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Travel Time Prediction and Information 
Availability in Commuter Behavior 
Dynamics 

CHEE-CHUNG TONG, HANI s. MAHMASSANI, AND GANG-LEN CHANG 

The prediction of travel time by trip makers constitutes an 
important component of the complex daily dynamics of com­
muter behavior, which are of particular concern in systems 
evolving towards equilibrium, such as after major traffic con­
trol changes or disruptions due to major reconstruction or 
maintenance activities. The day-to-day dynamics of the predic­
tion of travel time by commuters on their next trip, with 
particular emphasis on the effect of information availability, 
are investigated In this paper using an experimental approach 
Involving commuters In a simulated commuting system. A 
travel time prediction model developed previously for a limited 
information situation provides the framework for analyzing 
thls phenomenon, using results obtained from a second experi­
ment where users are provided with complete information on 
the previous day's performance. Insights Into the effect of 
information availability are obtained through the comparative 
analysis of the model's performance a.nd estimated parameter 
values in the two experiments. The results suggest that addi­
tional Information tends to reduce the perceived uncertainty 
a~oclated with tile system's performance; commuters com­
blne this supplied information with their latest experienced 
travel time In forming a base value for the predicted travel 
time on the next trip. Th.is base value is adjusted by a safety 
margin that Is primarily governed by the latest experienced 
schedule delay, In order to protect agalnst unacceptably late or 
early arrival at the workplace. 

Research over the past decade has accomplished significant 
advances in terms of understanding and modeling travel be­
havior (1). While much of this work has been directed towards 
the development of models of individual choice and decision 
making, little effort has addressed models of trip makers' 
judgment. In behavioral decision theory, judgment and choice 
are viewed as two integral components of the decision process 
(2). Judgment involves the interaction between perception, 
learning, and information in the formation of the trip makers' 
anticipated values for the various attributes and performance 
characteristics of the travel options under consideration. Mod­
els of individual judgment are particularly important in the 
study of the dynamics of trip making behavior and its interac­
tion with the performance of the transportation system. In 
particular, it is necessary to consider how anticipated travel 
times and other trip costs are formed and adjusted in response 
to experience with and information about the performance of 
the facility. 
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The particular context of interest to this study is that of urban 
commuters in their daily trip from home to work. The dynamic 
aspects of this problem have received some attention over the 
past 5 years, primarily dealing with the time-varying flow 
patterns on a given day that are presumed to exist at some 
equilibrium point (3-5). The day-to-day dynamics of this prob­
lem, and the evolution of commuters' responses to experienced 
travel outcomes, have more recently been the subject of the­
oretical and experimental investigation by the authors (6-11). 
An essential element in this complex problem is the mechanism 
by which users form their estimate of the travel time that can be 
anticipated for a trip on a particular facility. Specifically, in a 
dynamically varying system, what is the relative importance of 
travel times experienced on preceding days in predicting the 
travel time to be experienced on the next trip, and how is 
exogenously supplied information such as from traffic reports 
or word-of-mouth used in this process? Answers to these ques­
tions, expressed in the form of a travel time prediction model, 
are necessary in the context of a dynamic modeling framework 
for the analysis and evaluation of congestion relief strategies in 
commuting corridors. Such information is also useful in exam­
ining and predicting trip pattern changes in response to major 
service disruptions such as major construction and repair 
activities. 

Little previous work has addressed this particular problem. 
The implicit assumption made in most studies is that users have 
complete information about the performance of the facility in 
real time. When solving for a presumed equilibrium, such an 
assumption is generally rationalized on grounds that users 
would have the opportunity to learn about the performance 
characteristics of the system. If there is a unique equilibrium, 
and if it will always somehow be reached, then solving for this 
equilibrium need not necessarily concern itself with the pro­
cesses by which evolution to this equilibrium takes place. 
However, in a dynamically varying system, where the path 
towards some eventual steady state is of direct concern, as in 
the examples given earlier, and if one is interested in altering 
(improving) this path through control measures, then the as­
sumption of a fully omniscient trip maker must be replaced by 
a realistic model of how users learn about the system and 
predict its performance. 

In a few instances where this process has been explicitly 
dealt with, a convenient Markovian assumption has been used, 
namely that the anticipated travel time on a given day is 
assumed equal to the actual travel time experienced on the 
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previous day (12-14). Horowitz also has explored simple dy­
namic travel time adjustment rules in the context of an analysis 
of the stability of stochastic route choice equilibrium in a two­
link network (15 ). Similar rules were further investigated by 
Mahmassani and Chang (6) in the context of simulation experi­
ments with departure time choice dynamics of urban com­
muters. However, none of these studies (which were not 
focussed on the travel time prediction problem anyway) in­
cluded observations of actual trip maker behavior, obviously a 
critical ingredient. 

Recently, Chang and Mahmassani (16) presented a model for 
this process, with data obtained from an interactive experiment 
involving real commuters in a simulated, single-route, com­
muting context. Through the calibration and testing of several 
alternative specifications, it was found that the latest experi­
enced travel time played a determining role in the formation of 
the anticipated travel time for the next trip, which in tum is 
used in adjusting departure time for that trip. In addition, a 
safety margin, found to depend on the commuter's latest sched­
ule delay and retrievable experience, was used in this adjust­
ment (16). However, in the experiment on which the model was 
based, commuters were only supplied with information about 
their own latest experience (i.e., their actual work arrival time, 
given their departure time for that day) (7, 8). As noted earlier, 
it is of interest to examine how information availability affects 
travel time prediction. This question is addressed in this paper 
by applying the basic modeling framework introduced in the 
earlier work to the results of a second experiment, in which 
users were provided not only with their own actual perfor­
mance on the previous day, but with a complete profile of 
arrival times corresponding to a spectrum of possible departure 
times as observed on the preceding day, for each given location 
within the corridor (10). The second experiment thus corre­
sponds to a complete-information situation (though still for the 
previous day only, thus still requiring the prediction of a travel 
time for the next trip), as opposed to the earlier limited­
information case. 

The experimental details are not of immediate concern in 
this paper, as they have been reported previously (8, 10). Fur­
thermore, the development of the original model by Chang and 
Mahmassani (16) is not repeated here, though its specification 
and key implications are reviewed and presented in the context 
of explaining the new results. A brief review of pertinent 
experimental details is presented in the next section, followed 
by the model specification and estimation assumptions and 
methodology. The estimation results are presented in the fourth 
section, which is followed by various statistical tests, notably 
of the hypotheses of parameter stability across user preference 
groups and geographic sectors. A discussion of the behavioral 
implications of the model results is then presented, followed by 
concluding comments in the final section. 

THE EXPERIMENT 

Following essentially the same experimental procedure de­
veloped by Mahmassani et al. (7), the commuting context 
consists of a four-lane highway used by adjoining residents for 
their daily home-to-work trip to a single destination such as a 
CBD or major industrial-office park. This commuting corridor 
is divided into nine 1-mi sectors, with the common destination 
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located at the end of the last sector. Sectors are numbered from 
1 to 9 in order of decreasing distance from the destination, with 
Sector 1 being the farthest one. Only the first five sectors are 
designated as residential, with no traffic generation from the 
remaining areas. 

One hundred participants (all commuting staff at the Univer­
sity of Texas at Austin) were assigned equally to the five 
residential sectors. On the first day, participants were given a 
description of the commuting context, and asked to supply their 
departure time as well as their preferred arrival time (in the 
absence of congestion), with the constraint that am.val after the 
official (common to all participants) work start time (8:00 
a.m.) would not be tolerated. For analysis purposes, partici­
pants are categorized into three groups on the basis of their 
stated preferred arrival time PAT; (for User i, i = 1, 2,. . ., 100): 

Group 1: 7:30 ~PAT;< 7:40 a.m. 
Group 2: 7:40 ~PAT;< 7:50 a.m. 
Group 3: 7:50 ~ PAT; ~ 8:00 a.m. 

The departure decisions of all participants form the input to a 
special-purpose macroparticle traffic simulation model (17), 
which generates information on the actual (i.e., simulated) 
arrival time of each participant. On each subsequent day, par­
ticipants were asked to supply a departure time, given daily 
information on the system's performance. The information 
provided to each participant on a given day includes the actual 
travel time and arrival time experienced by that commuter on 
the previous day, in addition to the arrival times as experienced 
on the previous day corresponding to the full array of possible 
departure times at 3-min intervals from that commuter's origin 
sector. More detailed description of the experiment can be 
found in Mahmassani and Tong (10). 

MODEL SPECIFICATION AND ESTIMATION 
METHODOLOGY 

The travel time prediction model developed by Chang and 
Mahmassani (16) is part of a modeling framework for dynamic 
departure time decisions under limited information (8, 11 ). The 
same basic specification is adopted here, and modified to incor­
porate the effect of information availability, by introducing a 
term for the additional information supplied to system users. 
The resulting comparability allows insight into the effect of 
information availability on user judgment and behavior. As 
discussed by Chang and Mahmassani (16), the specification 
reflects the dependence of the predicted travel time for the 
adjustment of the departure time on Day ton (a) the experi­
enced travel time on Day t- 1, by far the principal influence on 
the predicted time, (b) to a much lesser extent, the travel time 
on Day t - 2, with no earlier experience terms coming close to 
being significant, and (c) a safety margin, intended to minimize 
the risk of unacceptable arrival in adjusting the departure time, 
and expressed in terms of the schedule delay on Day t - 1 as 
well as the user's cumulative unsuccessful experience with the 
facility, as shown hereafter. 

When complete information on the previous day's perfor­
mance is provided to commuters, this additional source can be 
expected to influence the travel time predicted when adjusting 
their time of departure. Therefore, an additional term is intro­
duced in order to assess the relative importance of the various 
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information sources and factors influencing travel time 
prediction. 

Travel time prediction and departure time adjustment are 
intrinsically related in the process under investigation. Regard­
less of the true nature of the underlying behavioral processes, 
the empirical analysis must by necessity recognize this interde­
pendence, and accept that a pure predicted travel time simply 
cannot be observed, at least not in our experiment, nor is it 
clear how this might be done otherwise. Based on the analysis 
in Chang and Mahmassani (16) of alternative travel time vari­
ables and their ability to provide a consistent explanation of the 
observed departure time behavior, the dependent variable is 
defined as 

EIR;,, = PATi - DT;,, 

where 

EIR;,, = 

PAT; = 
DT;,, = 

travel time predicted by User i for the 
commuting trip on Day t, 
stated preferred arrival time for User i, and 
selected departure time by User i on Day t. 

This definition implicitly assumes that commuters always 
intend to achieve their initial goal, the preferred arrival time, 
though difficulties experienced in their search for an acceptable 
departure time may induce them to increase their respective 
ranges of tolerable schedule delay (16). The implicit predicted 
travel time, conditional upon the user's decision to adjust 
departure time on a particular day, is formulated as follows: 

EIR;,, = a1 + ai_TR;,1_ 1 + a3DEL;,1 + a4TR;, 1_ 2 

+ Bi,r-l • SFL;, 1 + (1 - 5u_1) • SFE;,, + E;,1 (1) 

where TR;, 1 is the actual travel time experienced by User ion 
Day t. 

DEL;,, denotes the difference between the experienced travel 
time on Day t - 1 (i.e., TR;,1_ 1), and the specified or supplied 
travel time information (ST;,,). observed on Day t - 1, corre­
sponding to User i's departure time on Day t; thus, DEL;,, = 
TRi,1-1 - ST;,1· 

B;,1_ 1 is a binary variable that is equal to 1 if User i is early, 
relative to the preferred arrival time PAT;. on Day t - l, and 
equal to 0 otherwise. This dichotomization is due to earlier 
results indicating different behavioral responses to early versus 
late arrivals. 

SFEi,i and SFL;,,. the safety margins for adjusting to earlier 
and late departures, respectively, are specified as 

SFL;, 1 = (a5 + a6NFLi,i- i) · SDE;,,_ 1 

SFE;,1 = (a7 + a8NFE;,1_ 1) • SDL;,1_ 1, 

where 

SDE;,1_ 1 = schedule delay for early arrivals relative to 
PAT;. 

SDL;, 1_ 1 = schedule delay for late arrivals relative to 
PAT;, 

NFL;, 1_ 1 = number of unacceptable late arrivals 
experienced by User i up to Day t - 1, 
and 

NFE;,1_ 1 = number of unacceptable early arrivals 
experienced by User i up to Day t - 1. 
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Note that NFL;,
1

_ 1 and NFE;, 1_ 1 were operationally obtained 
as the number of departure time changes up to t - 1 in response 
to late and early arrivals, respectively. This procedure assumes 
that the user will change departure time when the resulting 
schedule delay exceeds some tolerable level, referred to as the 
"indifference band" in earlier work (8). 

As noted earlier, all of the variables with the exception of 
DEL;,,. which was meaningless in that context, were included 
in the model specification developed for commuter behavior 
under the limited-information situation (16). All terms were 
found to be statistically significant and behaviorally plausible 
in that experiment. The estimation of a similar specification, 
modified as described with the additional term, for the com­
plete information situation will therefore allow the assessment 
of behavioral changes between the two situations. 

Estimation of the parameters a1, •• ., a8 requires the specifi­
cation of the structure of the random error terms Ei,i• for all 
Users i = 1, 2, ... , n and Days I= 1, 2, ... , T. The usual linear 
model assumptions of identically and independently distributed 
errors are not appropriate here, because observations of the 
same individual are likely to be correlated from one day to the 
next due to unobserved factors that remain constant or change 
systematically over time. The error structure adopted here 
follows the same assumption tested in Chang and Mahmassani 
(16) for this problem. In particular, a first-order autoregressive 
model with contemporaneous correlation across individuals is 
assumed for the error structure (18, 19), as follows: 

E;,1 =Pi· E;,1_ 1 + µi,r (autoregression) 

E (E~1) = CJ;,; (heteroscedasticity) 

E(E;,1• Ek.1) = CJ;,1; i = k; (contemporaneous correlation) 

E(E;,,, Ek.1·) = 0; i -:f. k, I -:f. t'; i = 1, 2, ... , N; 
t = 1, 2, ... , T. 

Where Pi is the correlation coefficient for the ith individual and 
the µi,r values are normally distributed with the following 
assumptions: 

E(µ;,,) = O; 

{ 
CJ;" for i, k = 1, 2, .. ., N and t = t' 

E (µ;,,. µk,,.) = . . I 

0 for 1, k = 1, 2, ... , N and t -:t. I 

More detailed discussion of the properties of this model can 
be found in the literature (18, 19). Under the preceding error 
structure, parameter estimation was performed using the gener­
alized least squares (GLS) method. The parameters were esti­
mated separately for each residential sector and user group 
combination defined earlier on the basis of the preferred arrival 
time. Because in Sectors 4 and 5 the number of departure time 
changes are too small, only those observations from Sectors 
1-3 are used. For the same reason, observations for Preference 
Group 1 are excluded. 

For each estimated equation. overall goodness-of-fit can be 
assessed by computing Theil's inequality coefficient (20) de­
fined as: 
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where P 1 and Ai denote the predicted and actual values, respec­
tively, and n is the total number of observations. The value of 
this coefficient lies between 0 and oo, with smaller values 
indicating better overall model performance. 

EST™ATION RESULTS 

The GLS parameter estimates, along with the corresponding 
t-statistics and Theil's inequality coefficient U, are given in 
Tables 1 and 2, for each of the six sector-user group combina­
tions considered. The overall goodness-of-fit seems acceptable 
as indicated by the U value, which is between 0.09 and 0.13, 
and is smaller than 0.15 in all cases. 

Most estimated parameter values have the expected signs; 
the coefficients of the major components, such as TR;,1_ 1, 

DEL;,1, SDEi,t-l • and SDL;,1_ 1, are statistically significant at the 
95 percent confidence level. The significance of the coefficient 
of DEL;,, indicates that users are indeed using the additional 
information available in this case. However, the coefficient of 

TABLE 1 PARAMETER ESTIMATES FOR USER 
PREFERENCE GROUP 2 

Parameter It-value) 

** 
Data set 

Var1able G2S1 G2S2 G2S3 

------------------------------- -----------------------
CONST 6.624 1.761 8.465 

(6.646) (J.681) (5.284) 

TR1,t-I 0.773 0.903 0.634 

( 15.883) (34.128) (5.648) 

DEL1,t 0.360 0.497 0.753 

(17.680) (41.772) ( 19.843) 

TR1,t-2 -0.053 0.002* -0.189 

(-2.772) (0.195) (-6.394) 

SDE1,t-I 0.765 0.985 0.865 

(24.155) (44.635) (29.166) 

NFLt,t-1 SDEt,t-1 0.022 -0.001* 0.002* 

(3.287) (-0.200) C0.322) 

SDL1,t- I 0.881 0.761 0.641 

(16.530) (19.JJ5) (9.259) 

NFE1,t- I SDL1,t- I -0.017 0.058 0.015* 

(-2.454) (3.283) (I.SOI) ------------... --------______ ..., _______ __ _____ ----------------
u 0.10 0.12 0.13 

degrees or freedom 208 208 208 
----------------------------·------------------------ ----
*:not significant at 95" confidence level. 

** G1cS J : User group le In sector J. 
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TABLE 2 PARAMETER ESTIMATES FOR USER 
PREFERENCE GROUP 3 

Parameter <t-valuel 

Data set 

** Variable G3S1 G3S2 G;sS3 

--------------------------~-----------------------------

CONST 4.366 2.268 6.950 

(7.583) (4.080) (7.208) 

TR1,t-l 0.619 0.946 0.765 

(37.238) (39.801) (19.388) 

DEL1,t 0.301 0.377 0.432 

(31.168) (28.760) (22.372) 

Tr\t-2 0027 -0.044 -0.011* 

(3.022) (-3.766) (-0.762) 

SDE1,t- l 0.750 0.921 0.769 

(34.466) (40.683) (21.732) 

NFL1,t- I SDEt,t-1 0.018 -0.004* -0.005* 

(6 739) (-1.021) (-0.974) 

SOLl,t-1 0.691 0.921 1.096 

(31.545) (31.906) (19.627) 

NFEl,t-1 · SDL1,t-l -0.010* -0.017 -0.046 

(-1.127) (-1 .996) (-3.249) 
----- -------------------------------------------------------

u 0.12 0.11 0.09 

degrees of freedom 262 235 262 
-----·-------------------------------------------.. ------
* : not s1gn1f1cant at 95 7' confidence level. 

** GkS J : User group k In sector j . 

TR;, 1_ 2 is not significantly different from zero for all selected 
data sets. In addition, its sign is not consistent across data sets. 
The same is true for NFL;, 1_ 1 • SDE;,1_ 1 andNFE;,1_ 1 · SDL;, 1_ 1 

in this remarkable yet plausible example of the effect of addi­
tional information on user behavior. Essentially, the additional 
supplied information is making it unnecessary to draw on 
earlier experience, in this case travel time experienced 2 days 
ago. Similarly, the additional information seems to be reducing 
the need for the safety margin, which is a device to deal with 
perceived uncertainty. Clearly, the latter is greater under the 
limited information situation. 

The coefficient of the cumulative experience component of 
the safety margin for lateness (i.e., NFLi,t-I · SDEu_ 1) is 
significant for Sector 1 only, as indicated by the estimation 
results for data sets G2S1 and G3Sl' This result appears to 
suggest that, except for this most distant sector, the need for the 
commuters to use a safety margin to predict travel time de­
creases. Further discussion of these questions is presented in 
conjunction with parameter stability tests and the behavioral 
implications of the results. 
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Parameter Stability Tests 

In order to examine the existence of structural changes in 
parameter values across user preference groups and geographic 
sectors, two types of pairwise parameter stability tests are 
conducted. First, overall tests are performed, in which the 
hypothesis tested is that all parameters including the constant 
terms are equal across the two subpopulations under considera­
tion. Next, tests of the equality of selected subsets of param­
eters are conducted. 

The general F-test for linear models is used here to test the 
hypothesized restrictions on the parameter values under consid­
eration. Details of the test, of which Chow's test (21) is a 
special case, can be found in several standard references 
(22, 23 ). Generally, the test procedure involves estimating the 
model separately with and without the restrictions, and using 
the estimation results, particularly the sum of squared residuals, 
to calculate an F-distributed test statistic that can then be 
compared to the corresponding theoretical value of the F-dis­
tribution at the desired significance level. 

The results for the pairwise overall parameter stability tests 
are presented in Table 3. In general, significant differences 
appear to exist across sectors for the same user preference 
group, as well as across preference groups within the same 
sector. However, this conclusion is not uniform, as users in 
Group 2 appear to exhibit similar parameters across sectors, 
and group differences appear less clear-cut for users in 
Sector 3. 

The second type of tests addressed the following three sub­
sets of variable coefficients: (a) the travel time variables TR;_ 1,1 

and DEL;,,. (b) the schedule delay and safety margin terms in 

TABLE 3 OVERALL PAIRWISE PARAMETER STABILITY 
TESTS 

Hypothesis* Computed F-value ** Concluston *** 

6351 • 6352 2.14 Reject 

6351 • G353 3.79 Reject 

6352 • 6353 5.68 Reject 

G251 • G252 292 Reject 

6251 = G253 1 37 Do not reject 

6252 • 6253 025 Do not reject 

6351 • 6251 1 62 Do not reject 

6352. 6252 2.47 Reject 

6353 • 6253 1.67 Do not reject 

* Parameters for the two preference group-sector combinations 
are eQual. 

** Computed value of the F-test statistic 
*** "Do not reject·: The null hypothesis cannot be rejected at the 

95% confidence leve l. 
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response to early arrival, that is, SDE;,1_ 1 and NFL;, 1_ 1 • 

SDE;,1_ 1, and (c) same as the previous item but for the response 
to late arrival. The results of the pairwise comparisons for each 
subset of parameters are presented in Tables 4-6. Somewhat 
unexpectedly, the null hypothesis of parameter equality can be 
rejected with better than 95 percent confidence for most cases, 
indicating that different sector and user group conformations 
appear to place varying degrees of relative importance on the 
various components that enter into the prediction of travel time 
and the corresponding adjustment of departure time. 

TABLE 4 PARAMETER EQUALITY TESTS ACROSS 
PREFERENCE GROUP-SECTOR COMBINATIONS FOR THE 
COEFFICIENTS OF TR;, 1_ 1 AND DEL;,1 

Hypothesis* Computed F-value - Conclusion *** 

6351 ~ 6352 6.14 Reject 

6351 ~ 6353 9.19 Reject 

6352 ~ 6353 21.33 Reject 

6251 a 6252 10.54 Reject 

6251 = 6253 5.72 Reject 

G252 = 6253 0.38 Do not reject 

G351 • 6251 849 Reject 

G352 = 6252 9. 15 Reject 

6353 = G2S3 0.57 Do not reject 

" Coefficients of TRt,t- I and DELt,t for the two preference 

group-sector combinations are eQual. 

"" Computed value of the F-test stattsttc 

""" "Do not reject· . The null hypothesis cannot be rejected at the 
95% confidence leve l. 

Behavioral Implications 

The specification of the travel time prediction model can be 
decomposed into the following components: 

1. Experienced travel time a,_TR;, 1_ 1 + a4TR;, 1_ 2 

2. Supplied travel time information a 3 • DEL;,1 

3. Response to early arrival (a5 + a6 • NFL;, 1_ 1) • SDE;, 1_ 1 
4. Response to late arrival (a7 + a8 • NFE;, 1_ 1) • SDL;,1_ 1 

The first two components reflect the influence of experienced 
travel time and the supplied travel time information on the 
current prediction of travel time. From the relative magnitudes 
of the coefficient estimates, the effect of TR;, 1_ 1 is much larger 
than that of TR;, 1_ 2 and DEL;,, in all cases. The coefficient a4 is 
relatively small compared to a,. and a3 , and in several cases is 
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TABLE 5 PARAMETER EQUALITY TESTS ACROSS 
PREFERENCE GROUP-SECTOR COMBINATIONS FOR THE 
COEFFICIENTS OF SDE;,1_ 1 AND (NFL;,1_ 1 • SDE;.1_ 1) 

Hypothesis * Computed F-value - Conclusion -

6351 ~ 6352 7.83 Reject 

6351 • 6353 13.39 Reject 

G3S2 • G3S3 15.21 Reject 

6251. 6252 8.73 Reject 

6251 = 6253 5.69 Reject 

6252. 6253 3.13 Reject 

6351 • 6251 5. 13 Reject 

6352 • 6252 5.79 Reject 

6353 = 6253 5.47 Reject 

* Coemclents or 5DEi,t-l and CNFLi,t-l · 5DEi,t-l > ror the two 

prererence group-sector combinations are equal. 

- Computed value or the F-test statistic. 

*** ·oo not reject" : The null hypothesis cannot be rejected at the 
951 conrtdence level. 

not statistically significant, as shown earlier. Essentially, the 
added supplied information is combined with the most recently 
experienced travel time to form a predicted value for the travel 
time that can be anticipated on the next trip, and that provides 
the basis for the adjustment of departure time. Only in some 
instances does the earlier experienced travel time exert a sig­
nificant influence, and one that is an order of magnitude less 
than that of the most recent experience or supplied information. 

Compared to t..lie relative magnitudes of the estimates ob-
tained in the first experiment, under the limited-information 
situation (16), the coefficient ai is smaller here, because it no 
longer is the only source of information on the previous day's 
performance. Interestingly, ai + a3 is approximately equal to 
the magnitude of TR;, 1_ 1 in the limited-information case. More­
over, the values of a4 obtained here are smaller than in the first 
experiment, as expected given that this term is hardly signifi­
cant when additional information is available. 

The third and fourth components reflect the influence of the 
experienced schedule delay on travel time prediction in the 
departure time adjustment process. As noted, there is a long­
term cumulative experience element and another element for 
the short-term response to latest experience in forming the 
safety margin captured by these two components. The coeffi­
cients as and a7 of SDE;,1_ 1 and SDL;,1_ 1, the latest experience 
terms, are clearly significant. However, the same is not true for 
the coefficients a6 and ag associated with the cumulative-expe­
rience terms NFL;, 1_ 1 • SDE;,1_ 1 and NFE;,,_ 1 • SDL;,1_ 1• 
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TABLE6 PARAMETER EQUALITY TESTS ACROSS 
PREFERENCE GROUP-SECTOR COMBINATIONS FOR THE 
COEFFICIENTS OF SDL;,1_ 1 AND (NFE;,1_ 1 • SDL;,1_ 1) 

Hypothesis * Computed F-value - Conclusion -

6351•6352 5.01 Reject 

6351 • 6353 13.97 Reject 

G3S2 • G3S3 7.20 Reject 

6251 = 6252 11.13 Reject 

6251. 6253 4.60 Reject 

6252. 6253 2.96 Do not reject 

6351 • 6251 4.25 Reject 

6352 • 6252 7.64 Reject 

6353. 6253 3.45 Reject 

* Coemclents or 5Dli,t-l and CNFEi,t-I · 5Dli,t- I) ror the two 

prererence group-sector combinations are equal. 

- Computed value of the F-test statistic. 

- ·oo not reject·: The null hypothesis cannot be rejected at the 
951 confidence level. 

The significance and magnitude of as and ~ indicate that 
experienced schedule delay plays an important role in travel 
time prediction and departure time adjustment by commuters. 
On the other hand, the insignificance of the a6 and a8 associated 
with _the cumulative-experience terms (particularly when com­
pared with their significance in the limited-information situa­
tion) suggests that the additional supplied information reduces 
the importance of relying on one's memory or accumulated 
experience (at least in a..11 active \Vay) i...71 the daily prediction of 
travel time in the commuting system. Effectively, greater infor­
mation availability appears to reduce the uncertainty in the 
travel times perceived by commuters, thereby reducing the 
need for long-term memory. 

In summary, commuters combine their latest experienced 
travel time with the supplied travel time information in forming 
a base value for the predicted travel time on the next trip. This 
base value is adjusted by a safety margin that is primarily 
governed by the latest experienced schedule delay, in order to 
protect against unacceptably late or early arrival at the 
workplace. 

CONCLUDING COMMENTS 

In this study, an important facet of the complex daily dynamics 
of commuter behavior in a system evolving towards equi­
librium has been examined This facet is that of user judgment 
applied to the prediction of travel times in the commuting 
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system, and is one about which little work has been attempted 
in transportation research. A travel time prediction model de­
veloped previously, in conjunction with an experiment in which 
information availability was limited to users' own experiences, 
provided the framework for analyzing this phenomenon, using 
the results of a second experiment in which additional informa­
tion on the previous day's performance was available. The 
focus of this study was not so much to develop a definitive 
operational model of this process as to gain insights into the 
effect of information availability through the comparative anal­
ysis of the model's performance and estimated parameter 
values. The study was successful in this regard, suggesting that 
additional information tends to reduce the perceived uncer­
tainty associated with the performance of the system, and is 
actually used along with the user's latest experience in forming 
a travel time for the next trip. 

Generalizing beyond this specific travel time prediction 
model, another important direction that is beginning to emerge 
from this work is that the effect of information availability is 
not limited to an additive term that would reflect more or less 
information in a model's specification, but may actually affect 
the underlying behavioral mechanisms. This result was man­
ifested here, for example, in the virtually insignificant coeffi­
cients of the terms reflecting earlier experience. Moreover, 
other related work by the authors appears to suggest that 
behavior under greater information availability of the type 
provided in our experiment is of a more rational (i.e., utility­
maximizing) nature than that observed under limited informa­
tion for which the boundedly rational notion of an indifference 
band of tolerable schedule delay was found to provide a plausi­
ble explanation of the data. 
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