variables, variables (EPF) appearing 
explicitly in prediction functions are selected and subdivided 
into traffic factors, environmental factors, and pavement 
structure factors. EPF variables can be replaced by surrogate 
variables (SPF) when M&C control for these secondary variables 
is easier to provide. Other secondary variables are the control 
factors (CF), which have predictable effects on EPF or SPF 
variables. EPF variables related to the M&C process are denoted 
MCF. In general, a stochastic prediction model consists of a 
prediction function that may be completely known from 
mechanistic considerations; that may be partially known except 
for undetermined constants; or that may be assumed to be a 
linear combination of linear, curvilinear, and interaction effects 
(with undetermined constants) among the independent variables. 
When the effect of error variables is added to the prediction 
function, the prediction model can be compared to the experi
mental design, and analyses of variance and covariance and 
regression analysis can be applied. General forms of prediction 
equations for stress and distress, stress-load equivalence rela
tionships, traffic prediction relationships, relationships among 
M&C specification factors, and performance-cost relationships 
are presented. Pavement design criteria and M&C specification 
factors are added as the initial conditions for the definition of a 
pavement design for a given pavement requirement. It is 
assumed that the M&C specifications will be derived in every 
case from computational algorithms, though development of 
these algorithms requires results from future research. 

The purpose of this paper is to identify and bring together 
pavement design and performance concepts that can provide 
a systematic basis for the development of performance
related specifications for materials and construction (M&C) 
factors. The concepts form a framework in which the 
elements are interrelated and support the development of 
performance-related specifications. Essential inputs and 
outputs for algorithms for the development of such spec
ifications are described in detail. 

Motivation and support for preparation of the paper has 
come from the author's participation as a panel member for 
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two NCH RP projects. Incorporation of pavement design and 
performance concepts as framework elements stems from the 
author's involvement in the recent revision of the AASHTO 
Guide for Design of Pavement Structures (1-3) , and in the 
development of research plans (4) for long-term pavement 
performance studies in the Strategic Highway Research 
Program (SHRP). 

The scope of the paper is implied by the overview presented 
in the next section. Subsequent sections contain details for 
pavement design and performance variables and prediction 
equations. Criteria and general considerations for specifica
tions algorithms are given in the final sections. Specific 
algorithms and their M&C applications require new research 
outputs of the types expected from NCHRP and related 
FHWA and SHRP projects. 

OVERVIEW 

Performance-related specifications for pavement M&C must 
be developed in the context of the pavement design
performance process, which has three phases: design, con
struction, and service. Process activities are grouped under 
general headings within each phase in the following way: 

I . Design phase activities 
I . I Acquisition of field and laboratory data on 

local M&C capabilities and alternatives. 
1.2 Selection of design period, distress and per

formance criteria, reliability factor, and pre
diction equations or algorithms. 

1.3 Prediction of design period traffic and per
formance of alternative pavement designs. 

1.4 Specification of levels and tolerances for M&C 
design and control factors. 

1.5 Economic evaluation of alternative designs and 
specifications, and selection of optimum design. 

2. Construction phase activities 
2.1 Development of M&C control plans, acceptance 

plans, and payment schedules. 
2.2 Acquisition, preparation, evaluation, and con

trol of construction materials. 
2.3 Construction and control of design levels and 

tolerances for M&C factors. 
2.4 Implementation of acceptance plans and pay

ment schedules. 
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3. Service phase activities 
3.1 Treatment of pavement by traffic and environ

mental factors. 
3.2 Routine maintenance. 
3.3 Monitoring of treatment factors and pavement 

condition. 
3.4 Evaluation of pavement performance and 

prediction variances. 
3.5 Feedback to design phase and preparations for 

next stage of pavement life cycle. 

It is assumed that the framework for specifications develop
ment incorporates relationships among the process variables. 
The eight sets Rl-R8 of relationships identified for this 
purpose are contained within the ovals shown in Figure 1. 
Input and output variables for the relationships are shown in 
Boxes A-I. The abbreviations M, E, or A alongside input 
lines indicate the classes of the methods (mechanistic, 
empirical, or algebraic, respectively) that may be used to 
establish the relationships, as indicated in the figure legend. 

VirtualliY all the relationships among the process variables 
are stochastic and therefore have statistical uncertainties 
associated with those of the inputs and outputs. The 
magnitudes of the uncertainties, generally expressed as error 
variances or standard deviations, provide objective bases for 
determining the relative importance of various M&C factors 
and for deriving realistic tolerance limits for the control of 
each M&C factor. 

Box A contains the distress prediction factors, the primary 
independent variables of the process, which fall in three 
categories. Category Al variables are pavement structure 
factors that describe the physical nature of the pavement 
materials, pavement layers, and construction procedures. 
Category A2 variables describe environmental conditions 
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such as moisture and temperature regimes, roadbed conditions 
such as soil strength and swell propensity, and roadside 
conditions such as shoulder design or drainage conditions. 
Category A3 variables include traffic factors such as axle load 
distribution and frequency, and annual changes for any of the 
traffic factors. 

Box A contains those independent variables that have a 
predictable effect on one or more of the performance-related 
output variables in Boxes B, C, and F. For the purposes of 
this paper, an independent variable has a predictable effect on 
a dependent variable if and only if empirical evidence has 
demonstrated that sufficiently large changes in the inde
pendent variable produce statistically significant changes in 
the dependent variable. The necessary evidence can be 
supplied by a designed experiment in which (a) the prediction 
factor is controlled at two or more levels that span its range of 
interest, (b) all other prediction factors are controlled at fixed 
levels, and (c) all remaining independent variables operate at 
chance levels. If the experimental results show that the effect 
of a given factor on one or more performance-related 
dependent variables is statistically significant, then the effect 
is predictable and the factor is performance-related. 

This definition of a performance-related prediction factor 
implies that a relationship exists between the factor and one 
or more of the variables in Boxes B, C, and F, and that the 
relationship shows how much change to expect in the 
dependent variables for a given change in the prediction 
factor. Mathematically, this dependence implies that the 
dependent variable is an algebraic function of the prediction 
factor and that the partial derivative of the function with 
respect to the prediction factor is not identically zero over the 
factor's entire range. 

The major dependent variables of the process are shown in 
Boxes B, C, and F, which are outputs of Relationships Rl, 
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R2, R4, and R6, respectively. Stress indicators in Box B 
represent pavement responses to single applications of 
particular stress levels created by some combination of 
structural, environmental, and loading factors. Stress in
dicators are generally functions of strains or deflections. 

Distress indicators in Box C represent various kinds of 
pavement responses that exist after repeated applications of 
one or more stress levels. Distress indicators pertain to 
singular modes of distress such as cracking, rutting, or 
faulting, or composite modes of distress such as roughness or 
serviceability loss. 

Box F contains performance indicators for the amount of 
acceptable service that the pavement provides before any 
particular life-cycle phase is terminated. Performance in
dicators may be expressed in terms of the length of time or the 
number of load applications carried before one or more 
distress indicators reach an unacceptable (terminal) level. 
Examples are the number of years before thermal cracking 
reaches an unacceptable level or the total number of equivalent 
axle loads carried before the present serviceability index 
(PSI) reaches a given value. Thus, the performance indicators 
in Box Fare functions of one or more distress indicators in 
Box C. Because each distress indicator in Box C is a function 
of one or more stress indicators in Box B, all three sets of 
dependent variables in Boxes B, C, and Fare performance
related . The variables in Boxes B, C, and F therefore 
represent the set of performance-related output variables of 
the design-performance process except for costs. 

A relationship is not complete unless it also shows how 
much variation in the dependent variable is not attributable 
to changes in any prediction factor, that is, how much 
unpredictable variation or error is to be expected for the 
dependent variable. Knowledge of both predictable and 
unpredictable variation is essential to the development of 
performance-related specifications for M&C factors. 

Relationships shown in the middle column of Figure 1 are 
for the prediction of stress indicators (RI), distress indicators 
(R2 and R4), and performance indicators (R6). It is assumed 
(a) that these relationships have engineering credibility and 
validity for the prediction of variables in Boxes B, C, and F 
from the prediction factors in Box A, (b) that the prediction 
factors in each relationship are expressed explicitly, and (c) 
that each relationship is accompanied by adequate informa
tion on the uncertainties of its predictions, that is, the 
prediction errors. 

Relationships RI for the prediction of stress indicators 
may be derived empirically from designed experiments, 
derived theoretically by the incorporation of mechanistic 
principles within established equations or algorithms, or 
obtained by some combination of these two approaches. 
Relationships RI can only predict the pavement response 
(e.g., strain) to a given level of a single-stress application, and 
therefore can provide only an initial step towards performance 
prediction. 

Relationships R2 for prediction of distress indicators are 
extensions of Relationships RI for repeated applications of 
fixed stress levels. Empirical derivations of Relationships R2 
necessarily involve full-scale pavement studies wherein all 
levels of the distress prediction factors remain fixed under 
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repeated load applications. This situation was approximated 
at the AASHO Road Test, at least for those time periods 
during which environmental factors remained relatively 
constant. 

Mechanistic-empirical derivations for Relationships R2 
begin with Relationships RI and associated prediction 
factors, then require field observations of the cumulative 
effects of repeated stress applications at each of several stress 
levels . For cases in which Relationships RI do not alone 
produce satisfactory distress predictions, an additional step is 
to include additional factors from Box A that do not appear 
in Relationships Rl. Empirical aspects of derivations of 
Relationships R2 are essentially calibrations of Relationships 
Rl to include conditions that cannot be accounted for 
through mechanistic consideratio'ns, including repeated stress 
applications. 

Relationships R2 provide a necessary and sufficient basis 
for the algebraic derivation of stress-load equivalence 
relationships (R3). For a given distress indicator, these 
relationships show how many stress applications at any 
particular level produce the same amount of distress as an 
equivalent number of standard stress applications. 

Ratios of the two applications numbers produce equivalence 
factors (in Box D) that can be evaluated for particular 
combinations of the stress prediction factors, that is, 
structural, environmental, and traffic factors. For fixed levels 
of the structural and environmental factors, the equivalence 
ratios reduce to load equivalence factors. 

Extensive tables of load equivalence factors derived from 
AASHO Road Test relationships are given in the revised 
AASHTO Design Guide (1) . Relationships R2 behind these 
factors are for the prediction of PSI loss from structural and 
load factors. Standard stress levels for these factors are for 
18,000-lb equivalent single-axle loads (ESALs) at varying 
levels of surfacing thickness for rigid pavements, or for 
varying structural numbers for flexible pavements. All are 
specific to the AAS HO Road Test environment over a 2-year 
period of traffic operations. 

Relationships R4 are for the prediction of distress indicators 
when the pavement receives an accumulation of mixed-stress 
applications, as in normal highway experience. These 
relationships may be derived empirically through statistically 
designed field studies of existing pavements , or algebraically 
through the supplementation of Relationships R2 with load 
equivalence factors that convert all load applications to 
standard loading conditions. An obvious problem with the 
second approach is that the resulting Relationships R4 are 
strictly valid only for those distress indicators for which the 
equivalence factors have been derived. 

Relationships R6 for performance prediction may be 
derived algebraically from Relationships R4 or empirically 
from designed field studies the primary dependent variables 
of which are performance indicators (in Box F). The difference 
between Relationships R4 and R6 is that the latter incorporate 
design criteria from Box E. Three types of design criteria are 
shown. Category El criteria include designer-selected stress 
and distress indicators, prediction equations, and levels of 
terminal distress. Criteria E2 include a designer-selected 
reliability level, an assumed process standard deviation, and a 
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resultant reliability factor. The performance equation of 
Relationships R6 must also provide Criteria £3 for a 
designer-selected design period and for a design period traffic 
prediction produced by Relationships R5 among traffic 
factors in Box AJ. The product of the traffic prediction and 
the reliability factor produces a design requirement, namely, 
the predicted number of equivalent axle load applications 
that the pavement will receive during its performance period. 

After years of highway research , some of the Relationships 
Rl-R6 have been determined , but many of the reported 
relationships are tenuous or incomplete, and many potential 
prediction factor effects remain to be studied. Because these 
relationships are basic to the systematic development of 
performance-related specifications, near-term efforts should 
be made (a) to assemble and evaluate all report~d Relation
ships Rl-R6, and (b) to design and perform new studies that 
may be needed to fill important gaps in the available 
relationships, particularly with respect to their prediction 
variances. Many existing gaps may become filled through 
prospective SH RP studies. 

The steps in M&C specification development are as 
follows: 

I. Identification of all independent variables that appear 
explicitly in one of the Relationships RI, R2, R4, or R6 as 
prediction factors for stress, distress, or performance. All 
such factors belong in Box A by definition. 

2. Identification of all independent variables that are 
candidates for M&C specifications, that is, that are likely to 
require control in the course of materials testing and pavement 
construction. Each such M&C specifications factor belongs 
to one or another of the three categories in Box G. 

Category G 1 contains all explicit prediction factors EPF in 
Box A that are also candidates for M&C control. Examples 
include layer thicknesses. 

Category G2 contains all surrogate prediction factors SPF 
that can be used for the (indirect) control of one or more EPF. 
Surrogate factors are generally needed to control those EPF 
whose evaluation is more difficult and costly than can be 
afforded. Examples include the use of California bearing 
ratio (CBR) as a surrogate for roadbed modulus, or the use of 
compressive strength as a surrogate for portland cement 
concrete (PCC) flexural strength . Box G2 should contain all 
surrogates the credibility and validity of which have been 
established through experience. (Some EPF require no 
surrogates; several competing SPF exist for some EPF; no 
surrogates exist for some EPF; and some SPF are surrogates 
for more than one EPF.) 

Category G3 contains auxiliary control factors CF that are 
neither EPF nor SPF. The roles of these factors are (a) to 
enhance the control of one or more EPF or SPF, or (b) to 
enhance one or more of the construction procedures. CF 
having Role (a) include slump as a partial control for PCC 
strength, asphalt content for enhancement of asphalt concrete 
(AC) stiffness control, and roadbed density for indirect 
control of subgrade strength . An example of Role (b) is 
moisture control for enhancement of roadbed compaction. 
Box GJ should contain all CF that do not appear in Box GI 
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or G2, but that have been found useful in the past experience 
of pavement designers, materials experts, and road builders. 

3. Determination of which SPF and CF are truly 
performance-related and to what degree. More specifically, 
this step is the determination of the degree to which each 
candidate SPF is related to one or more EPF, and the degree 
to which each candidate CF is related to one or more EPF or 
SPF. All such secondary performance relationships of the 
conceptual framework are shown collectively as Relationships 
R7 in Figure 1. 

Relationships R7 are prediction equations for predicting 
EPF from one or more of the SPF or CF, and for predicting 
SPF from one or more CF. All Relationships R7 are derived 
empirically from statistically designed experiments that make 
it possible to estimate the relative predictive value of each 
SPF and CF, and to quantify the prediction uncertainty 
associated with each relationship. As for the primary 
relationships, many Relationships R7 have been developed 
and reported in the highway research literature. 

Gaps and deficiencies existing in Relationships R7 should 
be ameliorated in the future through design and implementa
tion of new iaboratory or field studies as needed. 

When the set of secondary relationships is complete, it will 
be possible to evaluate the prediction utility of all SPF 
relative to the EPF, and of all CF relative to both the EPF 
and the SPF. The SPF and CF that have little or no predictive 
value cannot be said to be performance-related. Although 
some of these factors might be used for M&C control, their 
specifications cannot be based on statistical reasoning and 
are not performance-related in the context of this paper. 

4. The last oval (R8) in Figure I contains algorithms for 
the derivation of M&C specifications for any specific design 
requirement. It is assumed that the output specifications in 
Box I include (a) target or design levels for relevant M&C 
factors in Box G, (b) tolerance or acceptance levels for each 
M&C factor whose target level has been specified, (c) 
acceptance plans for certain M&C factors, and (d) payment 
schedules associated with as-constructed levels of the 
acceptance plan variables. 

Inputs to the algorithms include (a) the (primary) distress 
and performance relationships (R4 and R6), including design 
criteria from Box E. (b) all M&C factors in Box G that are to 
be controlled, and (c) the (secondary) relationships (1<7) that 
relate SPF and CF to the EPF that appear in the primary 
relationships. 

For a given design requirement, for example, a set of design 
values for performance indicators, the relationships input to 
the algorithms (R8) provide a necessary and sufficient basis 
for the deterministic specification of target design levels for 
all M&C factors. In general, however, the relationships are 
satisfied by a large number of alternative sets of M&C factor 
levels, although some alternative levels can be excluded for 
M&C factors if the algorithms (RB) include criteria for the 
selection of optimal alternatives. 

It is assumed that each input relationship (R4. R6. or R7) 
includes a measure (e.g., error variance) of the prediction 
precision of the relationship. Thus, one criterion for the 
selection of design level alternatives can be the maximization 
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of performance prediction precision through the selection of 
SPF and CF the combined relationships of which have 
minimum error variance for attainment of the design 
requirement. 

A perhaps overriding criterion for selection of optimal 
combinations of factor levels is the minimization of overall 
costs associated with materials provision, construction 
procedures including quality control, and routine maintenance 
to be provided during the performance period of the pavement. 
It is assumed that all necessary unit costs are contained in the 
Box H inputs to the specifications algorithms (R8). Thus, the 
algorithms can produce relative costs for alternative sets of 
factor levels that satisfy the primary and secondary per
formance relationships, and can therefore reduce all possible 
alternatives to those having minimal costs. It follows that the 
algorithms must incorporate a third criterion, precision, for 
weighing costs against benefits, to ensure that factor level 
specifications that produce minimal costs are also the 
combinations that lead to maximum precision. 

The objective specification of tolerance or acceptance 
levels for M&C factors is more complex than the specification 
of target design levels for the factors, and should be based on 
the stochastic properties of the R4, R6, and R7 prediction 
equations. One approach to the derivation of tolerance levels 
is to assume for each factor the coefficients of variation that 
are expected in the M&C process under different degrees of 
control that range from very loose to very tight. For example, 
the coefficient of variation for subgrade strength in roadbed 
construction might be 100 percent if little or no control is 
exercised, but as low as 10 percent under very tight control. 
Box H contains relative unit costs for the various levels of 
control of all M&C factors. 

From the variance components of the prediction equations 
to be discussed later, it is possible to estimate the amount of 
performance variance that is associated with different levels 
of the factor variances or coefficients of variation. When 
combined with control costs, these estimates provide a basis 
for assessing the benefits and costs of any particular set of 
tolerance specifications, where benefits are relative to the 
prediction precision implied by particular levels of control. 
Using this approach and the specifications algorithms (R8), 
many alternative sets of tolerance levels can be examined and 
those that are optimal with respect to objective criteria can be 
determined. 

INTRODUCTION AND CLASSIFICATION OF 
PERFORMANCE-RELATED VARIABLES 

The purpose of this section is to introduce and classify all 
major variables that are relevant to the pavement design
performance process and that are directly or indirectly 
related to the development of performance-related specifica
tions for M&C factors. The variables to be introduced are 
those implied by Boxes A-H and are generally inputs or 
outputs for the basic relationships (Rl-R8) shown in Figure 
I. 
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The process variables may be grouped in the following 
classes: 

I. Primary dependent variables 
I. I Stress indicators r (strains, deflections, etc.) 
1.2 Distress indicators d 

a. Singular distress (cracking, rutting, etc.) 
b. Composite distress (roughness, PSI loss, 

etc.) 
1.3 Performance indicators 

a. Fixed-stress applications N;1 to d = d, 
b. Mixed-stress applications W

1 
to d = d

1 

c. Performance period YT for d < d 1 

1.4 Cost indicators 
a. Cost components c for materials, construc

tion, and so forth 
b. Life cycle costs C for analysis period YA 

2. Primary stress-distress prediction factors 
2.1 Traffic factors TF 

a. Load frequencies, distributions, growth 
rates, and so forth 

b. Load equivalence factors and ESAL ac
cumulations 

2.2 Environmental factors EF 
a. Climate 
b. Roadbed and roadside 

2.3 Pavement structure factors SF 
a. Materials and layer properties 
b. Construction and maintenance procedures 

3. Secondary stress-distress prediction factors 
3.1 M&C surrogate factors for primary prediction 

factors 
3.2 M&C control factors 

4. Pavement design criteria 
4.1 Distress-performance criteria 

a. Distress indicators and prediction functions 
b. Terminal distress levels and performance 

indicators 
4.2 Reliability criteria 

a. Reliability level R 
b. Process standard deviation S0 
c. Reliability factor FR 

4.3 Time and applications criteria 
a. Design period YT 
b. Design applications W

1 
= wT X FR 

c. Design period traffic w1 
5. Uncontrolled independent variables z 

5.1 Uncontrolled deviations from specified levels 
a. Stress-distress prediction factor deviations 
b. Design criteria deviations 

5.2 All remaining uncontrolled independent vari
ables 

In the preceding expressions, the subscript t refers to a 
terminal condition, i to a level of fixed stress, and T to 
serviceable lifetime. Class I contains all the primary dependent 
variables; classes 2-5 contain the independent variables. The 
variables are discussed in the subsections that follow. 
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Primary Dependent Variables 

The primary dependent variables to be observed or evaluated 
are either stress indicators, distress indicators, performance 
indicators, or cost indicators. (Indicators are results of 
specific measurement procedures including use of equipment 
for evaluating generic variables.) For example, a specific 
CBR test might be used as an indicator of subgrade strength, 
or the Thornthwaite index might be used as an indicator of 
climatic moisture. There are generally several alternative 
indicators for variables, even for specific variables such as 
pavement deflection under load. 

Pavement stress is induced by some combination of 
loading and environmental conditions. Stress indicators rare 
generally strains and deflections or functions thereof. Stress 
indicators are often called pavement response variables 
because they indicate the response of the pavement to a single 
stress condition or load application. 

Distress indicators d represent undesirable changes in the 
physical condition of the pavement over time, and therefore 
result from some combination of repeated environmental 
stresses, repeated load applications , or deterioration with 
age. Distress indicators have been developed for each singular 
mode of distress such as fatigue cracking, thermal cracking, 
rutting, faulting, joint deterioration, scaling, and raveling. 
Singular distress indicators provide an essential basis for the 
diagnosis and repair of structural conditions. 

Composite distress indicators, such as longitudinal 
roughness or PSI loss , are essential to evaluation of the 
functional condition of the pavement, that is, the degree to 
which the pavement has begun to fail to provide a smooth and 
safe facility for its users. Composite distress indicators must 
be used for the comparison of pavements that have different 
singular distress modes , and for the aggregation of all distress 
indicators within a given pavement type. In principle, a 
composite distress indicator is a weighted index of all singular 
distress indicators that bear on the functional condition of the 
pavement. 

It is assumed that pavement performance is defined by the 
amount of service to road users that the pavement provides 
while in an acceptable functional condition. Amount of 
service, in turn, is a function of the traffic carried; being in 
acceptable functional condition implies that a criterion 
distress indicator d has not reached an unacceptable terminal 
level d, in the eyes of road users . A specific performance 
indicator is the number of ESAL applications W, that the 
pavement has carried until its PSI loss has bec'.:lme p 1 - p 

1
, 

where p 1 andp
1 
are initial and terminal levels, respectively, of 

the PSI of the pavement. 
For reasons to be discussed in a later section, a distinction 

is made between accumulated load applications N, all of 
which occur at the same stress level, and the number of ESAL 
applications Wthat accumulate under mixed stress and load 
conditions, as in normal highway operations. If the rate of 
load accumulation is known and is not zero, then either N

1 
or 

W
1 
can be converted to the total years Y

1 
of acceptable service 

during which d remains less than d
1 

• Thus, Y, , the 
performance period of the pavement, is also a primary 
dependent variable . 

In the foregoing discussion, pavement performance is 
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quantified in terms of functional throughput. Thus, a high
volume road that requires rehabilitation (because of use) 
after 5 years may have greater performance than a low
volume road that requires rehabilitation (because of age) 
after 20 years . Alternative performance indicators can be 
defined in terms of singular distress indicators d and their 
terminal levels d1 that represent needs for particular types of 
pavement rehabilitation. None of the distress indicators so 
far discussed takes into account the fact that distress generally 
docs not increase at a constant rate over the performance 
period. If desired, shape parameters of the distress curve over 
time and applications could be used to weight the linear 
performance indicators that have just been defined. 

Cost indicators for cost components are associated with 
the acquisition and processing of pavement materials, pave
ment construction (including testing and quality control), 
routine maintenance applied over the performance period, 
and rehabilitation steps needed before the M&C process is 
iterated for the next phase of the pavement life cycle. 
Aggregate costs for each phase lead to life cycle cost 
indicators, perhaps on an annual basis over an analysis 
period YA of 30 years or more. 

Because performance indicators are measures of the benefits 
provided by specific pavement designs, incremental benefits 
are defined by additional ESAL throughputs at acceptable 
service levels. Combined with the performance indicators, the 
cost indicators provide a basis for assessment of benefits 
relative to costs for particular sets of pavement design 
specifications. 

Prediction Factors for Stress and Distress 

Prediction factors for stress and distress belong to primary 
and secondary classes. Primary factors (EPF) appear explicit
ly in prediction functions for stress and distress that are 
recognized by the pavement design community, and that can 
be represented by Relationships RI, R2, R4, and R6 in 
Figure !. 

Secondary stress and distress prediction factors for the 
design-performance process include accepted surrogates SPF 
and those CF that have demonstrable relationships with the 
EPF. The EPF are performance-related by definition, but the 
secondary factors are only indirectly related to distress or 
performance. 

Primary Factors 

The EPF have three subclasses. Traffic factors (TF) describe 
individual loadings that produce pavement stress and ac
cumulated loadings that are associated with pavement distress. 
Examples are individual axle loads, rate of loading, load 
placement, average daily traffic, axle load distribution of 
daily traffic, traffic growth rate, axle load equivalence 
factors, and years of traffic. Cumulative load applications 
derived from the TF include the number of axle loadings 
N; at stress levels i = 1, 2, .. . and the number of ESAL 
applications Wthat have accumulated at any particular time. 

Environmental factors (EF) include various indicators of 
(a) climatic moisture, and temperature; (b) roadbed properties 
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of strength, roadbed moisture, and temperature conditions, 
and propensity for swell and frost-heave; and (c) roadside 
conditions such as drainage and shoulder support. 

Pavement structure factors (SF) generally include (a) types 
and physical properties of construction materials, (b) layer 
properties such as thickness, strength, and load transfer 
capabilities, (c) construction procedures such as compaction 
or surfacing reinforcement, and (d) routine maintenance 
procedures. 

Secondary Factors 

Secondary prediction factors for stress and distress include 
SPF (Class 3.1) that do not appear among the EPF but that 
may be substituted for the EPF by means of known 
relationships. For example, if one EPF is the subgrade 
resilient modulus and if a particular CBR indicator is 
predictably related to the modulus, then CBR values can be 
used to determine modulus values to within a known degree 
of precision. Thus, if CBR is more feasible to control during 
the M&C process than sub grade modulus, then the substitu
tion of variables can be made with a known sacrifice in 
performance prediction. The practical impact of the SPF is 
that to provide M&C control for the SPF may be more 
feasible than for their EPF counterparts; however, the 
effectiveness of the substitutions depends on the particular 
forms of relationships between the EPF and SPF. 

Secondary prediction factors include the CF (Class 3.2) 
that are neither EPF nor SPF, but have predictable effects on 
one or more of the EPF or SPF. Thus, the M&C control of 
any CF induces some degree of control on the primary EPF 
to which the CF is related. It follows that such CF are 
performance-related to the degree that their levels influence 
the EPF levels, and hence the stress, distress, and performance 
indicator outputs. An example of a multivariate relationship 
is that between PCC flexural strength (a primary prediction 
factor) and both slump and cement content of the PCC mix 
(control factors). 

Pavement Design Criteria 

Class 4 of the performance-related variables contains 
pavement design criteria that are assumed or specified by the 
pavement designer. The three subclasses of design criteria are 
distress criteria (Class 3.1), reliability criteria (Class 3.2), and 
design period criteria (Class 3.3). No variable in this class is 
an M&C factor, but all have indirect effects on M&C 
specifications. 

Specification of distress and performance criteria (Class 
4. 1) implies (a) selection of one or more singular or composite 
distress indicators, (b) selection of relationships between 
indicators and prediction factors. and (c) specification of a 
terminal distress level for each indicator. 

In Class 4.2, specification of reliability criteria involves (a) 
selection of a reliability level R, (b) assumption of a process 
standard deviation S0 , and (c) calculation of a reliability 
factor FR . Further definitions for these three independent 
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variables are given in a later section. (The reliability level R of 
the design-performance process is defined as the probability 
that the actual performance period of the pavement equals or 
exceeds the specified design period.) 

Design period criteria (Class 4.3) include the design period 
YT, the predicted design period tn~ffic w T (in ESALs), and 
the predicted design applications W

1 
• Length of the design 

period YT is usually dictated by pavement management 
system (PMS) considerations for the various phases of the 
pavement life cycle. Typical design periods are in multiples of 
S years. 

The predicted design period traffic wTis derived from an 
equation or algorithm using estimated traffic factors. Thus, 
w Tis both a dependent variable relative to traffic factors and 
an independent variable relative to pavement design. 

Design applications W
1 

are derived by multiplying the 
reliability factor FR by the predicted design period traffic 
w T. The resulting value is a design requirement for the actual 
outcome of the performance indicator w;,. If FR= 1, design 
applications are equal to the predicted design period traffic, 
and the pavement design has a reliability level of R = SO 
percent. 

A number of the variables discussed thus far are shown in 
Figure 2. The vertical scale is for any particular distress 
variable d whose terminal distress level d

1 
is represented by 

the horizontal dashed line across the top of the figure. Two 
horizontal scales are shown, one for years Y and one for 
equivalent load applications Wthat have accumulated at any 
point in time. 

The distress history ford is shown as an irregular curve that 
begins at zero when Yand Ware zero. When d reaches d

1 
, the 

performance period has ended, and the corresponding 
performance indicators have values Y1 and W1 • 

Finally, Figure 2 shows design period years YT and the 
corresponding design period traffic wT. The performance 
period Y

1 
is expected to be greater than the design period YT 

if the designer specifies a reliability level R that is greater than 
SO percent. Unless the annual rate of ESAL accumulation is 
constant, the Yand W scales of Figure 2 are distorted relative 
to one another. 

Uncontrolled Independent Variables 

The final class (Class S) of performance-related variables 
includes all independent variables that are specified neither as 
stress or distress prediction factors nor as pavement design 
criteria. In statistically designed experiments, the collective 
or net effect of these variables is known as experimental error. 
In pavement design applications, the error effects, at least in 
part, are responsible for prediction errors. Two subclasses 
have been identified. Class S. l represents error variances that 
arise because the prediction factors have uncontrolled 
deviations from their design levels . Class S.2 represents the 
net effects on distress and performance of all remaining 
uncontrolled and unidentified independent variables that 
operate during the course of the design-performance process. 

To some degree, the EPF variances (Class S.l) may be 
partially controlled through the tolerance levels for M&C 
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factors, but any remaining error effects must be accepted as 
normal aspects of the overall prediction process. Although 
the individual effects of uncontrolled variables cannot be 
identified , their collective effect can be estimated through 
statistically designed studies. As will be discussed later, the 
magnitude of uncontrolled variation is an important element 
in the development of tolerance or acceptance limits for 
M&C factors. 

Prediction Models 

Derivation of prediction equations begins with the specifica
tion of a mathematical model for an assumed relationship 
between a predicted dependent variable Vanda specific set of 
independent predictor variables { U) = U 1 , U2 , ••• Let v be 
an indicator for values of V and let {u} = u 1 , u2 , .•. be 
corresponding indicators for values of the predictor variables. 
The prediction function may be written as f(u, c) , where 
{c} = c 1 , c2 , ••• is a set of constants (coefficients) that 
modify the independent variables {u}. The predicted value of 
v is denoted v, so that 

PRINCIPLES OF PREDICTION EQUATION 
DEVELOPMENT 

Because stress, distress, and performance prediction equations 
are important elements of the M&C specifications framework, 
the methods used to derive the equations are of considerable 
interest. In this section, many basic principles of experimental 
design and analysis that bear on the derivation of prediction 
equations, particularly with respect to the assessment of their 
statistical properties, are brought together. 

The discussion in this section is general; particular types of 
performance-related prediction equations are discussed in 
the next section. 

v = f(u, c) (1) 

It is understood that v and v may be some transformation 
(e.g., a logarithm or power) of V, and that the set {u} may 
include· various transformations of the corresponding var
iables in set { U}. The functional or computational form of/is 
completely specified, but values for some of the constants in 
{c} may need to be derived from experimental data. 

For a fixed set of predictor variables {u}, the functional 
form must show how v changes when u 1 , u2 , . •. are changed 
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in value. Mathematically, the change in v due to a change in 
one of the U;, associated with the partial derivative off with 
respect to u;, is the main effect of u; on v. If the partial 
derivative is constant, the U; effect is linear and does not 
in teract with the effecL of any other u1 (j =F- i). If the partial 
derivative is a (nonconslant) function of u;alone, then u;has a 
curvilinear noninteracting effect on v. If the partial derivative 
is a lso a function of some u1 (j =F- i), then u; and u1 have an 
interacting effect on v. In this case, the main effect of u; is 
defined by setting u1 = a1 , the mean value of u1 . 

These examples can obviously be extended to higher-order 
interactions among three or more factors and various types of 
nonlinear effects. If all relevant u and the functional forms of 
all u effects are known (e.g., from principles of pavement 
mechanics), it is possible to assume the correct mathematical 
form for f. In such cases, the prediction function is said to be 
mechanistic. In general, however, a mechanistic derivation 
does not produce specific values for all constants inf. Because 
undetermined constants must be estimated from experi
mental data, the ultimate functionfis said to be mechanistic
empirical. 

When little is known about the mathematical form of {u} 
effects on v, it is conventional to express f (u, c) as a linear 
combination of linear effects, curvilinear effects, and inter
acting effects of the independent variables. In this formulation, 
one constant in { c} is allocated to each effect, and the model is 
said to be strictly empirical. 

Differences between observed values v and predicted 
values v of Vare prediction errors that represent the net effect 
on v of all independent variables that are not included in the 
predictor set {u}. Because many of these variables are 
uncontrolled or unidentifiable (Class 5), their net effect on a 
particular observation vis unpredictable. If the set of all such 
error variables is denoted by {z}, and their net effect on vis 
denoted by e(z), then a statistical model for vis 

v = v + e(z) = f(u, c) + e(z) (2) 

Thus each observation in the model of Equation 2 is the sum 
of the predictable net effect of {u} and the unpredictable net 
effect of {z}. In later sections, it will be shown that the net 
error effects can be decomposed into components of assignable 
variation. 

Although individual errors are unpredictable, the statistical 
distribution of e(z) for a large number of independent 
predictions can be characterized by the mean value of the 
distribution, its variance or standard deviation, and perhaps 
other distribution parameters. If the error distribution has 
mean value zero, the prediction model of Equation 1 is 
unbiased or valid for the conditions that produced the error 
distribution. The error variance S /or standard deviation Se 
is a measure of the precision of the prediction model of 
Equation 1. 

If the error distribution is approximately normal, it is 
completely defined by its mean value and variance. Because 
these parameters must be estimated from experimental data, 
every statistical model of Equation 2 must be evaluated 
empirically. It is not sufficient to derive only the prediction 
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function of Equation 1; the error distribution of e(z) in 
Equation 2 must also be derived so that both the validity and 
the precision of the prediction function can be assessed. 

Finally, the prediction function of Equation 1 is said to be a 
linear model if it can be expressed as a linear combination of 
coefficients c; otherwise the model is said to be nonlinear in 
the coefficients. The error function in Equation 2 represents 
additive errors. For some models, the error function may be 
multiplicative, generally by assumption. In this case, taking 
logarithms of both sides of Equation 2 produces an additive 
logarithmic function of the error variables z. 

Experimental Designs 

Over the past 50 years, a substantial body of knowledge and 
literature has been developed for the design and analysis of 
experiments (5, 6). Only the most relevant design concepts are 
presented herein; implementation details are omitted. 

An experimental design for the development of a prediction 
equation is essentially a well-defined plan for assessing the 
effects of sets of independent variables on one or more 
dependent variables. The plan begins with specifications for 
experimental units and treatments that are applied to the 
units. For pavement studies, the experimental units are either 
pavement test sections or test specimens of pavement 
components. Test sections may be either portions of existing 
highways or specially constructed sections within a highway 
project or test track. Test specimens may be either samples 
taken from test sections or specially assembled laboratory 
specimens. If the experimental units are test sections, the 
experiment is a field study that takes place either on existing 
highways or on a test track such as was constructed for the 
AASHO Road Test at Ottawa, lllinois, during 1955-1961. If 
the units are test specimens, the experiment is a laboratory 
study because many if not all measurements will be made in a 
laboratory setting. 

For a particular prediction equation, the given quantities 
for the experimental design include (a) definitions for 
dependent variables Vand their indicators v, (b) specifications 
for those independent variables and corresponding indicators 
that determine the physical makeup of the experimental 
units, (c) specifications for other independent variables and 
indicators that determine the traffic loadings and environ
mental treatments to which the units are subjected, (d) 
specification of the prediction factor effects that must be 
assessed, and (e) specification of the inference space within 
which the derived prediction equation is to be valid. 

For experimental design purposes, independent variables 
fall into four categories: (a) multilevel factors whose values 
are to be varied at two or more controlled levels; (b) single
level factors that have only one fixed level throughout the 
experiment; (c) covariables whose values are not controlled 
by design but are measured in the course of the study; and (d) 
error variables z, whose values are neither controlled nor 
measured, but whose net effects are assessed through experi
mental design and statistical analysis. 

The inference space defines the time-space region within 
which all uncontrolled or unmeasured independent variables 
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in {z} are permitted to affect the observed dependent variables 
{ v}. In essence, the error effects are those that would be 
observed in { v} if all predictor variables {u} were held at fixed 
levels throughout the experiment. Alternatively, the inference 
space can be viewed as the region that contains a hypothetical 
population of experimental units and treatments. In this 
view, the study units and treatments represent samples of the 
population. The inference space or population provides 
limits for the validity of the prediction equation to be derived, 
but only if the space has been properly classified and sampled 
in the experimental design. 

Classification of the inference space is generally along the 
lines of physical categories within which different subsets of 
{z} are expected to exert effects on {v}. For example, in field 
studies the inference space might be the entire United States. 
In this case, the inference space classes might be test sites 
within a highway project, projects within areas (e.g., states), 
and areas within regions (e.g., climatic zones). At each 
successive level in this hierarchy, new subsets of error effects 
are introduced. All subsets must be properly sampled if the 
prediction equation is to be valid for the entire country. For a 
laboratory study wherein specimens are manufactured and 
tested, the inference space might be restricted to the results at 
a single laboratory and to only the materials and testing 
equipment available at that laboratory. A much larger 
inference space would cover several sources for each type of 
material and several laboratories and testing procedures. An 
experimental design can be developed for any inference 
space, but only if the space has been properly specified in 
advance. Experimental costs may be greater for extensive 
inference spaces than for more confined spaces, but the 
additional costs must be weighed against the advantages of a 
wider range of validity for the results. 

After all the foregoing given conditions are specified, there 
are two general requirements for the experimental design. 
The first requirement is to provide for proper observation of 
prediction factor effects, the second to provide for proper 
sampling of error effects e(z) throughout the inference space. 
The first requirement can be met through the use of factorial 
designs, the second through the use of appropriate random
ization and replication procedures. 

To develop a factorial design, at least two levels must be 
specified to cover the range of interest for every prediction 
factor. Three or more levels may be necessary for attribute 
factors that have more than two classes or for variable factors 
whose effects are likely to be curvilinear. If there are k 
prediction factors, each at two levels, then the total number of 
factor-level combinations is 2k. Exactly one of these 
combinations is used for the makeup and treatment of each 
experimental unit. If two or more units are used for any 
combination, the combination is said to be replicated. If 
every possible combination is used, the result is a complete 
factorial design. This design makes it possible to observe 
every possible main effect and interaction effect of the 
prediction factors, and more important, to separate 
analytically each effect from all other effects. Moreover, 
every observation is used to calculate every effect, a feature 
known as hidden replication. If the total number of factor
level combinations is large (e.g., 100), a partial or fractional 
factorial design may be used, but it then becomes impossible 
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to separate certain effects from one another. In such cases, the 
fractional design generally produces certain confoundings of 
higher-order interaction effects with lower-order interaction 
effects. 

If only the factor-level combinations that are of most 
interest to the experimenter are used, it is likely that a number 
of predictor factors will be intercorrelated, and complete 
separation of their effects becomes impossible. In the worst of 
such cases, the experimental results become useless for 
assessment of individual prediction factor effects. 

After the factorial combinations have been specified, the 
next phase of experimental design is to specify the procedures 
that will be used to place and replicate the experimental units 
and treatments within the specified inference space. The first 
step is to classify the inference space into categories that 
represent various types or levels of uncontrolled variables z 
and their error effects e(z). As mentioned, for a field study 
whose inference space covers a single climatic zone, these 
categories might be (a) areas within the zone, (b) projects 
within each area, and (c) test sites within each project. 

It is assumed that each experimental unit or test section 
occurs at a single test site, that n different factor-level 
combinations appear in the factorial design, and that one unit 
is required for each combination. Proper placement of 
experimental units within the inference space requires that 
every possible test site in the space (a climatic zone) has an 
equal chance to become the site (a test section) for a given 
factor-level combination. The assignment of factor-level 
combinations to test sites must be accomplished by random
ization procedures that permit no subjectivity in test site 
selection. In practice, every possible test site in the space is 
identified by a numerical code, and code numbers are drawn 
by lot to determine the location of each factor-level combina
tion in a test section. This procedure is called complete 
randomization of the experimental units; it provides assurance 
that (a) all units are subject to all error variables z, (b) that the 
prediction factor effects are unbiased relative to error effects, 
and that ( c) unbiased estimates can be calculated for the error 
effects. 

The randomization procedure is equivalent to random 
sampling of the test site population, with one sample per 
factor-level combination. To observe the error effects 
explicilly, il is ne1.:essary lo replicate at least some factor-level 
combinations within the inference space, that is, to draw 
more than one sample for some factor-level combinations. 
The replication must cover all classes of the inference space, 
because otherwise not all error effects are observed. For 
example, if all replications were made at the level of the test 
site, the replicate differences would not reflect error effects 
between projects, that is, effects associated with different 
contractors and concomitant variations in materials and 
construction. For the example, if each of the n factor-level 
combinations is to be once replicated, 2n sites must be 
randomly selected throughout the inference space. 

Details for determining the number of replicate units and 
their allocation to factor-level combinations will not be 
discussed, but the general requirement is that the replications 
must provide a sufficient basis for the estimation of error 
variance, and therefore for the assessment of prediction 
equation precision. 
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Proper randomization and replication procedures are 
essential to the validity of all inferences associated with the 
prediction equation and its applicability to the inference 
space. Specification and implementation of these procedures 
is at least as important as specifications for the factorial 
design. 

For some studies, restricted randomization procedures 
may be used as alternatives to complete randomization. In 
the foregoing example, it might be appropriate to select 
random areas within the climatic zone, then to select random 
projects within each area, and finally to select random test 
sites within each project. In this case, however, the experiment 
must be replicated at the area level, so that all error effects can 
be observed. A comprehensive discussion of randomization 
and replication procedures for many types of experimental 
designs is given by Anderson and McLean (5). 

Finally, the experimental design may specify that certain 
prediction factors be excluded from the factorial design but 
evaluated for each experimental unit. Such factors are called 
covariables whose values are distributed throughout the 
inference space by the randomization procedures. Thus, in 
models of Equations 1 and 2, the prediction function/ (u, c) 
contains all factors that are varied in the factorial design plus 
any covariables that have been designated. 

Data Analysis 

After the experimental design has been implemented, the 
resulting data provide corresponding values for all dependent 
variables v and for all independent variables u that were set 
forth in the experimental design. Computer software for 
several types of statistical analyses are available for derivation 
of the required prediction equations. Four such methods are 
as follows: 

1. Analysis of variance (ANOV A), 
2. Analysis of covariance, 
3. Linear regression analysis, and 
4. Nonlinear regression analysis. 

These analytical methods make it possible to attain the 
following objectives. As indicated, analyses of variance or 
covariance are used to attain the first three objectives; the last 
three objectives are attained through linear or nonlinear 
regression analysis. 

1. Estimates of prediction factor effects (by Method 1 or 
2), 

2. Estimates of error effects (by Method 1 or 2), 
3. Significance assessments of prediction factor effects 

(by Method 1 or 2), 
4. Estimates of model constants (by Method 3 or 4), 
5. Precision estimates for individual constants (by Method 

3 or 4), and 
6. Precision estimates for predictions (by Method 3 or 4). 

As discussed earlier, each analysis is relative to a particular 
mathematical model and corresponding experimental design. 

II 

Objective 1 is to quantify the amount of variation in an 
observation v that is attributable to each main effect and 
interacting effect of the predictor variables u. 

Objective 2 is to quantify the amount of variation in an 
observation v that is attributable to error variables z. If the 
experimental design involves restricted randomization, then 
Objective 2 includes the partition of total error variation into 
subsets that correspond to various levels of error variation 
(e.g., between projects and between test sites within projects). 

Objective 3 is attained through statistical significance tests 
that compare each EPF effect with appropriate error effects. 
If any comparison produces a significant effect at a given 
probability level (e.g., 5 percent), it is inferred that the 
relevant EPF effect is real, that is, that the effect truly exists 
within the inference space of the experimental data. The 
selected significance level represents the magnitude of the 
controlled chance that the inference is erroneous. 

Thus the results show not only which factor effects are 
significant, but also how much of the total variation in an 
observation v can be attributed to factor effects u and how 
much can be attributed to error variables z. Analyses of 
variance and covariance therefore set the stage for regression 
analyses by determining just which factors and combinations 
thereof are statistically significant components of the 
regression models. 

The remaining analytical objectives begin with linear or 
nonlinear regression analyses that produce estimates for 
constants (coefficients) that modify the predictor variables 
(Objective 4). 

In regression analyses, prediction error e(z) is decomposable 
into lack-of-fit error e'(z) and pure experimental error e"(z). 
Thus, 

v = v + e(z) =flu, c) + e'(z) + e"(z) (3) 

In essence, lack-of-fit variation represents that part of the 
variation in v that is neither pure experimental error nor 
completely explained by the particular regression model 
flu, c) that has been used. If the lack-of-fit variation is not 
significantly greater than pure error variation, it is generally 
inferred that no improvements are needed for flu, c), because 
further extensions of the model do not represent significant 
contributions from the prediction factors. If, on the other 
hand, the lack-of-fit variation is significant relative to pure 
error variation, it may or may not be possible to reduce the 
former through the use of alternative functions for flu, c). 

Objective 5 is to determine the precision of the estimated 
constants {c} in flu, c), generally in terms of a confidence 
interval for each constant. As will be discussed, chance 
variations in regression coefficients have direct bearing on 
tolerance and acceptance limits for M&C factors that relate 
to corresponding coefficients in the prediction equations. 

Objective 6 is to determine confidence intervals for the 
predictions v that are produced by the evaluated regression 
function. The intervals are determined by the confidence level 
used (e.g., 90 percent) and the variance of the overall 
prediction errors. If flu, c) is a linear combination of PF 
effects, Objectives 5 and 6 can be attained through use of 
algebraic formulations that have been developed for regression 
models (5). 
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To the fullest possible extent, regression analyses should be 
preceded by appropriate analyses of variance or covariance, 
because inferences from the two types of analyses are 
interdependent and mutually supportive. 

If the experimental design is deficient, it may not be 
possible to perform appropriate analyses of variance and 
covariance. In such cases, it is most likely that Objectives 4, 5, 
and 6 cannot be fully attained through regression analyses. 
As implied earlier, experimental design deficiencies generally 
arise through incomplete balance of prediction factor level 
combinations in the factorial design, failure to randomize 
experimental units properly throughout the inference space, 
or failure to obtain estimates of experimental error through 
appropriate replication of units within the inference space. 

Because performance-related M&C specifications are 
generally relative to specific prediction equations for stress, 
distress, and performance, the specifications can have no 
more credibility and validity than are provided by the 
prediction equations upon which they are based. It is 
therefore essential that the equations be derived from 
statistically designed studies and from statistical analyses that 
produce valid results having known precision within a well
defined inference space. 

PERFORMANCE-RELATED PREDICTION 
EQUATIONS 

In this section, the relationships (RI-R8) shown in Figure 1 
are discussed in detail. Relationships RI. R2, R4, and R6 
represent primary equations for the prediction of pavement 
stress, distress, and performance. Relationships R3 for stress
load equivalence and R5 for design period traffic prediction 
are considered to be auxiliary to the primary relationships. 
Relationships R7 among M&C factors represent secondary 
equations for the prediction of stress, distress, and per
formance. All cost-benefit and optimization relationships are 
considered to be components of algorithms (R8) for the 
derivation of M&C specifications. 

Stress and Distress Prediction for Fixed-Stress Levels 

In Figure l, Relationships RI represent prediction equations 
for pavement response indicators r when the responses are 
induced by a single application of a fixed-stress level. 
Prediction factors are either pavement structure factors SF, 
environmental and roadbed factors EF, or traffic factors TF' 
(that do not include number N of stress repetitions). The 
general prediction equation for a response indicator r may be 
written as 

r = r + e, (z) = f ,. (SF, EF, TF'; c) + e,. (z) (4) 

where ( c) is the set of all constants inf,., and e,. (z) is the net 
effect of all error variables that were operational when 
Equation 4 was derived from experimental data. 

The form and contents of f,. may be derived either 
empirically or from some combination of mechanistic 
principles and empirical results. In the second case, /,. 
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generally is not a closed mathematical form but is rather a 
computational algorithm that incorporates various aspects of 
elastic or viscoelastic layer theories, finite element method
ology, or stochastic processes. Empirically derived relation
ships for fr include those reported at the AAS HO Road Test 
(7) for various types of strains and deflections within flexible 
and rigid test sections. 

Prediction equations of Relationships R2 for distress 
indicators d; after N; repeated applications of a fixed-stress 
level i may be written 

d; = d; + ed (z) = fd (SF, EF, TF', N;; c) + ed (z) (.5) 
I 

in which it is understood that all SF, EF, and TF' values are 
at constant levels throughout the N; applications. Any par
ticular factor-level combinat ion in/J. determ ines one stress 
level i and the equation is valid ror wliateverra ngc offactor
level combinations existed in the experimental design from 
which Equation 5 was derived. It is assumed that the error 
effects a re ind ependent of the stress levels represented by f,1 . 

The form or Equation 5 represents a n empirical deriva tiok 
In mechanistic-empirical derivations, one or more stress 
indica tors rare included as di tress predictors within/d . As 
shown in Equation 4, certain prediction factor are . ub &med 

by/' = f,. . If SF', EF', and TF"represent prediction factors 
in Equation 5 that remain after those inf,. of Equation 4 are 
used, then the mechanistic-empirical distress prediction 
equation may be written 

d; = d; + ed(z) = f,.,(r;; SF', EF', TF",N; ;c) + ed(z) (6) 

in which it is understood that more than one response 
indi ca to r may appear in/,. , a nd that for any particular 
pa vement section all N; applica ti ons occur at a fixed set of 
levels for all fa ctors inf,. .. 

Except under controlled laboratory conditions, it is virtually 
impossible to design and perform experiments for the precise 
determination of Equations 5 and 6. As in the AAS HO Road 
Test (7), field studies can be designed to control the structural 
and traffic factors, but to achieve constant stress levels for all 
applications it would be necessary to have separate test 
sections for each set of environmental conditions, that is, for 
several lemperalu1e inle1 vals wilhin <lays, and for several 
moisture conditions within years. Equations 5 and 6 can 
therefore be determined only for average stress levels and 
over limited ranges of variation in environmental and other 
factors. 

Stress-Load Equivalence Relationships 

Distress prediction equations for fixed-stress levels are not 
only difficult and costly to derive, but do not apply directly to 
normal highway pavements whose stress levels vary from 
vehicle to vehicle and during daily and seasonal variations in 
environmental conditions. Thus, the stress applications for 
an operational pavement are at mixed-stress levels. To apply 
fixed-stress level relationships to highway conditions, it is 
necessary either (a) to represent all mixed-stress levels by, for 
example, an average stress level and associated prediction 
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equation, or (b) to combine those equations that cover the 
expected range of stress levels. 

A conventional procedure for combining fixed-stress 
relationships is to develop equivalence relationships (R3) that 
can be used to convert applications at one stress level to 
applications at another stress level. The basic assumption for 
the conversion is that for any distress indicator d, the amount 
of distress di observed after Ni applications at stress level i is 
also observed after N1 applications at stress level j. Thus, 
when diand d1are equal, the corresponding numbers of stress 
applications Niand N1are defined to be equivalent numbers 
of stress applications. 

Symbolically, this equivalence assumption may be expressed 

in which SF, EF, and TF' represent those factors that have 
predictable effects on the distress indicator d; , and where (z} 
is the set of all independent variables that have unpredictable 
effects on d. The error effects of (z} imply that N; and N. 
exhibit chance variations among replicated observations of 
d; = di. 

More complex representations of Equation 7 may be 
needed for distress indicators that represent time-induced 
distress, or that reflect distress that is induced by changes in 
stress levels. Such complications are beyond the scope of this 
paper. 

Because an unlimited number of factor level combinations 
can lead to a given stress level on either side of Equation 7, it is 
conventional to narrow the general equivalence assumption 
to a load equivalence assumption. If the two stress levels i and 
j are associated with precisely the same levels for all SF, EF, 
and TF', except for axle load factors ALF, then Equation 7 
becomes 

di (SF, EF, TF", ALF; , N; ; z) 

= d1 (SF, EF, TF", ALF1 , N1 ; z) (8) 

where TF" contains all traffic predictors except for A LFand 
N. This reduced equivalence assumption is that for the set of 
fixed factors in Equation 8 the amount of distress d; observed 
after N; applications of load factors ALF; is also observed 
after N1 app lications of load faclors A LF1 . The error 
variation implie Lhat neil11er N1 nor N1 remain exact ly the 
same in replicated obserw1 tions or d1 = cf . • 

A fun her simplificat ion of Equation 8 is
1
to define standard 

axle load applications for the right side of the equation. For 
historical reasons, it is conventional to restrict ALF to two 
factors, the axle set (e.g., single, tandem, tridem) that 
produces a given stress state, and the weight (e.g., 30,000 lb) 
of the axle set. The standard axle load (SAL) is generally 
taken to be an 18,000-lb single axle. If d 0 denotes the amount 
of distress observed after N0 applications of I SAL, then the 
assumption of Equation 8 may be written 

d; (SF, EF, TF", ALF; , N; ; z) 

= d0 (SF, EF, TF", SAL, N0 ; z) (9) 

13 

where N 0 is the number of ESALs that are equivalent to Ni 
applications of the ALF; loading condition. Alternative 
formulations of Equation 9 are required for distress indicators 
for which values depend more upon time factors than axle 
load and applications factors. 

For whatever range of distress in which Equation 9 holds, 
the observed applications ratio N0/ N,. must be a function of 
the remaining factors. Thus 

where Qd. is the observed equivalence factor for converting N; 
to N0 by' 

W= N.X Qd 
1 , ; 

(11) 

where W; is the converted equivalent of N;. 

Experimental demonstration of the assumption of Equation 
9 and the ratios of Equation 10 would require a field study in 
which (a) test sections covered an appropriate range of 
controlled structural and environmental conditions, (b) traffic 
treatments covered an appropriate range of controlled loading 
conditions for each combination of SF and EF, and (c) 
observations included the numbers of applications at each 
loading condition that correspond to a series of observed 
values for each relevant distress indicator. If one of the 
loading conditions is for SA Ls, then the equivalence ratios in 
Equation 11 could be calculated from the experimental 
results. The data from such field studies could of course also 
be used to produce the empirical distress prediction of 
Equation 5 or the mechanistic-empirical prediction of 
Equation 6. If the distress prediction equations are available, 
then load equivalence relationships can be derived algebrai
cally by equating the predicted distress d; at load condition 
ALFi to predicted dist res (/0 at the standard load condition 
of 1 SAL. For Equation 5, the equivalence relationship is 

fd (SF, EF, TF', ALF;, N,.; c) 
' 

= fd (SF, EF, TF' , SAL, W; c) (12) 
0 ' 

For the mechanistic-empirical distress prediction of Equation 
6, the equivalence relationship is 

Id; ((ri ; SF', EF', TF", N; : c) 

=!do (ro ; SF', EF', TF", W;; c) (13) 

where r,. and 'o are the iesponse prediction functions in 
Equation 4. It is assumed that axle load factors ALF; and 
SAL are contained within r; and r0 , respectively. 

If particular values are substituted in Equations 12 and 13 
for all factors except ALF; , SAL, N; , and w,. , the result is a 
formula for calculating ESALs for any particular combination 
of ALF; and N;. The equivalences may of course be different 
for different sets of values for the other factors in the two 
equivalence relationships. Depending on the mathematical 
form of Equation 12, it may be possible to derive an explicit 
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load equivalence function LEF such that 

W; = N; X LEFd. (SF', EF', TF", ALF; , SAL; c) (14) 
I 

If specific values are substituted for a ll varia bles in LE ',i , 
the function becomes a load equivalence factor for convertir{g 
N; applications to W; equivalent standard applications. 
Counterpart determination of load equivalence functions 
from the mechanistic-empirical distress prediction of Equation 
6 might have the general form 

W; = N; X LEFr. (r; , r0 ; SF', EF', TF"; c) (15) 
I 

where r; and ru represent the prediction function fr in 
Equation 4 for axle load conditions ALF; and SAL, 
respectively. 

Load equivalence factors were derived by the U.S. Bureau 
of Public Roads from the AASHO Road Test prediction 
equations for PSI loss (7). A new and more extensive 
tabulation of these factors is given in the AASHTO Guide for 
Design of Pavement Structures (1). 

A geometrical representation of load equivalence concepts 
is shown in Figure 3. The irregular curves are hypothetical 
distress histories (d versus N) of three pavements whose 
structure, environment, and traffic differ only with respect to 
ALFs. Points whose coordinates are (d; , N;), (d0 , N0 ), and 
(dj , Nj) represent, respectively, distress observations for 
load levels ALF; , SAL, and ALF; . The regular, dashed 
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curves represent a single distress prediction function d = f d, 

as in Equations 5 and 6. 
The equivalence assumption for d is demonstrated by 

abscissas that correspond to an arbitrary distress level d that 
is projected horizontally by a dotted line in Figure 3. 
Observed applications for this distress level are N; , N 0 , and 
N. for the respective histories. 

1 Correspo~din!} absciss~s for the prediction funct~on a~e 
denoted by N;, N 0 , and Nj. Ratios of N 0 to N;and N 0 to N; 
are observed and predicted equivalt:nce factors, n:spectively, 
for converting N; and fj; to ESAL values of W; _and W; . 
Similarly, both Njand Njarc multiples of N0 and N 0 . If the 
equivalence factors are not consta n.t for all distress levels, 
then both the Q factor in Equation 11 and the LEFfactor in 
Equation 15 depend upon the value of d. 

As was previously stated, the main purpose for stress-load 
equivalence factors is to provide a means for combining 
applications of mixed-stress-load levels. Suppose, for 
example, that the traffic history of a pavement section 
comprises N 1 applications at ALF1 , N2 applications at 
ALF2 , and so forth. Then an appropriate equivalence 
relationship can be used to convert each N; into its ESAL 
equivalent W; . The sum of the equivalent applications is 

W = I W. = IN. X LEF. i I j I I 
(16) 

where LEF;is that in Equation 14 or 15, evaluated for ALF; 
and all remaining SF, EF, and TF. 
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Substitution of W and SAL into the distress prediction 
equation yields d w , the predicted distress for W standard 
axle loads under mixed-stress applications. This procedure is 
shown in Figure 3 for N'; applications _at ALF; and N'1 
applications at ALF1 . When N = N';, d1 is the predicted 
distress from the ALF1curve. On the SAL curve, this ordinate 
corresponds to N 0 = W1 . Wh:n N = N'1 , the predicted 
distress from the ALF; curve is d;, and the same ordinate on 
the SAL curve corre ponds to W1 . At W = W; + w1 , the 
SAL distress pred iction is cl w . Thus d w is the predicted 
di tress from two mixed- tres a pplication , N; at ALF1 and 
NJ at ALF1 . Note that tlw = c/1 + c/1 if and only ir the 
distress prediction functio·n i linear, that is, if distress is 
directly proportional to the number of applications at any 
given stress level. 

An alternative procedure for combining applications from 
mixed-stress levels requires neither the definition of a standard 
stress level nor the conversion of all applications to standard 
applications. Instead, for example, applications at the lowest 
stress level can be converted to equivalent applications at the 
second-lowest stress level. Distress at the second-lowest level 
is calculated for the sum of the actual applications at the 
second-lowest level plus the equivalent applications from the 
lowest level, and this process is continued through all 
remaining stress levels until distress has been predicted for the 
highest stress level. 

The alternative procedure is shown in Figure 3, beginning 
with N'.applicatio ns for ALF1 . The predicted d i tre s level d; 
crosse/ the A LF1 curve where N = N' ij . Thus, N' iJ is the 
number of ALF; applications that are equivalent to N'1 at 
ALF . . If the ALF; curve is now entered at N = N' iJ + N';, the 
predl'cted distress is again d wfor the two sets of mixed-stress 
applications. 

A special case of equivalence functions arises if the distress 
funct ion f ,1. in Equation 5 or f,. in Equation 6 is linear with 
inc reasing rtumber of applicatidns N. 

For the linear case only, 

(17) 

where subscript t refer to the terminal distress level, and N; 
and W1 are the terminal number of applications at A LF1and 
SAL, respectively. The ratio d;I d

1 
is called the distress ratio or 

damage ratio. The corre ponding applicat ions ratio N;/ N; 
has also been called a damage ratio, but is more appropriately 
the fraction of pavement life that has been expended at 
distress level d. Even this connotation is misleading for the 
many types of distress functions that are nonlinear. 

If substitution is made for W from Equation 17 into 
Equation 16, the result is 

W = I. (N.j N. ) W1 I I 11 

or 

W/ W1 = I. (N;/ N; ) 
I I 

(18) 

When W = W1 , Equation 18 yields the familiar Miner 
relationship (3), 
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I. (N/ N. ) = I 
I / 11 

(19) 

at the terminal distress condition d = d
1 

• 

Distress-Performance Prediction for Mixed-Stress Levels 

Prediction equations for distress indicators when the applica
tions are at mixed-stress levels are shown as Relationships R4 
in Figure I. Distress prediction equations for mixed-stress
load levels have two parts, (a) an equation for predicting 
distress when all applications are at the standard stress level, 
and (b) an equivalence relationship for converting applica
tions at any stress level to standard applications. 

Only the first part of each equation will be displayed in the 
remainder of this section. The mixed-stress prediction 
equation for any distress indicator d may be written 

d w = d w + e d (z) 
= fd (SF, EF, TF", W; c) + ed (z) 

w 
(20) 

The corresponding mechanistic-empirical distress prediction 
relationship for mixed-stress applications is 

dw = dw + ed(z) 

=f, (/"0 ; SF', EF', TF", W;c) + ed(z) 
w 

(21) 

where r0 is a response prediction function (Equation 4) for 
standard load conditions. If the foregoing prediction equa
tions are derived from field studies in which every test section 
receives mixed-stress applications, then the study cannot of 
itself produce equivalence factors, and previously derived 
equivalence factors must be used to calculate W. 

It is expected that the long-term pavement performance 
(L TPP) studies in the Strategic Highway Research Program 
(SHRP) will produce a number of distress prediction equa
tions in terms of mixed-stress levels. It may also be that 
certain L TPP studies are designed for the derivation of stress
load equivalence functions. 

In a previous section, pavement performance was defined 
to be the number of equivalent standard stress-load applica
tions W1 received by the pavement during the period that 
distress remains at acceptable levels (d ~ d1 ). If d represents 
a singular mode of distress such as fatigue cracking, then W

1 

is an indicator of structural performance; if d represents 
roughness or PSI loss, then W

1 
is an indicator of functional 

performance. 
Relationships of performance indicators to distress predic

tion factors (Relationships R6 in Figure I) are special cases of 
the distress prediction relationships of Equations 20 and 21. 
If d wand W are set equal to d 1 and W

1 
, respectively, }t is 

possible at least in principle to solve either equation for W
1 
in 

terms of d
1 

• The symbolic solutions are 

W
1 

= gd (SF, EF, TF"; d 1 ; c) (22) 

for Equation 20, and 

W
1 

= g,. (r0 ; SF', EF', TF"; d
1 

; c) (23) 
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for Equation 21. It is generally assumed that the prediction 
errors for W

1 
are multiplicative rather than additive, and that 

prediction errors for log W
1 

are not only additive but have 
frequency patterns that are well approximated by normal 
distributions. For these reasons, empirically derived predic
tion equations for performance indicators are written 

log W
1 
= log W

1 
+ fJ W(z) 

= Gd (SF, EF, TF"; d, ; c) + Ow (z) (24) 

where 6 w (z) is the logarithmic error log W
1 

- log W
1 

• The 
logarithmic version of Equation 23 is 

log W1 = log W, + fJ w (z) 
= G, (r0 ; SF', EF', TF'; d

1
; c) + 6 w (z) (25) 

Equations 24 and 25 may be derived directly from experi
mental data without first deriving the distress prediction 
Equations 20 and 21. In such derivations, the primary 
dependent variable would be the performance indicator W

1 

itself, perhaps for several levels of d
1 

• Constants in the 
derived equation generally differ from those derived indirectly 
through algebraic manipulation of the distress prediction 
functions. In the direct derivations, constants are derived to 
minimize some function of the performance prediction 
errors. The corresponding constants in indirect derivations 
are originally determined by minimizing some function of the 
distress prediction errors. These differences can be reconciled 
by reanalyzing the data used to originally derive the distress 
prediction equations. 

Prediction equations for a number of distress and 
performance indicators are found in the literature (1-3). 
Unfortunately, none of the reported relationships include an 
adequate description of the experimental design behind the 
relationship, particularly with respect to the inference space 
of the experiment. Moreover, not much information is 
available on the error variances for predictions from the 
relationships. It is therefore difficult to infer the range of 
validity and degree of precision for many of the reported 
relationships. 

Traffic Prediction Equations 

Prediction of design period traffic by Relationships R5 in 1 is 
essential to the pavement design process and will be more 
fully in the next section. Because normal highway traffic 
includes a mixture of axle loads and other stress-related 
factors, the traffic prediction must be for equivalent axle 
loads W. The symbols wT and 11'.•r denote the actual and 
predicted equivalent standard axle load, respectively, that the 
to-be-designed pavement will experience during its design 
period of YT years. Lower-case type is used to distinguish the 
actual load w from the performance indicator W. Thus, wTis 
the actual number of ESALs that occur during the design 
period of the pavement; W1 is the actual number of ESALs 
that the pavement carries during its performance period, that 
is, until the distress is given by d

1
• 
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In performance prediction by Equations 24 and 25, 
logarithms are used for the traffic prediction relationships. 
The general traffic prediction equation may be written 

log wT = logwT + ow (z) 
= HT (TF', LEFd, YT; c) + (z) (26) 

where the TF' include all traffic prediction factors that are 
needed to characterize traffic during YT, including growth 
factors. The load equivalence function LEFd provides axle 
load conversion factors, and is relative to a particular distress 
indicator d. 

In general, the prediction function Hr is a mathematical 
expression or computational algorithm that is not derived 
from experimental data but stems rather from rational 
consequences of the definition for w T and all factors within 
HT . The prediction errors 6"' (z) = log w T - logw T 

generally reflect uncertainties in the prediction factors within 
HT' Specific formulations of Equation 26 are found in the 
literature (1-3). 

Relationships Among M&C Specifications Factors 

M&C specification factors are any pavement performance
related factors whose levels are specified by design and are 
controlled, either directly or indirectly, during the course of 
materials processing and pavement construction. Relation
ships among such factors are represented by Relationships 
R7 in Figure 1. 

Three classes of M &C factors are defined. The first class, of 
the explicit M&C prediction factors mcf, contains all M&C 
factors that are SF or EF predictors in one or another of the 
primary prediction equations (Relationships Rl-R6) that are 
relevant to the design situation at hand. Each of these factors 
appears explicitly in one or another of the prediction 
equations being used for pavement design. If the prediction 
equations are valid for the prediction of stress, distress, and 
performance, then the corresponding mcf are performance
related by definition. 

Certain explicit M&C specification factors may not be 
amenable to M&C control because their evaluation is too 
costly or too time-consuming. In such cases, surrogate factors 
with closely related values should be found. It should be 
possible to predict the values of each such mcf from 
corresponding values of its surrogate mcf' to within a known 
of precision. Relationships between explicit M&C specifica
tion factors and their surrogates may be written 

mcf = mcf + er (z) = g1 (mcf'; c) + e1 (z) (27) 

Examples of surrogate factors include the use of PCC 
compressive strength as a surrogate for PCC rupture modulus 
or the use of subgrade CBR as a surrogate for subgrade 
reaction modulus k. 

The third class of M&C specification factors consists of the 
auxiliary control factors mlf". These factors are not explicit 
factors in any primary relationship, nor arc they closely 
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enough related to any explicit factor to qualify as surrogate 
factors. The purpose of the mcf" is to enhance the control of 
explicit or surrogate factors, not to predict stress, distress, 
and performance directly. 

Because a given performance requirement (e.g., for log W
1

) 

assumed to be provided by a specified set of levels for the 
mcf", auxiliary control of these levels helps assure that the 
requirement will be met. For example, if the design specifica
tions call for a given level of the PCC rupture modulus, there 
be several auxiliary M&C control factors the control of which 
provides assurance that the specified PCC rupture modulus 
level will be attained. Such M&C specification factors might 
properties of the PCC mix ingredients (e.g., aggregate 
hardness), and properties of the PCC mix itself (e.g., 
water/ cement ratio, slump, and perhaps even air content). 

By definition, any mcf" is performance-related if and only 
it has predictable, statistically significant effects on an 
explicit factor mcf or on a surrogate factor mcf' that is itself 
performance-related. In short, any performance-related mcf" 
is a PF for an mcf or mcf'. This means that every performance
related mcf" appears on the right-hand side of one of the 
following relationships for the prediction of explicit M&C 
specification factors mcf and surrogate factors mcf' from 
auxiliary control factors mcf". 

mcf = mcf + e1 (z) = g1 (mcf"; c) + e1 (z) (28) 

mcf' = mcf' + el' (z) = gf' (mcf"; c) + ef' (z) (29) 

The right-hand sides of Equations 28 and 29 may contain 
more than one mcf". 

Equations 27-29 can be determined by statistical analyses 
of experimental data from designed short-term laboratory or 
track studies . Experimental units for some relationships may 
be quantities of materials or mixes. In other cases, the units 
be laboratory specimens or cores from test plots. Some 
relationships require the observation of response indicators r 
or within specially constructed sections, but no relationship 
requires long-term observations from in-service highway 
sections. However, long-term studies may be needed to verify 
relationships that have been derived in the short-term studies. 

The statistical analyses show which mcf" are in fact 
performance-related, and the degree to which their control 
induces control of the mcf and mcf'. 

To the fullest extent feasible, experimental designs for 
derivation of relationships among M&C specifications factors 
should incorporate all mcf" that have significant effects on 
the mcf or mcf', so that all interaction effects can be studied 
the same experiment. Several mcf and mcf' can be observed 
within the same experimental design, so all relevant relation
ships may be derivable from only a few different experimental 
designs. 

An illustrative experiment would consist of the observa
tions of elastic moduli, flexural strength, fatigue life, and all 
surrogates for these factors in laboratory specimens that 
cover many combinations of levels for several different mcf". 

Although some secondary prediction relationships among 
M&C specification factors have been reported in the highway 
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research literature, many gaps exist; new statistically designed 
studies are required to examine relevant interactions among 
the factors and to enable comprehensive assessment of all 
relevant prediction error variances. 

Performance-Cost Relationships 

All M&C relationships discussed thus far are direct or 
indirect inputs to the algorithms (R8 in Figure 1) used to 
specifications for all mcf relevant to any particular design and 
construction situation. Each prediction equation must be 
accompanied by its variance components that quantify the 
uncertainties associated with the use of the equation. It is 
that the inputs include performance requirements determined 
by design criteria to be discussed in the next section. 

The final set of inputs include relative unit costs that are 
with various M&C alternatives for materials provision, 
roadbed preparation, pavement construction, and construc
tion control. The unit costs make it possible to assess total 
costs for alternative designs, that is, alternative sets of levels 
all me/, mcf', and mcf". The unit costs should also include 
operating costs aoc for factors such as routine maintenance 
other operating costs, thus making it possible for the 
algorithms to compare the operating costs of alternative 
performance periods. 

If W
1 
represents a design requirement for the performance 

period, the traffic prediction data make it possible to estimate 
the expected performance years Y, during which the pavement 
will provide acceptable levels of service. If estimated M&C 
costs are denoted by CMc. w~here x represents a particular 
set of specificatio1lS. and" if C0 r denotes tota l e timated 
operating costs during the perforalance period Y Texpe Led 
for specifications x, then the total costs for the relevant life 
cycle phase may be written 

C =Cuc + Cap x x x 
(30) 

In terms of the factors that are included in specifications x, 
the cost relationship may be written 

(31) 

where SFx denotes pavement structure factor levels in 
specifications x, and so forth. 

PAVEMENT DESIGN CRITERIA AND DESIGN 
FACTORS 

This section deals with the selection of pavement design 
criteria (Box E in Figure I) and the identification of M&C 
specifications factors (Box Gin Figure I) as the initial step in 
the definition of a pavement design for a given design, 
construction, and performance situation. 
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Selection of Distress and Performance Criteria 

A first design step is to select the distress and performance 
indicators that are used to determine the design. This step 
includes the selection of prediction equations and equivalence 
relationships needed for the remaining design steps. 

For each distress indicator d, one or more alternative 
terminal distress levels (d

1
) must be specified. If more than 

one distress indicator is used, then a multiple decision 
function is needed to specify the set of distress levels that 
collectively define the termination of the performance period. 
To simplify the remaining discussion, it is assumed that the 
primary design criterion is an indicator of functional distress 
d (e.g., roughness or PSI loss) with terminal level d

1 
and 

prediction equations and associated equivalence functions in 
the general forms given by Equations 12 and 20. The 
prediction equation for the corresponding performance 
indicator W, is assumed to have the general form of Equation 
22. 

ln prnctical applications, the clesigner may of course elect 
to produce and compare designs that are based on various 
alternative distress-performance prediction equations and 
equivalence functions. 

Identification of Prediction and Control Factors 

After the selection of particular distress-performance indica
tors and associated prediction equations, the next design step 
is to identify and classify all EPFthat appear explicitly in one 
or another of the equations. The EPFare then separated into 
those related to the M&C process (mcj) and those (e.g., EF or 
TF) that are not M&C-related. 

As was discussed in a previous section, some mcf (e.g., 
layer thicknesses) can be controlled directly during the M&C 
process, but other mcfmay not be amenable to M&C control. 
To the fullest possible extent, surrogate factors mcf' should 
be defined for the mcf that do not easily lend themselves to 
direct control. 

Finally, performance-related mcf" should be selected to 
provide at least partial control for the mcf and mcf '. The 
performance-relatedness of any selected mcf" is determined 
by the secondary prediction relationships (R7 in Figure 1) 
that were previously discussed. 

For M&C purposes, the outcome of the foregoing design 
step is a list of all factors mcf, mcf', and mcf" indicators of 
which are observed and controlled during the M&C process. 
An illustrative classification of prediction factors and M&C 
control factors relative to flexible and rigid pavement design 
equations based on PSI loss as a distress indicator appears in 
the AASHTO Guide for Design of Pavement Structures (1). 

In addition to the indicators and prediction equations, the 
following list of design criteria includes reliability and 
performance period criteria (J) that will be discussed in the 
next section. 

1. Indicators and prediction equations 
1.1 Distress indicator: serviceability loss ratio 

q = (p I - p) I (p I - I. 5) 
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1.2 Terminal distress level: p = p 1 ; q
1 
= (p 1 - p

1 
)/ 

(pl - 1.5) 
1.3 Performance indicator: log W

1 
(log ESALs to 

p = P1 and q = q1) 
1.4 Perforn1ance prediction equations: flexible 

pavement (2, p. 1-6); rigid pavement (2, p. I-7) 
2. Reliability criteria 

2.1 Process standard deviation: S0 
2.2 Reliability level: R (normal curve abscissa z R) 
2.3 Reliability factor: FR= cxp[-(z RX S0 )] 

3. Design and performance periods 
3.1 Design period (years): YT 
3.2 Design period traffic: wT (predicted ESALs 

= w ) T , 
3.3 Design applications: W1 = FR X w1 

The PF in the referenced design equations are as follows: 

I. Pavement structure factors (SF) 
1.1 Flexible pavements 

a. AC thickness (D 1 ) 

b. AC strength coefficient (a 1 ) 

c. Base thickness (D2 ) 

d. Base strength coefficient (a2 ) 

e. Base drainage coefficient (m 2 ) 

f. Subbase thickness (D3 ) 
g. Subbase strength coefficient (a 3 ) 

h. Subbase drainage coefficient (m 3 ) 

i. Structural number (SN= a 1D 1 + a 2m2D 2 

+ a3m3D3) 
1.2 Rigid pavements 

a. PCC thickness (D) 
b. PCC rupture modulus (Sc, ) 
c. PCC elastic modulus (Ee) 
d. Sub base support loss (LS) (subsumed ink') 
e. Drainage coefficient (Cd ) 

2. Environmental factors (EF) 
2.1 Roadbed 

2.2 

a. Effective resilience modulus (MR) 
b. Effective subgrade modulus (k') 
c. Swell potential PSI loss (t.swPSI) 
d. Frost-heave potential PSI loss (t. FH PSI) 
Climate 
a. Moisture regime (subsumed in roadbed 

moduli) 
b. Freeze-thaw regime (subsumed in roadbed 

moduli) 

The following is an example of a list of surrogate factors 
mcf' that might be used for certain mcf. 

I . Pavement structure factors 
1.1 AC surfacing factors 

a. Stiffness-elastic modulus 
b. Stability 
c. Creep predictors 
d. Fatigue predictors 
e. Aging predictors 
f. Moisture resistance 
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1.2 PCC surfacing factors 
a. Compressive strength 
b. Reinforcement factors 
c. Joint factors 

1.3 Base and subbase factors 
a. Elastic moduli 
b. CBR 
c. R-value 
d. Triaxial test values 
e. Stability (bituminous stability) 
f. Compressive strength (cement stability) 
g. Permeability 

2. Roadbed factors 
2.1 CBR 
2.2 R-value 
2.3 Plasticity 

Some mcf that can be controlled directly and possible mcf" 
for enhancing the control of primary surrogate factors are as 
follows: 

1. Directly controllable factors (rncj) 
I. I AC or PCC surface thickness (D 1 or D) 
1.2 Base or subbase thickness (D 2 or D 3 ) 

2. Factors providing indirect control (mcf ") 
2.1 AC surfacing factors 

a. Asphalt grade and source 
b. Asphalt content 
c. Penetration 
d. Viscosity 
e. Air voids 
f. Aggregate gradation 
g. Density/ compaction 

2.2 PCC surfacing 
a. Water/ cement ratio 
b. Slump 
c. Air content 
d. Durability 
e. Aggregate gradation 
f. Bar size 
g. Steel strength 
h. Dowel properties 

2.3 Base and subbase 
a. Materials types and sources 
b. Aggregate gradation 
c. Density or compaction 

2.4 Roadbed 
a. Soil type and source 
b. Density or compaction 

The preceding lists are illustrative of mcf' and mcf" that 
might be used in a particular design situation. However, 
because relevant secondary relationships (Equations 27-29) 
have not been assembled or derived, it is not possible to assess 
the performance-relatedness or control efficacy of any of 
these mcf' or mcf". 
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Specification of Design and Performance Periods 

The next step in pavement design is to specify a design period, 
that is, the number of years YT for which the designed 
pavement is to provide acceptable service at distress levels 
d < d1 

• It is conventional to express YT in multiples of 5 or 
10 years. The selected period is generally determined by PMS 
considerations for the particular life cycle phase to which the 
design relates. 

Because the actual performance period cannot be predicted 
with certainty, the design criteria must not only specify a 
value for YT, but must also include a specified degree of 
assurance that the actual performance period Y

1 
is at least 

equal to the design period YT. The design criterion for this 
assurance is the design-performance reliability level R, the 
probability that the actual performance period of the 
pavement is at least as great as the selected design period. 
Thus, 

(32) 

Because the performance prediction equation is generally for 
the number W1 of ESAL applications that the pavement can 
carry until d = d 1 , the designer must express both the design 
and performance periods in terms of ESALs. For the design 
period, this conversion consists of acquiring relevant traffic 
data and traffic projections, then in using Equation 26 to 
predict the number w T of ESALs that will occur during the 
design period YT. Because of the prediction error of 
Equation 26, the actual design period traffic w Twill differ 
from the predicted traffic wTby an unpredictable error 

tJ.,,, = log wT - log wT (33) 

The ESAL counterpart of the actual pavement performance 
period Y

1 
is W1 • Because of the performance prediction 

error, the predicted performance W1 will differ from W1 by an 
unpredictable error 

ow = log W1 - log W1 (34) 

In terms of ESALs, the probability R that the performance 
period will not be less than the design period is equivalent to 
the probability that the actual pavement performance W

1 
is at 

least as great as the actual design period traffic wT , that is, 

(35) 

or in logarithms, 

R = Prob(log W1 ~ log wT ) 

or 

R = Prob[(log W1 - log wr) ~ O] (36) 

Although reliability R is defined by these equations, the 
definition fails to indicate how the reliability level can be 
controlled through quantitative design criteria. An ab-



20 

breviated discussion of reliability concepts is given in the 
remainder of this subsection; a full development is presented 
in the literature (1, 2). 

The difference log W1 - log wT in Equation 36 is an overall 
deviation the sign and magnitude of which cannot be 
predicted for any particular iteration of the pavement design
performance process, but the average value of which over 
many iterations is a function of the selected reliability level. 

If the overall deviation is denoted by D0 , then 

(37) 

and 

R = Prob(D0 ~ 0) (38) 

where D0 varies by chance among independent repetitions of 
the design-performance process, partly because of the traffic 
prediction error D w and partly because of the performance 
prediction error D w . To show the relation between the 
overall process deviation and the two prediction errors, the 
quantity log W1 - log w Tcan be subtracted from, then added 
to, the right side of Equation 37 to produce 

D0 =(log W1 - log wT) - (log W 1 - log wT) 
+(log W1 - log wT) 

Rearrangement of the terms in Equation 39 gives 

Do= (log W1 - log W1 ) +(log W1 - log wT) 
+(log wT- log wT) 

and substitution from Equations 33 and 34 gives 

(39) 

(40) 

(41) 

If the ratio W,/ w T is defined to be the reliability design 
factor FR , then 

FR = w,/wT 

or 

log FR = log W, - log w T (42) 

Substitution in Equation 41 gives 

(43) 

and from Equation 38, 

R = Prob[(D ... + log FR + D w ) ~ O] (44) 

For a given design period traffic prediction wT, the designer 
can specify a reliabi]ity factor FR and thereby determine 
design applications W

1 
by transposing Equation 42 to give 

(45) 
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To derive a quantitative relationship between the reliability 
level and the reliability factor, assumptions must be made 
about the probability distribution of Do . For any particular 
design situation, Equation 43 shows that D0 is the sum of two 
chance errors D wand D w , plus a fixed value for log FR . It is 
conventional to assume that the frequency distributions of 
both prediction errors are well approximated by normal 
probability curves. If the two errors are independent and both 
prediction equations are unbiased, then the distribution 
means are zero and the distributions are determined by their 
recpective variances S~ and SJ,. 

With the foregoing assumptions, the probability distribu
tion of D0 is also normal and has mean value 

60 = "lfw + log FR+ ow= 0 + log FR+ 0 = log FR (46) 

Because log FR has no chance variation, the variance of Do is 
given by 

s5 = s,~ + o + s J, = s ,~ + s H~ (47) 

S6 is the process or overall variance, and S0 is the process or 
overall standard variation. 

If D0 is transformed to a standard normal variate by 

(48) 

and if z R is the value of z when D0 = 0, then 

Finally, if </J(z) is the standard normal curve area that lies to 
the right of abscissa z, then 

</J(z R) = Prob(z ~ z R ) = Prob(D0 ~ 0) (50) 

Thus, the basic relationship that connects R, FR• and S
0 

is 

(51) 

An extensive tabulation of Equation 51 is given in the 
literature (2). All of the reliability concepts and definitions 
that have been presented are shown in Figure 4. A numerical 
example follows. 

Suppose that the design-performance reliability for a given 
project is to be R = 80 percent. Then </J(z R) = 0.80, and 
normal curve area tables show that z R = -0.84. If the overall 
process standard deviation is assumed to be S0 = 0.40, then 
substitution in Equation 50 yields log FR= 0.336, or 
FR = 2.17. If the traffic prediction for a 15-year design period 
is wT = 8 X 106 ES A Ls, then the design applications re
quirement for the project is given by Equation 45 to be 
W, = (2.17) X (8 X 106) = 1.74 X 10 7 ESALs. Thus, the 
design alternatives are the various combinations of distress 
prediction factors for which the design equation predicts log 
W, to be 7 .24. 

If the designer equates design applications to the design 
period traffic prediction, then W, = w T and FR = I. Because 
log I = 0, z R = 0 and normal curve area tables show that z· = 0 
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FIGURE 4 Reliability concepts and definitions. 

corresponds to the 50th percentile of the standard normal 
distribution. From Equation 51 , ¢ (0) = 0.50, and R = 50 
percent reliability. Thus, whenever a pavement is designed 
with W1 = w T, there is a 50 percent chance that its 
performance period will terminate before the end of the 
design period. 

DERIVATION OF M&C SPECIFICATIONS 

This section presents considerations and possibilities for the 
pavement design steps in which (quantitative) specifications 

= ( 15 0 - log FR)/ S0 

are derived for all prediction factors and control factors 
identified in the previous section. It is assumed that the 
specifications are derived from computational algorithms 
(RB in Figure I) . 

No effort is made here to define specific algorithms because 
much research is still needed before development of valid, 
comprehensive algorithms that apply to all design, construc
tion, and performance situations is possible. 

A potential strategy for the derivation of design levels for 
M&C factors follows. Components of variance of distress
performance prediction equations, considered to be necessary 
inputs for the derivation of control factor tolerances, and 
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possibilities for the derivation of tolerance-acceptance levels 
for M&C control factors are discussed afterwards. 

Specification of Design Levels for Prediction Factors 

lt is assumed that any valid set of design or target levels for 
distress-performance PF must satisfy the prediction equations 
selected for design purposes. For example, if the performance 
prediction Equation 24 is used, then the primary factor levels 
must satisfy an equation of the form 

log W
1 
= 1og(FR X wr) = Gd (SF, EF, TF"; d 1 ; c)(52) 

where FR is a specified reliability factor; Wris the predicted 
design period traffic; SF, EF, and TF" are primary prediction 
factors; and d

1 
is a specified terminal distress level. 

After the PF have been classified as previously described, 
the primary factors are separated into two sets: non-M&C 
factors PF' and M&C factors mcf Thus, Equation 52 may 
also be written 

log W1 = log(F R X wT) = Gd (PF'; mcf; d1 ; c) (53) 

The M &C factor classification determines which factors mc.f" 
are controlled indirectly through the use of surrogate factors 
mc.f" 'as well as corresponding relationships of Equation 27 
between mcf and mcf '. In the present context, the relevant 
equations for predicting primary from surrogate factors are 

mc.f" = g 1 (mc.f" '; c) (54) 

The factor classification also determines which mcf" will be 
used to enhance the control of whatever levels are specified 
for the mcf in Equation 53 and the mc.f"' surrogates in 
Equation 54. The secondary relationships (Equations 28 and 
29) that contain performance-related mcf" as predictors for 
mcf or mcf' may be expressed 

mcf/ mcf' = g 2 (mcf"; c) (55) 

Equation 55 contains all available relationships between 
mcf" and relevant M&C factors in Equations 53 and 54. 
Equations 53-55 are inputs to design level specification 
algorithms for all factors PF', mcf, mcf', and mcf". 

Additional inputs for every specification algorithm factor 
are (a) the admissible range of design levels for a factor, and 
(b) all M&C and operational unit costs needed to calculate 
the total cost of implementing any design level within the 
admissible range of the factor. 

For some factors (e .g., climate or roadbed soil type), the 
admissible range of design levels for a factor may reduce to 
only a single level. Constraints for the ranges of other factors 
(e.g., for layer thicknesses) may include maxim um or minim um 
levels. Admissible ranges of design levels for some factors 
may depend on the design levels of other factors. For 
example, the admissible ranges for thicknesses depend on 
those for strength levels of successive AC pavement layers. 
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The design level specification algorithms must also be 
provided with a criterion for optimizing the overall set of 
factor levels with respect to costs and benefits, for example, 
M&C charges in dollars per ESAL of traffic during the 
performance period. 

With access to such inputs, the design level specification 
algorithms determine the solutions to Equation 53 within the 
admissible factor ranges . For each solution, Equations 54 
and 55 determine alternative combinations of surrogate and 
auxiliary control factor levels that correspond to the primary 
factor levels, and evaluate the optimization criterion for every 
alternative combination of primary and secondary factor 
levels. 

After all admissible solutions for Equation 51 have been 
examined , the algorithm outputs will be lists of factor level 
combinations (i.e., pavement designs) that rank highest in 
terms of the optimization criterion. The designer may use 
additional criteria to select a final design from among the 
optimal alternatives. 

As described, the factor levels for a given design alternative 
are derived deterministically in that the prediction un
certainties (error variances) are not taken into account. This 
deterministic approach is shown in Figure 5 for a given 
performance indicator log W

1 
, one primary factor mcf, and 

one secondary factor mcf" for auxiliary control of the 
primary factor. When all remaining mcf are at fixed levels, 
the graph of Equation 53 provides a turning point for 
determining the design level mcf of a primary factor from a 
specific performance requirement (log W

1 
) . When all 

remaining secondary factors are at fixed levels, the graph of 
Equation 54 provides a turning point for determining the 
secondary factor design level mcf" that corresponds to mcf 

All mcf levels implied by Figure 5 are assumed to be 
optimal with respect to cost-benefit criteria, but such 
determinations in fact are beyond the scope of this paper. 
Eventually, algorithms for design level specifications may 
incorporate stochastic properties of the prediction equations 
and cost-benefit relationships. 

Components of Prediction Error Variances 

Algorithms for specification of prediction factor tolerances 
will depend, at least in part, on error variance components of 
the primary (Equation 53) and secondary (Equations 54 and 
55) prediction equations that are used to specify design factor 
levels. This subsection contains an abbreviated discussion of 
variance component concepts. A full discussion is given in the 
literature (2, Appendix EE). 

Up to this point, the prediction errors for any particular 
prediction equation have generally been characterized by a 
single error variance S2. For example, the performance 
prediction errors in Equation 23 were denoted by ti w (z) , and 
the variance of the ti w distribution has been denoted by s; in 
a previous section. It has also been stated that S2 always has 
two components, one (SLF) for the lack of fit of the assumed 
model to the data that were used to derive the equation, and 
another that represents the net effects of all error variables 
that operated within the inference space of the derivation; 
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FIGURE 5 Specification of prediction factor levels. 

because these error effects bring about dependent variable 
variations among replicate pavement sections, the second 
component of S2 is the replication variance Shp. 

If all lack-of-fit errors and replication errors are m
dependent, then for performance prediction errors, 

(56) 

As was indicated by a process variable of Class 4, part of any 
replication error can be attributed to chance deviations of the 
PF from their specified levels. The remaining part of each 
error must be attributed to the effects of all remaining error 
variables. If the two components of each replication error are 
independent and additive, then the replication variance Shp 
has two components s~FI) and Sbr:v ' where the former 
represents variance from prediction factor deviations (PFD) 
and the latter represents variance from unidentified error 
variables ( U EV). Thus, 

(57) 

and from Equation 56, 

(58) 

Because the number of subscript letters for any component 
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denote its hierarchical level, .s;i i . at level 1, sfF and 
ShF are at Level 2, and both Sforo and SOEv are at Level 3. 

Fourth-level variance components are defined by further 
decomposition of SfoFD into variances that can be attributed 
to the design level deviations of each separate prediction 
factor. },p.nis the part of the replication variance that can be 
attributed 'to design level deviations in the ith prediction 
factor. This component accounts for all observed replication 
variance when (a) there are no design level deviations in any 
of the remaining prediction factors, and (b) no unidentified 
error variables are in operation. 

lfthe chance deviations from design levels of all factors are 
mutually independent and additive, then 

(59) 

and the decomposition of SJ is given by 

(60) 

Pavement performance values and prediction factor specifi
cations are for entire pavement sections or highway projects, 
and not for subsections or subprojects. Replication variance 
and all components thereof thus refer to performance 
differences among independently constructed sections that 
all have the same designs and treatments. 

Actual as-constructed levels of prediction factors may 
deviate from their specifications both within and between 
replicate sections. It must be assumed that either or both of 
the deviations between and within can contribute to per
formance prediction error va riance. It follows that ~F-D 
should be further separa ted int o components between add 
within SfoF.DB and SJ,F.DW , re pectively. Thus the final 
decomposition of the 'prediction error variance may be 
written 

(61) 

so that 

(62) 

Empirical derivations of estimates for all variance components 
in Equation 62 would require a highly controlled long-term 
experiment in which the mean value of every PF was 
controlled at three levels. One level would be a pavement 
design level and the other two levels would represent plus and 
minus mean deviations that correspond to normal highway 
construction. For each of the three mean levels of each factor, 
one test section would have to be controlled so that no 
within-section deviations occurred and another section would 
be allowed to have normal within-section variations. 

Thus for k prediction factors , 3 X 2 X k test sections 
would be required to produce estimates of the components in 
Equation 61. At least two replications of all factor com
binations would be required to produce e ti mates for SfF and 
Soev in Equation 62. for a minimum total of I 2k te t sections. 

For practical reasons, it seems most unlikely that the 
required experiment will ever be performed, and even less 
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likely that all individual variance components can be estimated 
from existing materials, construction, and performance data. 
On the other hand, performance-related specifications for 
any PF should take into account not only the performance 
effects of specified changes in the factor level, but also the 
error variance contributions implied by Equation 61. Thus 
the algorithm for M&C specifications derivation should 
somehow provide for estimating the components in Equation 
62 and in the absence of empirical data. 

Simulation methods may be used to estimate the needed 
variance components. One such method is to use Monte 
Carlo procedures to simulate design level deviations for each 
prediction factor, then calculate the corresponding variance 
components for a given prediction equation. Together with 
assumed values for S1F and SbEv, the simulation could 
produce estimates for all elements of Equation 62. 

A second approach is shown by Figure 6 wherein the 
horizontal axis represents the range of a single PF, the 
vertical axis represents a particular performance indicator 
log W

1 
, and the central curve represents the graph of a 

prediction equation, 

log W
1 
= j(. .. ,PF; , .... ) 

Performance 

Indicator 
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in terms of PF; when all other prediction factors are at fixed 
levels. 

The design level specification PF; for PF,. is the value for 
which the prediction equation yields log W, . The mean value 
of PF. over many iterations of the construction process is , - -
assumed to be PF; . Thus, PF; - PF,. is the chance deviation 
between specified and as-constructed levels of PF,. . The 
dotted frequency distribution centered at PF; is assumed to 
represent all possible deviations in PF,. that occur in many 
iterations of normal construction practice. The distribution 
has variances~ and standard deviations; in the units (e.g., 
inches of surfacing thickness) of PF;. 

If all values in the PF; distribution are projected vertically 
to the curve for the prediction equation, then horizontally to 
the vertical axis, a distribution of log W1 values is produced, 
as hown in Figure 6. Thu. each deviation PF1 - PF; lead t 
a corresponding deviation log W1 - log W, for the perform
ance indicator. In particular, the deviation S; for PF; cor
respond to the standard deviation S PF.o in lo~ W, . 

I -The tangent (dashed line) to the curve at PF1 = PF; has 
slope equal to the partial derivative of log W, when evaluated 
at PF; and at the design levels of all remaining prediction 
factors. Approximately, the slope of the tangent is the ratio 
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SPF/s;. If the evaluated derivative is denoted by f;, then 
approximately, 

f; = Spp. /s; 
I 

or 

(63) 

The derivative may thus be interpreted as the functional 
conversion factor for changing prediction factor PF; units to 
performance indicator (log W1 ) units. 

At least for between-section deviations in predictor factors, 
Equation 63 may be used to estimate the individual and 
collective performance effects of design factor deviations, as 
given by Equation 59. Because normal construction variances 
s; are available for many prediction factors, use of Equation 
63 can provide estimates of the relative performance effects of 
deviations in each prediction factor. These estimates in turn 
can be used as an objective basis for setting M&C tolerances 
for prediction factors and control factors. 

More research is needed on how within-section deviations 
of prediction factor levels are to be accounted for in the 
estimation method represented by Figure 6. Further study is 
also needed to determine the relative efficacy of the Monte 
Carlo and partial derivative methods that have been discussed 
for the estimation of variance components. 

By one method or another, the algorithm for M&C 
specifications derivation should produce or have access to 
estimates for all variance components that are associated 
with the prediction equations being used. 

HIERARCHY OF VARIANCE COMPONENT SOURCES 

0. OVERALL PROCESS DEVIATIONS 
S0 = (log w .. - log wT ) = ( &.,. + log l'I\ + fi..i ) 
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(Estimated from original derivation) 
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Figure 7 shows estimates that have been derived for the 
variance components of the flexible pavement performance 
prediction equation that appears in the revised AASHTO 
Design Guide (J). A complete tabulation of all variance 
components for both flexible and rigid pavements is given in 
Vol. 2 of the AASHTO Design Guide (2, Appendix EE). The 
variance of performance prediction errors (Line 1) is shown 
to be 0.194. The estimated performance variance that is 
induced by surfacing thickness variance (Line 1.1.1.1) is 0.015 
or about 8 percent of the total prediction error variance. 
Performance variance attributable to variance in subgrade 
modulus (Line 1.1.1.9) is 0.023, or about 12 percent of the 
total prediction error variance. 

Specification of M&C Factor Tolerance and Acceptance 
Levels 

The final pavement design step is the specification of 
tolerance levels within which controlled factors are permitted 
to vary randomly about their design levels without cause for 
remedial action. For convenience, it is assumed that all 
tolerances are two sided, and that they may be generally 
represented by mcf -t /:::,. mcf, mcf' -t /:::,. mcf', and mcf" ± 
/:::,. mcf" for primary, surrogate, and auxiliary M&C factors, 
respectively. 

Acceptance levels for M&C factors will be considered to be 
special cases of tolerance levels, and such that M&C suppliers 
and contractors may be penalized in one way or another 
whenever the acceptance limits are exceeded. Although 
acceptance and tolerance levels may be somewhat different 
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FIGURE 7 Illustrative variance components of the pavement design-performance process. 
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for any particular factor, such differences will not be 
discussed herein. 

As was discussed in the previous section, every M&C factor 
is expected to deviate unpredictably from its design level in 
any particular iteration of the M&C process. If the deviations 
are random in repeated iterations of the process, their 
distributions will have mean value zero, and for the 
corresponding types of factors will have standard deviations 
sf , sf' , and sf" . 

It will be assumed that the tolerance factors are specified 
multiples of the respective standard deviations. If the 
respective multiples are denoted by af, af', and af", then the 
primary, surrogate, and auxiliary M&C factors may be 
written as mcf ± (a.f X sf ), mcf' ± (af' X sf' ), and 
mer ± (af" x sf" ), respectively. 

The multipliers af, af ', and af" are determined by prob
ability levels that control the chances for erroneous rejection 
and erroneous acceptance, as in virtually all quality control 
applications of statistical methods. 

These tolerances are appropriate for factors whose standard 
deviations are independent of their design levels. For factors 
whose standard deviations are generally proportional to their 
design levels, it is better to express tolerances in terms of 
coefficients of variation. 

The coefficient of variation CV of any variance is, by 
definition, the ratio of its standard deviation to its mean 
value. Coefficients of variation for the respective M&C 
factors are therefore 

CVF = sJmcf 

CVF' = srf mcf' 

CVF" = srf mcf" 

By substitution and factoring, the tolerance limits may be 
written in terms of coefficients of variation as follows: 

mcf(l ± af X CVF) 
me]' (I ± af' X CVF') 
mcf" (1 ± af" X CVF") 

The magnitude of the standard deviation or coefficient of 
variation for any M&C factor will generally depend upon the 
level of effort and cost in effect for M&C control of the factor 
levels. If q is used to denote levels of control that may range 
from very loose (q > 1) to looser than normal, to normal 
(q = 1), to tighter than normal (q < 1), then q can be used at 
least conceptually as a multiplier for the standard deviations 
or for the coefficients of variation in the tolerances. For 
example, if the coefficients of variation represent normal 
M&C variability for the respective factors, then tolerances 
for the three types of factors might be expressed as mcf( I 
+ q X af X CVF), mcf(l + q' X af' X CVF'), and 
mcf"(I + q" X af" X CVF"). Thus, if q = 1 for any factor, 
its tolerances refer to normal variation in the as-constructed 
levels of the factor. Tighter-than-normal tolerances are 
implied by q < 1, and looser-than-normal tolerances by 
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Although it is outside the scope of this paper to propose 
specific procedures for derivation of factor tolerances, it 
app.::ars that the q concept could be related to the variance 
components that were discussed previously. As was shown in 
Figure 6, it is possible to estimate the fraction of performance 
variance that is induced by the individual variances of 
primary M&C factors mcf. 

The estimation procedure can be extended to include 
variances of secondary prediction factors, as was shown in 
Figure 5 for secondary factor design levels. Such extensions 
would provide indirect estimates of the fractions of per
formance variance that are attributable to secondary factor 
variances. In principle, it would therefore be possible to 
assess the relative costs and benefits of various levels of 
control q for both primary and secondary factors. For 
example, a relatively high fraction of performance variance 
may be induced by the M&C variances of some primary 
factors, so that relatively tight control (q < I) is implied for 
such factors. Other factors may require only loose control 
(q > 1) because their variances have relatively small effects 
on performance variance. Variances shown in Figure 7 
illustrate how the factors can be ranked with respect to their 
variance effects on performance variance. 

Specified degrees of control (q' / q") for secondary factors 
might reflect the relative amount of primary factor variance 
that can be attributed to secondary factor variances. At 
present, little is known about these variance components. 

Incentives or disincentives for meeting acceptance limits 
for any M&C factor would presumably be based on the 
estimated extent of performance variation that may be 
induced when the factor does not meet the acceptance limits . 
Because performance variations can be translated to years of 
pavement life at assumed ESAL rates per year, it is 
theoretically possible to estimate probabilities for decreases 
in pavement life expectancy that are associated with failure to 
meet specified acceptance limits. 

Summary Framework for Derivation ofM&C Specifications 

Figure 8 shows a summary review of the many topics that 
have been presented in this paper. Framework elements that 
were shown in Figure 1 also are shown in Figure 8, but in 
somewhat different groupings and levels of detail. This 
retrospective overview shows five subgroups of elements in a 
logical progression from the studies that produce primary 
relationships to the specification algorithms that produce 
quantitative specifications for M&C factors. The five 
subgroups are identified by linkages that contain the subgroup 
numbers. The essential nature of each subgroup is sketched in 
the following paragraphs. 

Subgroup 1 

Primary relationships for the prediction of pavement stress, 
distress, and performance indicators are derived in primary 
long-term field studies whose inputs are primary prediction 
fadu1's. Cta'lai11 primary slu<lies also pro<luc.:e stress-load 
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FIGURE 8 Summary framework for derivation of performance-related M&C specifications. 

equivalence relationships for the conversion of mixed-stress 
applications to standard stress-load applications. Many 
primary relationships now exist; improvements and extensions 
are expected from SHRP studies. 

Subgroup 2 

Design criteria that include design period traffic predictions 
and reliability specifications are substituted in the primary 
prediction equations to produce design-performance re
quirements for the pavement performance period. 

Subgroup 3 

Primary prediction factors are separated into M&C factors 
mcf and non-M&C factors. Surrogate factors mcf' may be 
identified for certain mcf, and still other M&C factors mcf" 
are identified as auxiliary factors for the control of primary 
and surrogate factors. 

Subgroup 4 

Secondary relationships among all M&C factors are derived 
through short-term laboratory or field studies. The relation
ships include prediction equations and variance components 
for the prediction of primary factors from surrogate or 
auxiliary control factors. The strength of the relationships 
determines the performance-relatedness of surrogate and 
auxiliary factors. Many secondary relationships that are 
needed are expected from ongoing and future studies for the 
development of performance-related specifications. 

Subgroup 5 

Quantitative specifications are derived for all primary and 
secondary factors by algorithms that produce design levels 
and tolerance-acceptance limits for each factor. Inputs to the 
algorithms include performance requirements, primary and 
secondary prediction equations and their variance com
ponents, constraints for factor levels, and unit M&C costs for 
the admissible levels of all factors. The algorithms calculate 
alternative sets of specifications for design levels and 
tolerance-acceptance limits, then draw upon cost-benefit 
criteria to determine optimal specification alternatives for a 
given design and construction situation. Development of 
necessary and sufficient algorithms for all design situations 
will require new results from ongoing and future research. 
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