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Discrete/Continuous Analysis of 
Commuters' Route and Departure 
Time Choices 

SAMEER A. ABU-EISHEH AND FRED L. MANNERING 

An analysis of commuters' choices of routes and departure 
times Is undertaken using a dlscrete/contlnuous econometric 
modeling structure. The modeling system Is estJmated with 
morning work trip data collected In State College, Pennsy1-
van1a. The estimation results provide Interesting Insights Into 
the behavioral aspects motivating route and departure time 
choices and underscore the need for proper econometric speci­
fication in discrete/continuous model structures. Overall, the 
model estimations provide surprisingly good fits and show 
promise for applications in a tradJtlonal user equilibrium 
framework. 

The problem of peak-period traffic congestion has served as the 
primary motivation for countless research studies. Such efforts 
have ranged in focus from highway capacity analyses, includ­
ing intersection studies and coordinated traffic signal strategies, 
to studies of trip-making behavior. The congestion remedies 
suggested by these studies have given rise to new highway 
construction, various traffic capacity improvements (e.g., high­
way widening and improvement and automation of signal tim­
ings), high-occupancy-vehicle lanes, car- and vanpooling, and 
marketing efforts supporting pubJic transportation. Although 
such remedies have met with varying degrees of success, peak­
period traffic congestion continues to be one of the most per­
sistent problems facing the transportation profession. 

In this paper, an important behavioral aspect of the peak­
period congestion problem, travelers' choices of route and 
departure time, is considered. In the past few years, there has 
been a healthy level of research devoted to the general area of 
departure time and route choice. For example, an econometric 
modeling approach was adopted by Cosslett (1) and Abkowitz 
(2) for departure time choice, and by Hendrickson and Plank 
( 3) for the choice of departure time and mode. Hendrickson and 
Kocur (4), Hendrickson et al. (5), De Palma et al. (6), and 
Mahmassani and Herman (7) studied departure time in the 
context of user equilibrium for a single route. Extensions of 
some of these modeling efforts resulted in the inclusion of a 
route choice component, but on a limited scale as expressed by 
the equilibrium approaches of De Palma et al. (6), Mahmassani 
and Herman (7), and by the econometric simulation approach 
of Ben-Akiva et al. (8). Although a number of past studies have 
provided valuable insight into the route and departure time 
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choice decision-making process, they have all developed meth­
odologies that treat departure time as a discrete variable as 
opposed to a continuous one. The argument in support of the 
discrete treatment of this variable is that travelers can only 
distinguish among a few prevailing traffic conditions over a 
specified departure period. However, by discretizing departure 
time an arbitrary structure of time intervals is being imposed on 
the decision model. In this paper, a model that treats departure 
time as a continuous variable and thereby avoids any a priori 
restrictions on the modeling approach is developed. 

ECONOMETRIC FRAMEWORK 

In developing an appropriate econometric structure, first a 
probabilistic route choice model for travelers' automobile com­
mutes to work is specified Let the utility provided by each 
route be a linear function for each traveler, 

U; = ~(E7T;) + f!(RC;) 

where 

U; 
E7T; 

= 
= 

utility provided by Route i to the traveler; 
expected travel time on Route i; 

(1) 

RC; = vector of route specific characteristics such as 
number of traffic signals, queue lengths, and 
so on, for Route i; and 

~. o = estimable parameters. 

If a disturbance ierm is added to Equation 1 such that V; = U; 
+ E; is assumed to be distributed with a generalized extreme 
value (GEV) distribution, it can be shown (9) that the route 
choice probabilities are given by the standard multinomial logit 
model, 

P(ilR) = exp U1 

~exp uj 
I 

(2) 

where P (i IR) is the probability of selecting Route i from the 
set of available Routes R, and other tenns are as previously 
defined. 

With the route choice model specified, the specification of a 
continuous departure time model can be considered. The depar­
ture time, for each commuter, is defined from the following 
identity: 



28 

DT = WST - TT - WAT - DC (3) 

where 

DT 
WST 

TT 
WAT 

DC 

= 
= 
= 
= 

= 

departure time; 
work start time; 
travel time; 
work access time (i.e., walking time from 
parking location to work location); and 
delay cushion defined as the time difference 
between WST and arrival time (i.e., DC = DT 
+TT+ WAT). 

For the purposes of this analysis, it is assumed that WST and 
WAT are exogenous to the route and departure time choice 
process. Therefore, the aspects of departure time determination 
that are controllable by commuters include travel time and the 
delay cushion. In similar work, Mahmassani and Chang (10) 
analyzed the individual's departure time through a dynamic 
boundedly rational framework, but one that was based only on 
a schedule-delay acceptability mechanism. 

Most previous work has viewed route travel time as a factor 
beyond a commuter's control. In other words, under specified 
ft.ow conditions, all commuters face the same route travel 
times. However, in reality, this assertion is valid only under 
extremely congested conditions. Under most flow conditions, 
individual commuters have considerable control over their 
travel times by their abilities to alter driving speeds, risk-taking 
behavior, and reaction times in the traffic stream and at inter­
sections. Given this condition, a linear model of individual 
commuters' choice of travel time is defined by 

TT; = 't + a(RC;) + e (SE) + Tl (VC) + Uj (4) 

where 

TT; = work trip in-vehicle travel time (min) on 
Route i; 

RC; = vector of route specific characteristics for 
Route i (e.g., flow rate); 

SE = vector of socioeconomic characteristics of 
the commuter; 

vc = vector of vehicle characteristics used to 
commute; 

U; = disturbance term; and 
't,0.,0,TJ = estimable parameters. 

From an econometric perspective, the estimation of Equation 
4 gives rise to a classic problem of selectivity bias because 
route and travel time choices are interrelated decisions. To 
illustrate this problem, consider an origin-destination pair con­
nected by two routes, one a freeway and the other an arterial. It 
is unrealistic to assume that the travel time behavior of people 
observed to be using the freeway will be identical to that of 
people using the arterial. Observed freeway users may tend to 
be faster drivers, in general, because the freeway route offers 
them the potential to drive at much higher travel speeds. Hence, 
on the basis of observed route users, a censored sample exists 
because there is no way to know how fast a freeway user would 
have driven had he or she selected the arterial or how fast an 
arterial user would have driven had he or she selected 
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the freeway. Estimation results are biased because users ob­
served on any specific route represent a nonrandom sample 
fonned from a systematic route selection process. 

Numerous econometric methods have been developed in 
recent years to correct such a selectivity bias problem. A 
comprehensive review of such methods as they apply to trans­
portation is presented by Mannering and Hensher (11 ). The 
method selected for use in this study is the expected value 
method, which has been successfully applied by Dubin and 
McFadden (12) and by Manncring and Winston (13). To apply 
this method, Equation 4 is rcwrincn, conditioning on the choice 
of Route i, 

II 

TT = 't + a I. (RCk)<h; + 0(SE) + TJ (VC) + u (5) 
k=l 

where TT is the travel time conditional on choice Route i, n is 
the total number of route alternatives, and <l>ti is an indicator 
variable that equals I when k = i and 0 otherwise. 

To arrive at consistent estimates of Equation 5, the choice 
indicators (<l>ki) are replaced by the estimated probabilities from 
the route choice model (Equation 2). Thus, every route-specific 
variable included in the travel time equation is replaced by its 
expected value, which is the summation over all route alterna­
tives of the route's selection probability multiplied by its corre­
sponding route-specific attribute. 

The remaining component of Equation 2 necessary for de­
parture time prediction is the delay cushion, which is defined as 
the difference between the work start time and the actual 
commuter arrival time. A linear model is defined, 

DC; = TJ + 'ljf(RC;) + 'A.(SE) + fJ(PREF) + ro; (6) 

where 

DC; = delay cushion (min) on Route i, 
RC; = vector of route specific characteristics, 
SE = vector of commuters' socioeconomic 

characteristics, 
PREF = commuters' preferences for early or late 

arrivals, 
(J)i = a disturbance, and 

TJ, 'ljf, 'A., f, = estimable parameters. 

As was the case with the lravel Lime model, the delay 
cushion model must also be corrected or possible seleclivity 
bias, because it is unreasonable to assume that the selection of 
route and delay cushion are independent decisions. Consistent 
estimates of Equation 6 are obtained as discussed for the travel 
time model by replacing all route-specific independent vari­
ables by their expected values (see Equation 5). 

EMPIRICAL SETTING AND SAMPLE DESCRIPTION 

To estimate the specified route, travel time, and delay cushion 
models, a survey of morning commuters in the State College, 
Pennsylvania, metropolitan area was WJdertakeri. To simplify 
data collection and subsequent empirical analysis, one origin­
dcstination pair was evaluated The origin was a large residen­
tial devclopmenr in suburban State College and the destination 
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was the Pennsylvania State University and surrounding down­
town State College. The residential area comprises mostly 
multiple-story apartment complexes and the destination is a 
highly concentrated area of educational and business activity 
comprising less than 1 ml. 

Three distinct and diverse routes connect the selected origin­
destination pair. One is a four-lane major arterial with center 
turning lane and a 35-mph posted speed limit. Another is a two­
lane rural highway with 12-ft lanes, 4-ft paved shoulders, and a 
design speed of 45 mph. The third is a four-lane expressway 
designed to Interstate standards. This diversity of routes makes 
the selected origin-destination pair particularly well suited to 
route and departure time choice modeling. 

The morning commute smvey was designed as a trip log in 
which respondents provided a variety of information on their 
most recent work trip, including route choice; make, year, and 
model of car used; maximum driving speed; departure time; 
work arrival time; scheduled work starting time (if any); pre­
ferred arrival time at work; safety belt use; automobile occu­
pancy; and walking time from parking lot to work location. Jn 
addition, general socioeconomic information was collected, 
including income, age, occupation, marital status, and number 
of children. Jn the last week of April 1986, the smvey was 
administered as a postage-free mailback questionnaire to 505 
randomly selected origin residents. Although there was nearly 
a 40 percent response rate, improperly completed forms and 
respondents with work start times outside of the studied mom-
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ing peak period produced 151 usable observations. The sum­
mary statistics for the usable sample are presented in Table 1. 

Table 1 reflects the relatively short commute times that are 
typical for such a small metropolitan area. The socioeconomic 
characteristics are also typical for the graduate students and 
young professionals that dominate the survey sample. 

Jn addition to the commuter survey, extensive traffic-related 
data were collected for each of the three routes connecting the 
origin and destination. This information included flow rates, 
intersection queue lengths, peak-hour volumes, route lengths, 
and traffic signal characteristics (phasing, cycle times, etc.). All 
of thjs information is potentially useful for the route charac­
teristic variables specified in Equations 1, 4, and 6. 

ESTIMATION RESULTS 

The route choice model as specified in Equations 1 and 2 was 
estimated first. The estimation results of this model are pre­
sented in Table 2. As mentioned earlier, this model specifies the 
probability of a commuter's selecting one of the three alternate 
routes (i.e., arterial, rural route, or expressway) described in the 
previous section. 

The first variable included is the route's expected travel time. 
Expected travel time is defined to be the travel time predicted 
by the Bureau of Public Roads' (BPR) equation 

(7) 

TABLE 1 SAMPLE SUMMARY STATISTICS (Means or Percentages) 

Home to work in-vehicle travel time (minutes) 

Home to work distance (miles) 

Age (years) 

Household income (dollars) 

Percent male/female 

Percent married/single 

Percent using safety belts 

Vehicle occupancy 

Percent automobiles less than 5 years old 

Percent with fixed work start times preferring 
early arrival (positive delay cushions) 

Percent with fixed work start times preferring 
on-time arrivals (zero delay cushions) 

Percent with fixed work start times preferring 
late arrival (negative delay cushions) 

11.68 

4.81 

32.95 

25,860 

63/37 

42/58 

71 

1. 2 

66 

60 

37 

3 
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where 

EfT = 
To = 

expected travel time (min); 
travel time (min/mi) at zero flow (i.e., at 
speed limit); 

V = peak-hour volume (veh/hr) measured from 
field surveys; 
capacity of the route; 
distance from origin to destination; and 

c = 
d = 

a,p = route specific parameters that are functions of 
speed limit and capacity. 

The values of a and p used in estimation are obtained from 
the Branston study (14) in which transferable values are pre­
sented for different highway types. 

The expected travel times calculated by Equation 7 may vary 
from commuter to conm1utt:r bet:ause their precise destinations 
within the general Pennsylvania State University and down­
town State College destination area are considered. In other 
words, travel on local access streets is considered in addition to 
the three line-haul routes discussed earlier. Expected travel 
times are therefore distance weighted to account for travel on 
highway segments of varying capacity and speed limit. All 
variables in the estimated models take into account this precise 
destination consideration. 

As a final point, it is important to note that the use of 
expected travel times as defined in Equation 7 avoids endo­
genicity problems that would be encountered if actual travel 
times were used. This problem arises because travel time and 
route choice decisions are interrelated and a correlation be­
tween an explanatory variable (travel time) and the disturbance 
term would exist. [See Mannering and Hensher (11) for a 
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discussion of this problem in a discrete/continuous modeling 
framework.] 

Returning to the coefficient estimates presented in Table 2, 
EfT has the anticipated negative effect on route selection 
probabilities. Moreover, estimation results indicate that higher­
income commuters (those earning $30,000 or more) find travel 
time to be more onerous than their lower income counterparts. 
This presumably reflects the higher value of time of high­
income commuters. 

The percentage of coordinated traffic signals has a positive 
influence on the probability of route selection, indicating that 
commuters value the reduction in the variance of travel time 
resulting from signal coordination. Finally, the number of traf­
fic signals increases the probability of route selection for indi­
viduals with flexible work start time. This suggests a willing­
ness among flexible-time commuters to accept a higher travel 
time variance and to gamble for the lowest travel time route. 
(Recall that expected travel times are explicitly considered in 
the model.) Statistically, the route choice model performs well 
with relatively low standard errors and a high degree of log­
likelihood convergence. 

The travel time model is estimated by ordinary least squares 
and the dependent variable is the in-vehicle work trip travel 
time in minutes. The estimation results for uncorrected models 
and models corrected for selectivity bias (i.e., Equations 4 and 
5, respectively) are presented in Table 3. The difference be­
tween corrected and uncorrected coefficient estimates under­
scores the importance of correcting for possible selectivity 
bias. 

For specific coefficient estimates, the expected travel time as 
defined for the route choice model is a strong predictor of 
actual travel time. This variable is actually capturing a number 

TABLE 2 ROUTE CHOICE COEFFICIENT ESTIMATES (Standard Errors in Parentheses) 

Variable 

Expected travel time if income less than $30,000 
(in minutes)* 

Expected travel time if income $30,000 or more 
(in minutes)* 

Percent of traffic signals coordinated 

Number of traffic signals if flexible work start time 

Number of observations 

Log likelihood at zero 
at convergence 

*See text for precise def i nition . 

Coefficient 

-0.585 
(0.091) 

-0.753 
(0.155) 

0.043 
(0.021) 

o. 126 
(0.053) 

151 

-241.15 
-106.45 
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TABLE 3 TRAVEL TIME MODEL ESTIMATES, UNCORRECfED AND CORRECTED FOR SELECTIVITY 
BIAS (Standard Errors in Parentheses) 

Coefficient Estimate 

Variable Uncorrected Corrected 

Constant 8.407 5.079 
( 1. 562) ( 1. 79) 

Expected travel time (in minutes)* 0.189 0.247 
(0.074) (0.079) 

Flow rate (in vehicles per hour, per lane)* 0.00463 0. 00977 
(0.00159) (0.00213) 

Sex (1 if male, 0 if female) -0.414 -0.470 
(0.341) (0.328) 

Safety belts (1 if used, 0 if not used) -1.416 -0.873 
(0.649) (0.636) 

Age (1 if 30 years old or less, 0 otherwise) -0.677 -0.851 

Vehicle vintage (1 if 5 years 
old or less, 0 otherwise) 

Number of observations 

R-squared 

*See text for precise definition . 

of physical characteristics of the route, including speed limit, 
capacity, and distance (see Equation 7). The other route-spe­
cific variable in the model is the instantaneous flow rate defined 
as the observed flow rate over the 5-min interval that occurs 5 
min after the commuter's reported departure time, transformed 
into equivalent vehicles per hour per lane. Understandably, this 
variable is strongly positive, indicating that increasing in­
stantaneous flow rate increases commuters' travel times. 

Three socioeconomic variables were included in the model. 
The sex indicator variable confirmed a priori expectations that 
males tended to drive faster than females. The safety belt 
indicator variable produced a negative coefficient, suggesting 
that safety belt users tended to drive faster. This result lends 
some support to Sam Peltzman's famous hypothesis concerning 
the tendency of safety belt users to drive more recklessly, 
thereby mitigating the potential benefits of safety belt usage 
(15 ). Finally, the age indicator coefficient indicated that youn­
ger commuters tend to drive faster than older ones. 

The only vehicle characteristic included in the model was the 
vintage. This variable indicates that newer vehicles, with more 
sound bodies and steering, are driven faster than older vehicles. 

(0.588) (0.566) 

-0. 738 -0.555 
(0.624) (0.593) 

151 151 

0.150 0.216 

Unfortunately, the sample was not large enough to explore the 
differences among high-performance, compact, intermediate, 
and large cars. 

The delay cushion model was defined only for those re­
spondents that actually had fixed work start times. Because the 
sample included many researchers and self-employed profes­
sionals, only 90 of the 151 respondents had fixed work start 
times. Because the route choice behavior of these respondents 
may differ somewhat from the full sample estimates presented 
in Table 2, the route choice model was reestimated using only 
the 90 commuters with fixed work start times. The specification 
is identical to the earlier route choice model, of course exclud­
ing the flexible work start time traffic signal variable, and the 
estimation results are presented in Table 4. The route choice 
probabilities estimated from this model will be used to produce 
the expected values needed to correct for selectivity bias in the 
delay cushion model. For the 61 respondents with no fixed 
work start times, Equation 3 does not apply. For these com­
muters, departure times are simply their stated preferred arrival 
times minus their travel and work access times. The stated 
preferred arrival time is exogenous to the route and departure 



TABLE 4 ROUTE CHOICE COEFFICIENT ESTIMATES FOR PARTICIPANTS WITH FIXED WORK 
START TIMES (Standard Errors in Parentheses) 

Variable 

Expected travel time if income less than $30,000 
(In minutes)* 

Expected travel time if income $30,000 or more 
(In minutes)* 

Percent of traffic signals coordinated 

Number of observations 

Log likelihood at zero 
at convergence 

*See text for precise definition. 
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-0.368 
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-0.340 
(0.157) 
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(0.011) 
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-98.88 
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FIGURE 1 The dlstrlbutlon of actual delay cushions. 
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time choice decision-making process. A similar treatment was 
used by Mahmassani and Chang (16), for whom preferred 
arrival times were supplied by commuters. 

The dependent variable in the delay cushion model is the 
difference between the work start time and actual arrival time 
in minutes and will be positive if the commuter arrives early 
and negative if the commuter arrives late. The actual observed 
distribution of these delay cushions is shown in Figure 1. The 
coefficient estimates for the regression model, both corrected 
and uncorrected for selectivity bias, are presented in Table 5. 

The only route specific variable included in the model is the 
expected travel time, defined as before. The coefficient is 
negative, indicating that the longer the commute the less the 
delay cushion. This negative sign may be an outgrowth of the 
rather short commuting distances that the sample of travelers 
experienced. That is, because absolute variance in travel time is 
fairly small due to the short travel distances, commuters tend to 
decrease their delay cushions to compensate for longer in­
vehicle travel times, knowing that the likelihood of a late 
arrival is rather small. It would be interesting to reestimate this 
model with a longer, higher-variance commute and to reassess 
the delay cushion and expected travel time relationships. 

The socioeconomic variables include income and age. The 
income coefficient is negative, indicating that higher-income 

33 

people prefer shorter delay cushions (i.e., have a higher value 
of time). The age coefficient is positive, suggesting that older 
workers tend to be more risk-adverse by choosing longer delay 
cushions. 

The final variables are commuters' preferences for early, on­
time, or late arrivals. These preferences are accounted for by 
indicator variables with on-time implicity set to zero. The 
coefficients of the preferred-early and preferred-late arrival 
indicator variables are of plausible sign and are highly signifi­
cant statistically. Overall, the Jil value of this model is sur­
prisingly high considering the high variance likely to be present 
in all delay cushion data. 

ESTIMATION NOTES 

The inclusion of flow-dependent variables in all models gives 
rise to two important estimation concerns. The first is one of 
selectivity in that traveler behavior in response to prevailing 
flows is observed only for the departure time actually chosen. 
However, unlike the route choice selectivity bias problem dis­
cussed earlier, therl? is no theoretical basis for assuming that the 
behavioral characteristics of individuals departing at different 
times will systematically differ. Thus, although the sample is 
censored in that individuals are not observed departing at all 

TABLE 5 DELAY CUSHION MODEL ESTIMATES, UNCORRECTED AND CORRECTED FOR SELECTIVITY 
BIAS (Standard Errors in Parentheses) 

Variable 

Constant 

Expected travel time (in minutes)* 

Income (in thousands of dollars) 

Age (in years) 

Preferred early cushion (1 if prefer to 
arrive before•work start time, 0 otherwise) 

Preferred late cushion (1 if prefer to 
arrive after work start time, 0 otherwise 

Number of observations 

R-squared 

*See text for precise definition. 

Coefficient Estimate 

Uncorrected 

-1. 288 
(3.979) 

-0.137 
(0.161) 

-0.091 
(0.082) 

o. 174 
(0.093) 

9.078 
(l.424) 

-7.047 
(3.95) 

90 

0.406 

Corrected 

0.497 
(4 .108) 

-0. 268 
(0.187) 

-0.091 
(0.081) 

0. 172 
(0.093) 

9. 119 
(l.417) 

-7.248 
(3.919) 

90 

0.415 
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available times, there is no reason to believe that it is censored 
nonrandomly, and as a result selectivity bias and the associated 
endogenicity of flows are not an issue with respect to departure 
times. 

The second point is one of endogenicity in the more tradi­
tional sense. As specified by the equilibrium condition in Equa­
tion l, flow deiermines demand but is itself an outcome of 
demand. This relationship can be safely ignored during the 
estimation of the specified individual choice models because 
the impact of a single individual's choice on total traffic flow is 
negligible. Therefore, each individual will view traffic flow as 
exogenous to the route and departure time choice process. 

MODEL APPLICATIONS 

The greatest potential application of the route/departure time 
choice modeling system is in the context of user equilibrium 
traffic assignment. The modeling system offers the potential to 
evaluate the traffic-related impacts of a wide range of policy 
options related to physical changes in the highway system. In 
addition, due to the behavioral nature of the models, the im­
pacts of shifts in population demographics can also be 
assessed. 

Unfortunately the model structure does not readily lend itself 
to equilibrium solutions. All three models (route, travel time, 
and delay cushion) include vehicle volumes as explanatory 
variables either in expected travel time terms or directly. Al­
though volumes can be considered exogenous when estimating 
individual choice models as previously discussed, they must be 
considered endogenous in the context of a user equilibrium. 
This endogenicity produces a more complex problem than 
standard route choice equilibriums, such as stochastic user 
equilibrium (17), due to the presence of travel tilt\e and delay 
cushion models. Equilibrium with such a group of models is 
technically possible (18) but is beyond the scope of this paper. 

SUMMARY AND CONCLUSIONS 

Most previous work on route and departure time choice has 
viewed departure time as a discrete variable. In this paper a 
route and departure time choice modeling system is developed 
that treats departure time as a continuous variable. The models 
were estimated with a sample of work trip commuters and the 
resulting coefficient estimates were of plausible sign and rea­
sonable statistical significance. 

The findings of this study give rise lo a number of important 
points. First, the prospects for continuing advances in develop­
ment of behavioral route and departure time choice models are 
most promising. Such models offer the potential for signifi­
cantly expanding understanding of this critical decision-mak­
ing process. The second point relates to the importance of 
proper econometric specification in the estimation of discrete/ 
continuous route and departure time choice models. The es­
timation results (Tables 3 and 5) suggest that the potential for 
selectivity bias is considerable. Finally, from the perspective of 
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applications, it is important that future work be directed to­
wards incorporating route and departure time choice models 
such as those estimated in this paper into a user equilibrium 
framework. Only then can the true value of such a modelmg 
approach be realized. 
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