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FEACONS III Computer Program for 
Analysis of Jointed Concrete Pavements 

MANG TIA, JAMSHID M. ARMAGHANI, CHUNG-LUNG Wu, 
SHAU LEI, AND KEVIN L. TOYE 

A computer program named FEACONS Ill (Finite Element 
Analysis of CONcrete Slabs) was developed in response to a need 
for a suitable analytical model to analyze the behavior of 
concrete pavements effectively and realistically. The program 
has been used extensively in the analysis of existing concrete 
pavements and a test road in Florida. The analytical model and 
computational procedure used by FEACONS III are described 
in detail, and the analytical results from the program are 
compared with actual measured results for a few specific cases. 
The FEACONS III program was shown to be both versatile and 
effective in the analysis of concrete pavement response. The 
modeling of the edge by means of edge stiffness and the joint by 
means of linear joint stiffness and torsional joint stiffness 
produced fairly realistic analytical results. It is hoped that this 
paper can enhance understanding and proper usage of the 
program and increase the awareness oi highway engineers oi the 
importance of the effects of temperature, joint, edge, and 
subgrade conditions to concrete pavement response. 

During the past few years the University of Florida has been 
working with the Florida Department of Transportation in 
the testing and evaluation of concrete pavements in Florida. 
Some of the objectives of this ongoing research work include 
(a) better understanding of the effects of temperature, 
moisture, joint, edge, and subgrade conditions on pavement 
behavior and performance; (b) determination of causes of 
failure in existing pavements; and (c) development of an 
effective and convenient procedure for the use of the falling
weight deflectometer in the evaluation of pavement condi
tions. In the course of this work, a need arose for a suitable 
analytical model that could be used to analyze the behavior of 
concrete pavements effectively and realistically. Subsequently, 
a computer program named FEACONS (Finite Element 
Analysis of CONcrete Slabs) was developed. FEACONS was 
written in a structured fashion such that it could be easily 
modified and enhanced. The present or third version of the 
program, named FEACONS III, can analyze the response of 
a concrete pavement system subjected to combinations of 
concentrated and uniform vertical loads. It can consider the 
following factors in the analysis: 

I. Weight of concrete slabs, 
2. Subgrade voids beneath concrete slabs, 
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3. Effects of joints, 
4. Looseness of dowel bars, 
5. Effects of edges, 
6. Effects of temperature differentials between the top 

and the bottom of slabs, and 
7. Nonlinear subgrade response characteristics. 

The output of the program may include the following: 

I. Deflections of concrete slabs due to their own weight 
and temperature effects; 

2. Deflections of concrete slabs due to applied loads; 
3. Moments, stresses, and principal stresses in concrete 

slabs; a11J 
4. Maximum deflection, moments, stresses, and principal 

stresses in concrete slabs. 

FEACONS 111 has been used extensively in the analysis of 
existing concrete pavements on a test road in Florida, and 
some of the results were presented at the Annual Meeting of 
the Transportation Research Board in 1986 (1). The purpose 
of this paper is to describe in full detail the analytical model 
and the computational procedure used by FEACONS Ill and 
to compare the analytical results from the program with 
actual measured results for a few specific cases. It is hoped 
that this paper can enhance the understanding and proper 
usage of the program and increase awareness of highway 
engineers of the importance of the effects of temperature, 
joint, edge, and subgrade conditions to concrete pavement 
performance. 

MODELING OF CONCRETE PAVEMENT 

A jointed concrete pavement is modeled by a three-slab 
system as shown in Figure 1. Each concrete slab is modeled as 
an assemblage of rectangular plate bending elements with 
three degrees of freedom at each node, namely, 

I. Translation in the vertical (z) direction, 
2. Rotation about the x-axis, and 
3. Rotation about the y-axis. 

The finite-element formulation of the rectangular plate 
bending element, known as the MZC rectangle, was developed 
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FIGURE 1 Finite-element modeling of a three-slab pavement 
system. 

by Melosh (2) and Zienkiewicz and Cheung (3). The MZC 
rectangle has been used widely to model concrete pavement 
slab behavior in finite-element computer programs such as 
WESLIQUID and WESLA YER developed by the U.S. 
Army Corps of Engineers Waterway Experiment Station (4), 
ILLISLAB developed by the University of Illinois (5), and 
the finite-element programs developed by Purdue University 
(6) and the University of Kentucky (7). The formulation and 
characteristics of the MZC rectangular element are presented 
in the Appendix. 

Load transfers across the joints between two adjoining 
slabs are modeled by shear (or linear) and torsional springs 
connecting the slabs at the nodes of the elements along the 
joint . The linear and torsional spring elements and the 
corresponding stiffness matrix are shown in Figure 2. 
Looseness of the dowel bars is modeled by a specified slip 
distance, such that shear and moment stiffnesses become fully 
effective only when the slip distance is overcome. The 
effective dowel stiffnesses are modeled as varying linearly 
with the difference in deflection at the joint, when the 
difference in deflection is Jess than the slip distance . The 
relationship of effective joint stiffnesses and difference in 
deflection at the joint is shown in Figure 3. Frictional effects 
at the edges are modeled by shear springs at the nodes along 
the edges. The subgrade is modeled as a liquid or Winkler 
foundation by a series of vertical springs at the nodes. 
Subgrade voids are modeled as initial gaps between the slab 
and the springs at the specified nodes . A spring stiffness of 
zero is used when a gap exists. Either a linear or a nonlinear 
load-deformation relationship for the springs can be specified. 
For the linear case, the subgrade stiffness remains constant as 
long as the slab and the subgrade are in contact with one 
another . For the nonlinear case, a load-deformation relation
ship of the following form is used: 

F =Ad+ Bd2 (I) 

where 

F = force / area, 
d = deflection, and 

A and B = coefficents to be specified in the input. 

The subgrade stiffness is thus equal to A + 2Bd, which varies 
with the deflection. 
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FIGURE 2 Linear and torsional spring elements modeling joint 
behavior. 
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SCHEME OF THE COMPUTER PROGRAM 

Figure 4 is a flowchart showing the major computational 
steps in the FEACONS III program. The program computes 
the total induced slab deflections in three major steps: First, 
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FIGURE 4 Simplified flow 
chart showing the major steps of 
FEACONS III. 

the deflections caused by the weight of the slab are computed. 
Second, the additional deflections caused by thermal curling 
are computed. Third, the additional deflections caused by 
applied loads are computed. The program then computes the 
internal moment intensities, flexural stresses, and principal 
stresses in the slab from the final total slab deflections. 
Computational schemes used in these major steps are 
described in the following subsections. 

Computation of Slab Deflections 

Figure 5 is a flowchart that shows the scheme for computing 
the deflections due to the weight of the slabs, thermal 
gradients, or applied loads. An incremental computational 
procedure is used. The force vector (F) due to the weight of 
the slab, thermal gradients, or applied loads is first computed. 
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Fl G URE 5 Flow chart of scheme for computing slab deflections. 

The force vector is then divided by the number of increments 
specified to obtain the incremental load vector (l:::i.F). The 
deflections (1. [;~ caused by the incremental force vector arc 
computed from the stiffness equation 

K(l:::i.U)=l:::i.F 

where 

K = structure stiffness matrix, 
/:::,. U = vector of incremental nodal deflections, and 
l:::i.F = vector of incremental nodal forces. 

(2) 

The structure stiffness matrix (K) is constructed from the 
stiffness matrices of the plate elements (see Appendix), the 
stiffness matrices of the joint spring elements, the stiffnesses 
of the edge springs, and the stiffnesses of the subgrade 
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springs , according to the finite-element mesh selected and the 
deflections of the slab at that point. Edge springs are used to 
model the frictional effects at the edges and thus are used only 
in the computation for the deflections due to thermal curling 
and applied loads. After each computation of incremental 
deflections, K is modified according to the newly deflected 
positions of the slab. The new K is then used to compute the 
next set of incremental deflections. 

Three numbers, indicating the numbers of increments to be 
used in the three major computational steps, have to be 
specified in the program input. In general, the higher the 
number of increments, the better the accuracy of the results of 
analysis will be. However, if K does not change throughout a 
computational step, only an increment of 1 needs to be 
specified for that computational step. This applies to the case 
in which the subgrade contact conditions do not change 
throughout a computational step and no slips are specified at 
the joints. 

The weight of the slabs is modeled as a uniform distributed 
load. The structure force vector due to the weight of the slabs 
is constructed from the force vectors of the plate elements due 
to a uniform distributed load. The explicit expression for the 
element force vector due to a uniform distributed load is 
given in Equation A-25 in the Appendix . 

The expression for the equivalent nodal forces on a plate 
element due to a uniform thermal gradient is given in 
Equation A-27 in the Appendix. These element force vectors 
are used to generate the structure force vector for the thermal 
effects. 

The structure force vector due to applied loads is con
structed from the concentrated nodal forces and the element 
force vector due to uniform distributed loads. 

Computation of Internal Moment Intensities 

The internal moments per unit length at the nodes are 
calculated from the final nodal deflections. The nodal 
deflections for each element are first extracted from the final 
structure deflection vector and then used to compute the 
internal moment intensities of the element at the nodes. The 
expression for computing the internal moment intensities is 
given in Equation A-29 in the Appendix. The moment 
intensities at each node are the two bending moment 
intensities (Mx and My) and the twisting moment intensity 
(M x)· M xis the bending moment intensity due to ax• flexural 
stress in the .\-.direction. MY is due to a ... , nexural stress in the 
y -direction. M xy is d.ue to T "X sheari ng stress in the xy
direction . The directions of these moment intensities and the 
corresponding stresses are shown in Figure 6. 

Two elements that are incident at the same node may have 
different moment intensities for that node. This is because 
only continuity of nodal displacements is required and the 
moment intensities are dependent on the individual geometry 
of an element and thus are unique for an individual element. 
To obtain more representative values of moment intensities 
for a node, the program calculates the average values of the 
moment intensities as computed from the adjoining elements 
and uses them for the computation of stresses. 

a 
y 

a x 

a 
x 
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Computation of Stresses 

Flexural and shearing stresses are calculated from the 
moment intensities using the following equations from 
classical thin plate theory: 

12z 
= = Mx a x 13 

(3) 

12z 
a .I' = -- M y 

(3 
(4) 

-12z 
T xy = - - Mxy 

13 
(5) 

where t is thickness of the slab and z is distance from the 
centroid of the slab. The program computes the stresses at the 
bottom of the slab by setting z = t / 2 in the equations. 
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COMPARISON OF FWD MEASUREMENTS WITH 
ANALYTICAL RESULTS 

The FEACONS III program has been used to analyze falling
weight deflectometer (FWD) data obtained from existing 
concrete pavements. A few examples are presented here to 
illustrate how the FWD data can be analyzed and how well 
the analytical results obtained from the FEACONS III 
program match actual FWD measurements. 

Modeling of an FWD Load 

The FWD applies an impulse load to the pavement by means 
of a weight dropped from a specified height onto a circular 
loading plate, which is usually 30.5 cm (12 in.) in diameter. 
The FWD load was modeled in the analysis as a static load 
uniformly distributed over a square area 30.5 X 30.5 cm 
(12 X 12 in.). 

FWD Load at the Center of a Slab 

The deflection basin caused by an FWD load applied at the 
center of a slab can be used to evaluate the sub grade modulus 
and the concrete modulus of a pavement. A deflection basin is 
defined here as a profile of maximum induced deflections, 
which are measured by geophones placed ai appropriaie 
positions on the slab. Several prediction equations have been 
developed by the authors to relate FWD deflections to 
subgrade modulus. These prediction equations can be used to 
estimate the subgrade modulus from the FWD deflection 
data. The FEACONS program can then use these values as 
the material parameters and compute the expected deflection 
basin. The computed deflection basin can then be compared 
with the measured one to determine if the estimated parameter 
values are reasonable and to adjust these parameter values, if 
necessary. The details of the interpretation of FWD data will 
be presented in a follow-up paper. Here, the main purpose is 
to show how well deflections computed by the FEACONS 
model match measured deflections. 

Example 1 is a 9-kip (40-kN) FWD load at the center of a 
slab from a test section of I-10 in Jefferson County, Florida. 
The concrete slab is 12 ft wide, 20 ft long, and 9 in. thick and 
has doweled joints. The test was run at midnight when the 
recorded temperature differential between the top and the 
bottom of the slab is negative. With the temperature lower at 
the top of the slab, the slab should be curled slightly 
downward at the center and thus should have full contact 
with the subgrade at the center. The full contact condition 
was verified by a plot of FWD load versus deflection at the 
center of the load that indicated a linear load-deflection 
relationship. The elastic modulus of the concrete was 
determined to be 4,076 ksi (28.08 GPa) from core samples 
taken from the test slab and tested in the laboratory. The 
subgrade modulus was determined to be 221 pci (60.01 
MN/ m3) by the following regression equation: 

(6) 
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where Ks is sub grade modulus (in kci) and D 
0 

is deflection (in 
µm) at the center of a 9-kip FWD load applied at the center of 
the slab. 

This regression equation is applicable for a concrete slab 
with a thickness of 9 in. (23 cm) and an elastic modulus of 
4,000 ksi (28 GPa) and is an example of the regression 
equations developed in this study. 

The determined values of concrete modulus and subgrade 
modulus were used as input parameters in the FEACONS III 
program, and the deflection basin caused by a 9-kip (40-kN) 
FWD load at the center of the slab was computed. Figure 7 
shows the comparison of the measured deflection basin along 
the longitudinal centerline with the deflection basin computed 
by the FEACONS III program. It can be noted that the 
computed deflection basin matches the measured one fairly 
well. 

For this loading condition, results of analysis indicated 
that edge stiffness (K J and joint stiffness (KL and KT) had 
negligible effects because the edges and joints were far from 
the FWD load. 
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FIGURE 7 Deflection basin along longitudinal centerline 
due to a 9-kip FWD load at the center of the slab. 

FWD Load at the Edge of a Slab 

Ex<tmple 2 is a 9-kip (40-kN) FWD loan at the center of the 
edge of a slab. The test slab is the same one used in Example 1, 
and thus the material parameters are the same. Tests were 
conducted at midday when the recorded temperature 
differential is positive. With the temperature higher at the top 
of the slab, the slab was curled downward at the edges and 
had full contact with the subgrade at the edges. This full 
contact condition was verified by the linear load-deflection 
relationship observed from the FWD data. 

Using the same concrete modulus and subgrade modulus 
used in Example I, various deflection basins were calculated 
by varying KE and compared with the measured one. By this 
trial-and-error procedure, KE was determined to be 8 ksi (55 
MPa). Figure 8 shows the comparison of the measured 
deflection basin along the edge with the computed one from 
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FIGURE 8 Deflection basin along the edge due to a 
9-kip FWD load at the edge center. 

6 

the FEACONS III program. The computed deflection basin 
matches the measured one fairly well. For this loading 
condition, analysis results indicated that joint stiffnesses had 
negligible effects. This was because the joint was far away 
from the load. 

FWD Load at a Doweled Joint 

Example 3 is a 9-kip (40-kN) FWD load at the center of a 
doweled joint. The test slab is the same one used in Examples 
I and 2. Tests were conducted at midday when the slab was 
curled downward at the edges and joints. It was found that, 
when the looseness in the dowel bars was modeled with a slip 
of 0.1 in. (2.54 mm), the computed deflection basin matched 
the measured one fairly well. Figure 9 shows the comparison 
of the computed deflection basins and the measured ones 
along the loaded and the unloaded sides of the doweled joint. 

FWD Load at an Undoweled Joint 

Example 4 is a 9-kip (40-kN) FWD load at the center of an 
undoweledjoint. The test was run on a pavement slab on I-IO 
in Jefferson County, Florida, at midday when the slab was 
curled downward at the joints and edges. It was found that, 
by using a linear stiffness of 45 ksi (3 IO MPa) and a torsional 
stiffness of 50,000 kips (222.5 MN), a good match between the 
computed deflection basin and the measured one was 
achieved. Figure IO shows the comparison of the computed 
and measured deflections along the loaded and the unloaded 
sides of the undoweledjoint. Comparison of the performance 
of the doweled joint and the undoweled joint (Figures 9 and 
IO) indicates that a doweled joint may not provide a better 
load transfer mechanism than an undoweled joint, especially 
when there is excessive looseness in the dowel bars. For this 
comparison, the deflections at the doweled joint were actually 
much higher than those at the undoweled joint. This was 
partly because the sub grade stiffness of the doweled slab was 
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FIGURE 9 Deflection basins along a doweled joint due 
to a 9-kip FWD load at the center of the joint. 
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joint due to a 9-kip FWD load at the center of the joint. 
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much lower than that of the undoweled slab and partly 
because there was excessive slip in the doweled joint. 

FWD Load at a Doweled Joint with Voids 

Example 5 is a 9-kip (40-kN) FWD load at the center of a 
doweled joint with appreciable voids under the joint. The test 
was run on a pavement slab on I-IO in Walton County, 
Florida, at midday when the recorded temperature plots 
showed that the temperature was higher at the top of the slab. 
In this case, it was found that a good match between the 
computed deflections and the measured deflections was 
achieved by modeling the joint as having a strip of subgrade 
voids, 12 in. (30 cm) wide and 0.0 I in. (0.254 mm) deep, along 
the entire joint. Figure 11 shows these computed and 
measured deflection basins along the loaded and the unloaded 
sides of the joint. In this case, the induced deflections on both 
sides of the joint were high. 
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with voids underneath due to a 9-kip FWD load at the 
center of the joint. 

CONCLUSIONS 

The analytical model and the computational scheme used by 
the FEACONS III program foranalysis of concrete pavements 
have been presented in this paper. The computer model used 
by the FEACONS Ill program has been shown to be both 
versatile and effective in the analysis of concrete pavement 
response. 

It has been demonstrated that the edge, joint, and subgrade 
conditions need to be properly modeled in the analysis. 
Modeling edge and joint behavior by means of edge stiffness 
(KE), linear joint stiffness (K J. and torsional joint stiffness 
(KT) and modeling the subgrade as a Winkler foundation, as 
used by the FEACONS I II program, produced fairly realistic 
analytical results. The program can be used to estimate 
pavement parameters (such as subgrade modulus, elastic 
modulus of concrete, and joint and edge stiffnesses) and to 
compute the critical induced deflections and stresses caused 
by a combination of traffic loads and thermal conditions. 
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APPENDIX: FINITE-ELEMENT FORMULATION OF 
THE MZC RECTANGLE 

Assumptions 

The finite-element formulation of the MZC rectangular plate 
bending element as developed by Melosh (2) and Zienkiewicz 
and Cheung (3) is presented in this section. The formulation is 
based on classical thin plate theory that assumes that (a) the 
thickness of the plate is small compared with its length and 
width, (b) the lateral bending displacements are small 
compared with the thickness of the plate, and (c) normals to 
the neutral surface remain straight and normal during 
deformation. 

Normal Displacements and Forces 

A rectangular plate element is shown in Figure A-1. The three 
independent displacements at each node are (a) lateral 
deflection (w), (b) rotation about the x-axis (8), and (c) 
rotation about t he _ -axis (8 I.). The two r rations (8 xand 8) 
are related to w by t he following equation : 

aw 
8 - -

x oy 
(A-1) 

aw 
8 ,, = 

ax 
(A-2) 

The three displacements at node i can be denoted as 

(A-3) 

The 12 nodal displacements of the element can be denoted 
as 

(A-4) 

The corresponding forces at each node are (a) the downward 
force(/,,), (b) the moment in the x-direction (/8 ), and (c) the 
moment in the y-direction lf e)- The forces at node i are 
denoted as 

[
J;,. ] 

f; = lex 
fey (A-5) 
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ELEMENT 
DIMENSIONS 

y 

FIGURE A-1 Rectangular plate element. 

y 

FORCES AND 
CORRESPONDING 
DISPLACEMENTS 

The 12 nodal forces of the element are denoted as 

(A-6) 

The displacement function (w) is represented by a 
polynomial in terms of x and y as 

w = A 1 + A 2x + A 3y + A 4 x 2 + A 5 xy + A 6y2 

+ A1x3 + Asx2y + A9xy2 + A10Y3 + A11 x3 y 

+A 12xy3 (A-7) 

By investigating this polynomial, it can be seen that along 
any boundary line, where either x or y is constant, w will vary 
as a cubic function. Because a cubic function is uniquely 
defined by four constants, the two end values of slopes and 
displacements at the two ends will define the displacement 
along this boundary line uniquely. Because such end values 
are common to adjacent elements, continuity of w will be 
imposed all along any interface. 

The displacements at node i can now be expressed in terms 
of x and y coordinates as 

19 

WI w. 
I A1 + ~1 2.\'/ + A;i.l' i + A 4x] + · 

u, = 0,.., = (- 011) = -A3 + A s·'";+ 2A(j.r , + A Hx ~ .. 
Oy I 

e."' ( ow) A 2 + 2A 4x; + As.I'; + JA 1x7 + . ox i 

(A-8) 

The 12 nodal displacements of each element can be 
expressed as 

ue =CA (A-9) 

where Cis a 12 X 12 matrix in terms of the coordinates of the 
nodes and A is a column matrix of the constants. 

Thus the constants A can be expressed as 

A= c-1ue (A-10) 

Curvatures and Internal Moments 

The curvatures and twists at any point of the plate can be 
expressed as 

ox2 

x= = 

2A 5 + 4A 8x + 4A 9y + 6A 11 x 2 

+ 6A 12y 2 A-11) 
or 

x = BA = Bc-1ue (A-12) 

where B is a 3 X 12 matrix m terms of the x- and 
y-coordinates. 

The internal moment intensities (moments per unit length) 
are related to the curvatures by 

(A-13) 

where 

Et3 [I v 0 ] 
D = v 1 0 for an isotropic material, 

12( I - v2) 0 0 12(1 - v) 
E = elastic modulus, 
v = Poisson's ratio, 

= thickness of plate, and 

XT = curvature changes occurring m an unrestrained 
element due to temperature alone. 
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Internal and External Virtual Works 

By the principle of virtual work, 

(A-14) 

where o Ueis the virtual internal work (strain energy) and o We 
is the virtual external work on the element caused by a set of 
virtual nodal displacements Coue). 

The virtual external work due to the concentrated nodal 
loadsfc is 

CA-15) 

The virtual external work due to the distributed load q is 

Equation A-7 can be rewritten as 

w = {I ,x,y,x2,xy,y2,x3,x2y,xy2,y3,x3y,xy3}A 
= PA 

From Equations A-10 and A-17, 

ow ;:: oCLC- 1 ue) 
= pc-1 oue 

Substituting Equation A-18 into A-16 gives 

0 WeD = JfCPC- 1oue) Tq dx dy 

CA-16) 

CA-17) 

CA-18) 

= Coue)Tcc- 1)TfjpTq dx dy CA-19) 

The total virtual internal work can be expressed as 

By using Equation A-12, 

ox = sc-1oue CA-21) 

Substituting Equations A-13 and A-21 into A-20 gives 

oUe = fj(BC- 1ou<)TDCX - XT) dx dy 

= Jfcsc- 1oue)TDCBc- 1ue - xT) dx dy 

Coue) T[cc-1) Tfjf BTDB dx dy}c- 1ue 

- CC-l)TfJBDxTdx dy] 

Force-Displacement Relationship 

(A-22) 

Substituting the expressions for virtual external work and 
virtual internal work into the virtual work Equation A-14, 

OUe = OWec + OWeD 

- (oue) T[( c-1) {ff BTDB dx dy} C-1ue-cc-1) Tff BDX Tdx dy] 
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= Coue) Tfc + Coue) T( c-1) TJf pTq dx dy 

- (C-1 )T{JfBTDB dx dy}C-lue - cc-I )Tfl"BDX Tdx dy 

= fc +cc-I )TjjpTq dx dy 

- kue - f T = f c + f D 

where 

(A-23) 

k = (C- 1)TCJjBTDB dx dy)C- 1, element stiffness matrix; 

JD = (C-l)TfjpTq dx dy, equivalent nodal loads due to 

distributed loads; and 
f 1 = (C-l)TfJBDx 1 dx dy, equivalent nodal loads due to 

temperature changes. 

Element Stiffness Matrix 

The explicit expression for the element stiffness matrix has 
been evaluated by Zienkiewicz CB). For an isotropic material, 
it can be expressed as 

k= 
£t3 

_ ____ [L] ([SK] 1 + [SK] 2 + v[SK]
3 

720 ab( I - v2) 

+ (1 - v) [SK]4) [L] 
2 . 

where 

2a = 
2b = 

[L] = 

length of the element, 

w[i~~ of]the ::~:n: r~ ~b g ] 
J l~ 0 2a , 

J 
E = elastic modulus, 
v = Poisson's ratio, 
t = thickness of plate, and 

CA-24) 

[SK] 1, [SK] 2, [SK]3, and [SK]4 are as given in Table A-1. 

Equivalent Nodal Loads Due to Uniform Distributed Loads 

When a uniform distributed load of q acts over an element, 
the equivalent nodal loads can be calculated to be 

1/4 
-b/ 12 
a/12 
1 /4 
b/12 
a/12 
1I4 
-b/ 12 
-a/ 12 
1I4 
b/ 12 
-a/ 12 

CA-25) 
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TABLE A-I COMPONENT MATRICES OF ELEMENT STIFFNESS MATRIX 

60 
b2 

0 -2 
p - ""'2 • 

30 20 Sywonetr1cal 

30 15 60 

15 10 30 0 20 

[SK]
1
·P-2 -60 0 -30 -30 0 -15 60 

0 

30 0 10 15 5 -30 0 20 

-30 0 -15 -60 0 -30 30 0 -15 60 

15 5 30 0 10 -15 10 -30 0 20 

60 
2 

-30 20 p2 =; 
b 

0 Sym.etrical 

-60 30 0 60 

-30 10 0 30 20 

0 

[SK] 2=p2 30 -15 0 -30 -15 0 60 

-15 10 0 15 0 -30 20 

-30 15 0 30 15 0 -60 30 0 60 

-15 0 
0

15 10 0 -30 10 0 30 20 

Equivalent Nodal Loads Due to Uniform Temperature 
Gradients 

When the temperature varies linearly from the top to the 
bottom of the plate with a temperature differential of/:!.. T, the 
curvatures of the unrestrained plate element will be 

XT = 

where 

a = 
l:!..T = 

o2w al:!..T 

ox2 

o2w al:!..T = 
ay2 

o2w 
2 oxoy 

0 
(A-26) 

T 

coefficient of thermal expansion, 
(temperature at top) - (temperature at bottom), 
and 

t = thickness of plate element. 

The equivalent nodal loads due to this uniform temperature 
gradient can be evaluated explicitly to be 

30 

- 15 

15 -15 Symetr-1cal 

-30 0 -15 30 

0 15 

- 15 15 15 

[SK] 3• -30 15 0 30 0 30 

15 0 -15 

0 -15 15 

30 0 -30 -15 0 -30 0 15 30 

0 -15 15 

0 15 0 0 -15 -15 

84 

-6 

Synnetrf cal 

-84 6 -6 84 

-6 -2 

[SK] 4• -6 0 -8 

-84 6 -6 84 6 84 

-8 0 -6 0 -6 

0 -2 -6 2 -6 

84 -6 6 -84 -6 -6 -84 6 84 

0 -6 -8 0 -6 -2 

-6 0 -2 -8 -6 

0 
a 

-b 
0 

Et 2 al:!..T -a 
-b 

12(1 - v) 0 

a 
b 
0 

-a 
b (A-27) 

Computation of Internal Moments 

After the nodal displacements of an element (ue) have been 
determined, the internal moments can be calculated by using 
Equations A-12 and A-13 as 

= 
= 

DBC-1 ue - DX T 

Sue - DXr (A-28) 
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TABLE A-2 STRESS MATRIX 

-
6p-1DI 

-8aD1 BbDI -6pD1 -4aD1 0 

+6pDl 

6pDg 
-8aD

9 
8bD1 -6pDg -4aD

9 
0 

+6p-1Dl 

-2D 
I!/ 4bDI!J -4aDI!J 2DI!J 0 4aDig 

6 -lD p ]{ 
-6pDl 4aDl 0 8aD1 BbDr 

+6pDl 

-6pD;; 4.aD .• 0 
6pD

9 
BaD,. 8bD1 ,, 

+6p-1Dl " 

1 
s = 4ab 

-2D 
I!/ 

0 -4aDxg 2DI!J 4bDI!J 4aDig 
. 

-6p-l Dr 0 -4bDx 0 0 0 

-6p-1Dl 0 -4bD1 0 0 0 

-2Dxg 4bDrg 0 2DI!J 0 0 

0 0 0 -6p-1DI 0 -4bDI 

0 0 0 -6 -1 p Dl 0 -4bDl 

P = a/b 

-2Dxg 0 0 2Dxg 

-
FOR ISOTROPIC lfATERIALS: 

2 
D • D = D = Et3/12(1 - v ) 

I g 

where Sis DBC- 1, stress matrix. 

4bDxg 

The explicit expressions for the stress matrix (S) are given 
in Table A-2. For uniform temperature gradients, the internal 
moments can be evaluated to be 

M = Sue + 
Et 2a.l:>. T 

12( I - v) (A-29) 

where!::. Tis (top temperature) - (bottom temperature). 
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