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Foreword 

In the paper Travel Time Prediction and Information Availability in Commuter Behavior 
Dynamics, Tong et al. discuss the day-to-day dynamics of the prediction of travel time by 
commuters on their next trip, with particular emphasis on the effect of information availability, 
using an experimental approach involving commuters in a simulated commuting system. The 
additional information tends to reduce the perceived uncertainty associated with the system's 
performance; commuters combine the information with their latest experienced travel time in 
forming a base value for the predicted travel time on the next trip. 

In their paper Nonlinear Utility in Time and Cost of Trips: Disaggregate Results from an 
Ordinal Methodology, McCord and Villoria discuss a new methodology to investigate the 
linearity of the systematic utility function over time-cost combinations. The methodology is 
unique in that it requires only ordinal preferences from laboratory subjects, assumes only ordinal 
preferences from laboratory subjects, and assumes only ordinal properties of the utility function. 
To illustrate the approach, the methodology is applied to a sample of 12 individuals faced with 
time-cost combinations of representative morning commute trips. 

In his paper A Method for Estimating Long-Term Changes in Time-of-Day Travel Demand, 
Supemak examines the usefulness of a proposed person-category trip generation model to 
provide better insight into long-term changes in time-of-day travel distribution as a result of 
such trends as increase in female employment, increase in the average age of the population, and 
increase in automobile availability level. Forecast and policy implications are also discussed. 

In their paper Discrete/Continuous Analysis of Commuters' Route and Departure Time 
Choices, Abu-Eisheh and Mannering discuss commuters' choices of routes and departure times 
using a discrete/continuous econometric modeling structure. The estimation results provide 
interesting insights into behavioral aspects motivating route and departure time choices and 
underscore the need for proper econometric specification in discrete/continuous model struc­
tures. The estimated models provide surprisingly good fits and show promise for application 
under traditional user equilibrium conditions. 

iv 
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Travel Time Prediction and Information 
Availability in Commuter Behavior 
Dynamics 

CHEE-CHUNG TONG, HANI s. MAHMASSANI, AND GANG-LEN CHANG 

The prediction of travel time by trip makers constitutes an 
important component of the complex daily dynamics of com­
muter behavior, which are of particular concern in systems 
evolving towards equilibrium, such as after major traffic con­
trol changes or disruptions due to major reconstruction or 
maintenance activities. The day-to-day dynamics of the predic­
tion of travel time by commuters on their next trip, with 
particular emphasis on the effect of information availability, 
are investigated In this paper using an experimental approach 
Involving commuters In a simulated commuting system. A 
travel time prediction model developed previously for a limited 
information situation provides the framework for analyzing 
thls phenomenon, using results obtained from a second experi­
ment where users are provided with complete information on 
the previous day's performance. Insights Into the effect of 
information availability are obtained through the comparative 
analysis of the model's performance a.nd estimated parameter 
values in the two experiments. The results suggest that addi­
tional Information tends to reduce the perceived uncertainty 
a~oclated with tile system's performance; commuters com­
blne this supplied information with their latest experienced 
travel time In forming a base value for the predicted travel 
time on the next trip. Th.is base value is adjusted by a safety 
margin that Is primarily governed by the latest experienced 
schedule delay, In order to protect agalnst unacceptably late or 
early arrival at the workplace. 

Research over the past decade has accomplished significant 
advances in terms of understanding and modeling travel be­
havior (1). While much of this work has been directed towards 
the development of models of individual choice and decision 
making, little effort has addressed models of trip makers' 
judgment. In behavioral decision theory, judgment and choice 
are viewed as two integral components of the decision process 
(2). Judgment involves the interaction between perception, 
learning, and information in the formation of the trip makers' 
anticipated values for the various attributes and performance 
characteristics of the travel options under consideration. Mod­
els of individual judgment are particularly important in the 
study of the dynamics of trip making behavior and its interac­
tion with the performance of the transportation system. In 
particular, it is necessary to consider how anticipated travel 
times and other trip costs are formed and adjusted in response 
to experience with and information about the performance of 
the facility. 

C.-C. Tong and H. S. Mahmassani, Department of Civil Engineering, 
University of Texas at Austin, Austin, Tex. 78712. G.-L. Chang, 
Department of Civil Engineering, University of Utah, Salt Lake City, 
Utah 84112. 

The particular context of interest to this study is that of urban 
commuters in their daily trip from home to work. The dynamic 
aspects of this problem have received some attention over the 
past 5 years, primarily dealing with the time-varying flow 
patterns on a given day that are presumed to exist at some 
equilibrium point (3-5). The day-to-day dynamics of this prob­
lem, and the evolution of commuters' responses to experienced 
travel outcomes, have more recently been the subject of the­
oretical and experimental investigation by the authors (6-11). 
An essential element in this complex problem is the mechanism 
by which users form their estimate of the travel time that can be 
anticipated for a trip on a particular facility. Specifically, in a 
dynamically varying system, what is the relative importance of 
travel times experienced on preceding days in predicting the 
travel time to be experienced on the next trip, and how is 
exogenously supplied information such as from traffic reports 
or word-of-mouth used in this process? Answers to these ques­
tions, expressed in the form of a travel time prediction model, 
are necessary in the context of a dynamic modeling framework 
for the analysis and evaluation of congestion relief strategies in 
commuting corridors. Such information is also useful in exam­
ining and predicting trip pattern changes in response to major 
service disruptions such as major construction and repair 
activities. 

Little previous work has addressed this particular problem. 
The implicit assumption made in most studies is that users have 
complete information about the performance of the facility in 
real time. When solving for a presumed equilibrium, such an 
assumption is generally rationalized on grounds that users 
would have the opportunity to learn about the performance 
characteristics of the system. If there is a unique equilibrium, 
and if it will always somehow be reached, then solving for this 
equilibrium need not necessarily concern itself with the pro­
cesses by which evolution to this equilibrium takes place. 
However, in a dynamically varying system, where the path 
towards some eventual steady state is of direct concern, as in 
the examples given earlier, and if one is interested in altering 
(improving) this path through control measures, then the as­
sumption of a fully omniscient trip maker must be replaced by 
a realistic model of how users learn about the system and 
predict its performance. 

In a few instances where this process has been explicitly 
dealt with, a convenient Markovian assumption has been used, 
namely that the anticipated travel time on a given day is 
assumed equal to the actual travel time experienced on the 
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previous day (12-14). Horowitz also has explored simple dy­
namic travel time adjustment rules in the context of an analysis 
of the stability of stochastic route choice equilibrium in a two­
link network (15 ). Similar rules were further investigated by 
Mahmassani and Chang (6) in the context of simulation experi­
ments with departure time choice dynamics of urban com­
muters. However, none of these studies (which were not 
focussed on the travel time prediction problem anyway) in­
cluded observations of actual trip maker behavior, obviously a 
critical ingredient. 

Recently, Chang and Mahmassani (16) presented a model for 
this process, with data obtained from an interactive experiment 
involving real commuters in a simulated, single-route, com­
muting context. Through the calibration and testing of several 
alternative specifications, it was found that the latest experi­
enced travel time played a determining role in the formation of 
the anticipated travel time for the next trip, which in tum is 
used in adjusting departure time for that trip. In addition, a 
safety margin, found to depend on the commuter's latest sched­
ule delay and retrievable experience, was used in this adjust­
ment (16). However, in the experiment on which the model was 
based, commuters were only supplied with information about 
their own latest experience (i.e., their actual work arrival time, 
given their departure time for that day) (7, 8). As noted earlier, 
it is of interest to examine how information availability affects 
travel time prediction. This question is addressed in this paper 
by applying the basic modeling framework introduced in the 
earlier work to the results of a second experiment, in which 
users were provided not only with their own actual perfor­
mance on the previous day, but with a complete profile of 
arrival times corresponding to a spectrum of possible departure 
times as observed on the preceding day, for each given location 
within the corridor (10). The second experiment thus corre­
sponds to a complete-information situation (though still for the 
previous day only, thus still requiring the prediction of a travel 
time for the next trip), as opposed to the earlier limited­
information case. 

The experimental details are not of immediate concern in 
this paper, as they have been reported previously (8, 10). Fur­
thermore, the development of the original model by Chang and 
Mahmassani (16) is not repeated here, though its specification 
and key implications are reviewed and presented in the context 
of explaining the new results. A brief review of pertinent 
experimental details is presented in the next section, followed 
by the model specification and estimation assumptions and 
methodology. The estimation results are presented in the fourth 
section, which is followed by various statistical tests, notably 
of the hypotheses of parameter stability across user preference 
groups and geographic sectors. A discussion of the behavioral 
implications of the model results is then presented, followed by 
concluding comments in the final section. 

THE EXPERIMENT 

Following essentially the same experimental procedure de­
veloped by Mahmassani et al. (7), the commuting context 
consists of a four-lane highway used by adjoining residents for 
their daily home-to-work trip to a single destination such as a 
CBD or major industrial-office park. This commuting corridor 
is divided into nine 1-mi sectors, with the common destination 
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located at the end of the last sector. Sectors are numbered from 
1 to 9 in order of decreasing distance from the destination, with 
Sector 1 being the farthest one. Only the first five sectors are 
designated as residential, with no traffic generation from the 
remaining areas. 

One hundred participants (all commuting staff at the Univer­
sity of Texas at Austin) were assigned equally to the five 
residential sectors. On the first day, participants were given a 
description of the commuting context, and asked to supply their 
departure time as well as their preferred arrival time (in the 
absence of congestion), with the constraint that am.val after the 
official (common to all participants) work start time (8:00 
a.m.) would not be tolerated. For analysis purposes, partici­
pants are categorized into three groups on the basis of their 
stated preferred arrival time PAT; (for User i, i = 1, 2,. . ., 100): 

Group 1: 7:30 ~PAT;< 7:40 a.m. 
Group 2: 7:40 ~PAT;< 7:50 a.m. 
Group 3: 7:50 ~ PAT; ~ 8:00 a.m. 

The departure decisions of all participants form the input to a 
special-purpose macroparticle traffic simulation model (17), 
which generates information on the actual (i.e., simulated) 
arrival time of each participant. On each subsequent day, par­
ticipants were asked to supply a departure time, given daily 
information on the system's performance. The information 
provided to each participant on a given day includes the actual 
travel time and arrival time experienced by that commuter on 
the previous day, in addition to the arrival times as experienced 
on the previous day corresponding to the full array of possible 
departure times at 3-min intervals from that commuter's origin 
sector. More detailed description of the experiment can be 
found in Mahmassani and Tong (10). 

MODEL SPECIFICATION AND ESTIMATION 
METHODOLOGY 

The travel time prediction model developed by Chang and 
Mahmassani (16) is part of a modeling framework for dynamic 
departure time decisions under limited information (8, 11 ). The 
same basic specification is adopted here, and modified to incor­
porate the effect of information availability, by introducing a 
term for the additional information supplied to system users. 
The resulting comparability allows insight into the effect of 
information availability on user judgment and behavior. As 
discussed by Chang and Mahmassani (16), the specification 
reflects the dependence of the predicted travel time for the 
adjustment of the departure time on Day ton (a) the experi­
enced travel time on Day t- 1, by far the principal influence on 
the predicted time, (b) to a much lesser extent, the travel time 
on Day t - 2, with no earlier experience terms coming close to 
being significant, and (c) a safety margin, intended to minimize 
the risk of unacceptable arrival in adjusting the departure time, 
and expressed in terms of the schedule delay on Day t - 1 as 
well as the user's cumulative unsuccessful experience with the 
facility, as shown hereafter. 

When complete information on the previous day's perfor­
mance is provided to commuters, this additional source can be 
expected to influence the travel time predicted when adjusting 
their time of departure. Therefore, an additional term is intro­
duced in order to assess the relative importance of the various 
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information sources and factors influencing travel time 
prediction. 

Travel time prediction and departure time adjustment are 
intrinsically related in the process under investigation. Regard­
less of the true nature of the underlying behavioral processes, 
the empirical analysis must by necessity recognize this interde­
pendence, and accept that a pure predicted travel time simply 
cannot be observed, at least not in our experiment, nor is it 
clear how this might be done otherwise. Based on the analysis 
in Chang and Mahmassani (16) of alternative travel time vari­
ables and their ability to provide a consistent explanation of the 
observed departure time behavior, the dependent variable is 
defined as 

EIR;,, = PATi - DT;,, 

where 

EIR;,, = 

PAT; = 
DT;,, = 

travel time predicted by User i for the 
commuting trip on Day t, 
stated preferred arrival time for User i, and 
selected departure time by User i on Day t. 

This definition implicitly assumes that commuters always 
intend to achieve their initial goal, the preferred arrival time, 
though difficulties experienced in their search for an acceptable 
departure time may induce them to increase their respective 
ranges of tolerable schedule delay (16). The implicit predicted 
travel time, conditional upon the user's decision to adjust 
departure time on a particular day, is formulated as follows: 

EIR;,, = a1 + ai_TR;,1_ 1 + a3DEL;,1 + a4TR;, 1_ 2 

+ Bi,r-l • SFL;, 1 + (1 - 5u_1) • SFE;,, + E;,1 (1) 

where TR;, 1 is the actual travel time experienced by User ion 
Day t. 

DEL;,, denotes the difference between the experienced travel 
time on Day t - 1 (i.e., TR;,1_ 1), and the specified or supplied 
travel time information (ST;,,). observed on Day t - 1, corre­
sponding to User i's departure time on Day t; thus, DEL;,, = 
TRi,1-1 - ST;,1· 

B;,1_ 1 is a binary variable that is equal to 1 if User i is early, 
relative to the preferred arrival time PAT;. on Day t - l, and 
equal to 0 otherwise. This dichotomization is due to earlier 
results indicating different behavioral responses to early versus 
late arrivals. 

SFEi,i and SFL;,,. the safety margins for adjusting to earlier 
and late departures, respectively, are specified as 

SFL;, 1 = (a5 + a6NFLi,i- i) · SDE;,,_ 1 

SFE;,1 = (a7 + a8NFE;,1_ 1) • SDL;,1_ 1, 

where 

SDE;,1_ 1 = schedule delay for early arrivals relative to 
PAT;. 

SDL;, 1_ 1 = schedule delay for late arrivals relative to 
PAT;, 

NFL;, 1_ 1 = number of unacceptable late arrivals 
experienced by User i up to Day t - 1, 
and 

NFE;,1_ 1 = number of unacceptable early arrivals 
experienced by User i up to Day t - 1. 
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Note that NFL;,
1

_ 1 and NFE;, 1_ 1 were operationally obtained 
as the number of departure time changes up to t - 1 in response 
to late and early arrivals, respectively. This procedure assumes 
that the user will change departure time when the resulting 
schedule delay exceeds some tolerable level, referred to as the 
"indifference band" in earlier work (8). 

As noted earlier, all of the variables with the exception of 
DEL;,,. which was meaningless in that context, were included 
in the model specification developed for commuter behavior 
under the limited-information situation (16). All terms were 
found to be statistically significant and behaviorally plausible 
in that experiment. The estimation of a similar specification, 
modified as described with the additional term, for the com­
plete information situation will therefore allow the assessment 
of behavioral changes between the two situations. 

Estimation of the parameters a1, •• ., a8 requires the specifi­
cation of the structure of the random error terms Ei,i• for all 
Users i = 1, 2, ... , n and Days I= 1, 2, ... , T. The usual linear 
model assumptions of identically and independently distributed 
errors are not appropriate here, because observations of the 
same individual are likely to be correlated from one day to the 
next due to unobserved factors that remain constant or change 
systematically over time. The error structure adopted here 
follows the same assumption tested in Chang and Mahmassani 
(16) for this problem. In particular, a first-order autoregressive 
model with contemporaneous correlation across individuals is 
assumed for the error structure (18, 19), as follows: 

E;,1 =Pi· E;,1_ 1 + µi,r (autoregression) 

E (E~1) = CJ;,; (heteroscedasticity) 

E(E;,1• Ek.1) = CJ;,1; i = k; (contemporaneous correlation) 

E(E;,,, Ek.1·) = 0; i -:f. k, I -:f. t'; i = 1, 2, ... , N; 
t = 1, 2, ... , T. 

Where Pi is the correlation coefficient for the ith individual and 
the µi,r values are normally distributed with the following 
assumptions: 

E(µ;,,) = O; 

{ 
CJ;" for i, k = 1, 2, .. ., N and t = t' 

E (µ;,,. µk,,.) = . . I 

0 for 1, k = 1, 2, ... , N and t -:t. I 

More detailed discussion of the properties of this model can 
be found in the literature (18, 19). Under the preceding error 
structure, parameter estimation was performed using the gener­
alized least squares (GLS) method. The parameters were esti­
mated separately for each residential sector and user group 
combination defined earlier on the basis of the preferred arrival 
time. Because in Sectors 4 and 5 the number of departure time 
changes are too small, only those observations from Sectors 
1-3 are used. For the same reason, observations for Preference 
Group 1 are excluded. 

For each estimated equation. overall goodness-of-fit can be 
assessed by computing Theil's inequality coefficient (20) de­
fined as: 
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where P 1 and Ai denote the predicted and actual values, respec­
tively, and n is the total number of observations. The value of 
this coefficient lies between 0 and oo, with smaller values 
indicating better overall model performance. 

EST™ATION RESULTS 

The GLS parameter estimates, along with the corresponding 
t-statistics and Theil's inequality coefficient U, are given in 
Tables 1 and 2, for each of the six sector-user group combina­
tions considered. The overall goodness-of-fit seems acceptable 
as indicated by the U value, which is between 0.09 and 0.13, 
and is smaller than 0.15 in all cases. 

Most estimated parameter values have the expected signs; 
the coefficients of the major components, such as TR;,1_ 1, 

DEL;,1, SDEi,t-l • and SDL;,1_ 1, are statistically significant at the 
95 percent confidence level. The significance of the coefficient 
of DEL;,, indicates that users are indeed using the additional 
information available in this case. However, the coefficient of 

TABLE 1 PARAMETER ESTIMATES FOR USER 
PREFERENCE GROUP 2 

Parameter It-value) 

** 
Data set 

Var1able G2S1 G2S2 G2S3 

------------------------------- -----------------------
CONST 6.624 1.761 8.465 

(6.646) (J.681) (5.284) 

TR1,t-I 0.773 0.903 0.634 

( 15.883) (34.128) (5.648) 

DEL1,t 0.360 0.497 0.753 

(17.680) (41.772) ( 19.843) 

TR1,t-2 -0.053 0.002* -0.189 

(-2.772) (0.195) (-6.394) 

SDE1,t-I 0.765 0.985 0.865 

(24.155) (44.635) (29.166) 

NFLt,t-1 SDEt,t-1 0.022 -0.001* 0.002* 

(3.287) (-0.200) C0.322) 

SDL1,t- I 0.881 0.761 0.641 

(16.530) (19.JJ5) (9.259) 

NFE1,t- I SDL1,t- I -0.017 0.058 0.015* 

(-2.454) (3.283) (I.SOI) ------------... --------______ ..., _______ __ _____ ----------------
u 0.10 0.12 0.13 

degrees or freedom 208 208 208 
----------------------------·------------------------ ----
*:not significant at 95" confidence level. 

** G1cS J : User group le In sector J. 

TRANSPORTATION RESEARCH RECORD 1138 

TABLE 2 PARAMETER ESTIMATES FOR USER 
PREFERENCE GROUP 3 

Parameter <t-valuel 

Data set 

** Variable G3S1 G3S2 G;sS3 

--------------------------~-----------------------------

CONST 4.366 2.268 6.950 

(7.583) (4.080) (7.208) 

TR1,t-l 0.619 0.946 0.765 

(37.238) (39.801) (19.388) 

DEL1,t 0.301 0.377 0.432 

(31.168) (28.760) (22.372) 

Tr\t-2 0027 -0.044 -0.011* 

(3.022) (-3.766) (-0.762) 

SDE1,t- l 0.750 0.921 0.769 

(34.466) (40.683) (21.732) 

NFL1,t- I SDEt,t-1 0.018 -0.004* -0.005* 

(6 739) (-1.021) (-0.974) 

SOLl,t-1 0.691 0.921 1.096 

(31.545) (31.906) (19.627) 

NFEl,t-1 · SDL1,t-l -0.010* -0.017 -0.046 

(-1.127) (-1 .996) (-3.249) 
----- -------------------------------------------------------

u 0.12 0.11 0.09 

degrees of freedom 262 235 262 
-----·-------------------------------------------.. ------
* : not s1gn1f1cant at 95 7' confidence level. 

** GkS J : User group k In sector j . 

TR;, 1_ 2 is not significantly different from zero for all selected 
data sets. In addition, its sign is not consistent across data sets. 
The same is true for NFL;, 1_ 1 • SDE;,1_ 1 andNFE;,1_ 1 · SDL;, 1_ 1 

in this remarkable yet plausible example of the effect of addi­
tional information on user behavior. Essentially, the additional 
supplied information is making it unnecessary to draw on 
earlier experience, in this case travel time experienced 2 days 
ago. Similarly, the additional information seems to be reducing 
the need for the safety margin, which is a device to deal with 
perceived uncertainty. Clearly, the latter is greater under the 
limited information situation. 

The coefficient of the cumulative experience component of 
the safety margin for lateness (i.e., NFLi,t-I · SDEu_ 1) is 
significant for Sector 1 only, as indicated by the estimation 
results for data sets G2S1 and G3Sl' This result appears to 
suggest that, except for this most distant sector, the need for the 
commuters to use a safety margin to predict travel time de­
creases. Further discussion of these questions is presented in 
conjunction with parameter stability tests and the behavioral 
implications of the results. 
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Parameter Stability Tests 

In order to examine the existence of structural changes in 
parameter values across user preference groups and geographic 
sectors, two types of pairwise parameter stability tests are 
conducted. First, overall tests are performed, in which the 
hypothesis tested is that all parameters including the constant 
terms are equal across the two subpopulations under considera­
tion. Next, tests of the equality of selected subsets of param­
eters are conducted. 

The general F-test for linear models is used here to test the 
hypothesized restrictions on the parameter values under consid­
eration. Details of the test, of which Chow's test (21) is a 
special case, can be found in several standard references 
(22, 23 ). Generally, the test procedure involves estimating the 
model separately with and without the restrictions, and using 
the estimation results, particularly the sum of squared residuals, 
to calculate an F-distributed test statistic that can then be 
compared to the corresponding theoretical value of the F-dis­
tribution at the desired significance level. 

The results for the pairwise overall parameter stability tests 
are presented in Table 3. In general, significant differences 
appear to exist across sectors for the same user preference 
group, as well as across preference groups within the same 
sector. However, this conclusion is not uniform, as users in 
Group 2 appear to exhibit similar parameters across sectors, 
and group differences appear less clear-cut for users in 
Sector 3. 

The second type of tests addressed the following three sub­
sets of variable coefficients: (a) the travel time variables TR;_ 1,1 

and DEL;,,. (b) the schedule delay and safety margin terms in 

TABLE 3 OVERALL PAIRWISE PARAMETER STABILITY 
TESTS 

Hypothesis* Computed F-value ** Concluston *** 

6351 • 6352 2.14 Reject 

6351 • G353 3.79 Reject 

6352 • 6353 5.68 Reject 

G251 • G252 292 Reject 

6251 = G253 1 37 Do not reject 

6252 • 6253 025 Do not reject 

6351 • 6251 1 62 Do not reject 

6352. 6252 2.47 Reject 

6353 • 6253 1.67 Do not reject 

* Parameters for the two preference group-sector combinations 
are eQual. 

** Computed value of the F-test statistic 
*** "Do not reject·: The null hypothesis cannot be rejected at the 

95% confidence leve l. 
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response to early arrival, that is, SDE;,1_ 1 and NFL;, 1_ 1 • 

SDE;,1_ 1, and (c) same as the previous item but for the response 
to late arrival. The results of the pairwise comparisons for each 
subset of parameters are presented in Tables 4-6. Somewhat 
unexpectedly, the null hypothesis of parameter equality can be 
rejected with better than 95 percent confidence for most cases, 
indicating that different sector and user group conformations 
appear to place varying degrees of relative importance on the 
various components that enter into the prediction of travel time 
and the corresponding adjustment of departure time. 

TABLE 4 PARAMETER EQUALITY TESTS ACROSS 
PREFERENCE GROUP-SECTOR COMBINATIONS FOR THE 
COEFFICIENTS OF TR;, 1_ 1 AND DEL;,1 

Hypothesis* Computed F-value - Conclusion *** 

6351 ~ 6352 6.14 Reject 

6351 ~ 6353 9.19 Reject 

6352 ~ 6353 21.33 Reject 

6251 a 6252 10.54 Reject 

6251 = 6253 5.72 Reject 

G252 = 6253 0.38 Do not reject 

G351 • 6251 849 Reject 

G352 = 6252 9. 15 Reject 

6353 = G2S3 0.57 Do not reject 

" Coefficients of TRt,t- I and DELt,t for the two preference 

group-sector combinations are eQual. 

"" Computed value of the F-test stattsttc 

""" "Do not reject· . The null hypothesis cannot be rejected at the 
95% confidence leve l. 

Behavioral Implications 

The specification of the travel time prediction model can be 
decomposed into the following components: 

1. Experienced travel time a,_TR;, 1_ 1 + a4TR;, 1_ 2 

2. Supplied travel time information a 3 • DEL;,1 

3. Response to early arrival (a5 + a6 • NFL;, 1_ 1) • SDE;, 1_ 1 
4. Response to late arrival (a7 + a8 • NFE;, 1_ 1) • SDL;,1_ 1 

The first two components reflect the influence of experienced 
travel time and the supplied travel time information on the 
current prediction of travel time. From the relative magnitudes 
of the coefficient estimates, the effect of TR;, 1_ 1 is much larger 
than that of TR;, 1_ 2 and DEL;,, in all cases. The coefficient a4 is 
relatively small compared to a,. and a3 , and in several cases is 
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TABLE 5 PARAMETER EQUALITY TESTS ACROSS 
PREFERENCE GROUP-SECTOR COMBINATIONS FOR THE 
COEFFICIENTS OF SDE;,1_ 1 AND (NFL;,1_ 1 • SDE;.1_ 1) 

Hypothesis * Computed F-value - Conclusion -

6351 ~ 6352 7.83 Reject 

6351 • 6353 13.39 Reject 

G3S2 • G3S3 15.21 Reject 

6251. 6252 8.73 Reject 

6251 = 6253 5.69 Reject 

6252. 6253 3.13 Reject 

6351 • 6251 5. 13 Reject 

6352 • 6252 5.79 Reject 

6353 = 6253 5.47 Reject 

* Coemclents or 5DEi,t-l and CNFLi,t-l · 5DEi,t-l > ror the two 

prererence group-sector combinations are equal. 

- Computed value or the F-test statistic. 

*** ·oo not reject" : The null hypothesis cannot be rejected at the 
951 conrtdence level. 

not statistically significant, as shown earlier. Essentially, the 
added supplied information is combined with the most recently 
experienced travel time to form a predicted value for the travel 
time that can be anticipated on the next trip, and that provides 
the basis for the adjustment of departure time. Only in some 
instances does the earlier experienced travel time exert a sig­
nificant influence, and one that is an order of magnitude less 
than that of the most recent experience or supplied information. 

Compared to t..lie relative magnitudes of the estimates ob-
tained in the first experiment, under the limited-information 
situation (16), the coefficient ai is smaller here, because it no 
longer is the only source of information on the previous day's 
performance. Interestingly, ai + a3 is approximately equal to 
the magnitude of TR;, 1_ 1 in the limited-information case. More­
over, the values of a4 obtained here are smaller than in the first 
experiment, as expected given that this term is hardly signifi­
cant when additional information is available. 

The third and fourth components reflect the influence of the 
experienced schedule delay on travel time prediction in the 
departure time adjustment process. As noted, there is a long­
term cumulative experience element and another element for 
the short-term response to latest experience in forming the 
safety margin captured by these two components. The coeffi­
cients as and a7 of SDE;,1_ 1 and SDL;,1_ 1, the latest experience 
terms, are clearly significant. However, the same is not true for 
the coefficients a6 and ag associated with the cumulative-expe­
rience terms NFL;, 1_ 1 • SDE;,1_ 1 and NFE;,,_ 1 • SDL;,1_ 1• 

TRANSPORTATION RESEARCH RECORD 1138 

TABLE6 PARAMETER EQUALITY TESTS ACROSS 
PREFERENCE GROUP-SECTOR COMBINATIONS FOR THE 
COEFFICIENTS OF SDL;,1_ 1 AND (NFE;,1_ 1 • SDL;,1_ 1) 

Hypothesis * Computed F-value - Conclusion -

6351•6352 5.01 Reject 

6351 • 6353 13.97 Reject 

G3S2 • G3S3 7.20 Reject 

6251 = 6252 11.13 Reject 

6251. 6253 4.60 Reject 

6252. 6253 2.96 Do not reject 

6351 • 6251 4.25 Reject 

6352 • 6252 7.64 Reject 

6353. 6253 3.45 Reject 

* Coemclents or 5Dli,t-l and CNFEi,t-I · 5Dli,t- I) ror the two 

prererence group-sector combinations are equal. 

- Computed value of the F-test statistic. 

- ·oo not reject·: The null hypothesis cannot be rejected at the 
951 confidence level. 

The significance and magnitude of as and ~ indicate that 
experienced schedule delay plays an important role in travel 
time prediction and departure time adjustment by commuters. 
On the other hand, the insignificance of the a6 and a8 associated 
with _the cumulative-experience terms (particularly when com­
pared with their significance in the limited-information situa­
tion) suggests that the additional supplied information reduces 
the importance of relying on one's memory or accumulated 
experience (at least in a..11 active \Vay) i...71 the daily prediction of 
travel time in the commuting system. Effectively, greater infor­
mation availability appears to reduce the uncertainty in the 
travel times perceived by commuters, thereby reducing the 
need for long-term memory. 

In summary, commuters combine their latest experienced 
travel time with the supplied travel time information in forming 
a base value for the predicted travel time on the next trip. This 
base value is adjusted by a safety margin that is primarily 
governed by the latest experienced schedule delay, in order to 
protect against unacceptably late or early arrival at the 
workplace. 

CONCLUDING COMMENTS 

In this study, an important facet of the complex daily dynamics 
of commuter behavior in a system evolving towards equi­
librium has been examined This facet is that of user judgment 
applied to the prediction of travel times in the commuting 
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system, and is one about which little work has been attempted 
in transportation research. A travel time prediction model de­
veloped previously, in conjunction with an experiment in which 
information availability was limited to users' own experiences, 
provided the framework for analyzing this phenomenon, using 
the results of a second experiment in which additional informa­
tion on the previous day's performance was available. The 
focus of this study was not so much to develop a definitive 
operational model of this process as to gain insights into the 
effect of information availability through the comparative anal­
ysis of the model's performance and estimated parameter 
values. The study was successful in this regard, suggesting that 
additional information tends to reduce the perceived uncer­
tainty associated with the performance of the system, and is 
actually used along with the user's latest experience in forming 
a travel time for the next trip. 

Generalizing beyond this specific travel time prediction 
model, another important direction that is beginning to emerge 
from this work is that the effect of information availability is 
not limited to an additive term that would reflect more or less 
information in a model's specification, but may actually affect 
the underlying behavioral mechanisms. This result was man­
ifested here, for example, in the virtually insignificant coeffi­
cients of the terms reflecting earlier experience. Moreover, 
other related work by the authors appears to suggest that 
behavior under greater information availability of the type 
provided in our experiment is of a more rational (i.e., utility­
maximizing) nature than that observed under limited informa­
tion for which the boundedly rational notion of an indifference 
band of tolerable schedule delay was found to provide a plausi­
ble explanation of the data. 
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Nonlinear Utility in Time and Cost of Trips: 
Disaggregate Results from an Ordinal 
Methodology 

MARK R. McCORD AND 0LEGARIO G. VILLORIA, JR. 

A new methodology to Investigate the linearity of the systema­
tic utllity function over time-cost combinations is developed. 
The approach, based on stated preferences, Is unique In that It 
requires only ordinal preferences from laboratory subjects and 
assumes only ordinal properties of the utlllty function. Requir­
ing ordinal rather than lntervally scaled preferences provides 
for more meaningful and cognitively simpler tasks. Assuming 
only ordinal properties of the utlllty function defines a best­
case scenario for linear performance--if linearity can be re­
jected under ordinal conditions, It can be rejected under more 
restrictive conditions. The experimental design leads to geo­
metric, statistical, and predictive tests of ordinal linearity. The 
methodology Is applied to a sample of 12 individuals faced with 
time-cost combinations of representative morning commute 
trips, primarily to iIIustrate the approach. However, even in 
this preliminary study and using a conservative means of 
classification, an ordinally linear utility function Is rejected In 
favor of a simple nonlinear specification in half of the subjects. 
The linear specification cannot be accepted over a nonlinear 
one for any subject. 

The concepts of disaggregate choice and random utility max­
imization form the basis of many and perhaps the most appeal­
ing transportation demand models used today (1-3). These 
models assume that an individual's preferences can be modeled 
by a utility function decomposable into a systematic compo­
nent and a stochastic error term. The systematic utility function 
V is written as a function of the individual's socioeconomic 
characteristics and the level of service (LOS) attributes that the 
transportation alternative offers. For computational conve­
nience, V is written as linear in its parameters: 

N 
"} (alternative k) = .L aj;fj; (Zj;1c) 

1=! 
(1) 

where fj; is a component function of the systematic utility 
function corresponding to the ith of N socioeconomic or LOS 
variables zjik> obtained by individual j when choosing alterna­
tive k; and aji is the scaling parameter of this ith function. Two 
LOS variables used in most analyses of transportation alterna­
tives are the time t and cost c of the alternatives. In practice, the 
component functions associated with these variables are usu­
ally linear and additive, so that Equation l becomes 

N-2 
"}(alternative k) = _L aj;fj; (Zj;1c) + ajt tjk + ajc cjk (2) 

•=1 

Ohio State University, Civil Engineering Department, 470 Hitchcock 
Hall, 2070 Neil Ave., Columbus, Ohio 43210. 

However, there have been limited propositions to use non­
linear component functions in time and cost. Koppelman (4) 
refers to studies demonstrating that psychological perceptions 
of time and cost may not be linear in their actual values. 
Although discrepancies between objective and perceived 
values can be controlled in a laboratory setting, such studies 
conducted in the decision sciences have indicated nonlinear 
utility functions in time and cost (5-10). Limited experiments 
conducted in the transportation field support the consideration 
of a nonlinear utility function (4, 11, 12). There are also eco­
nomically based theoretical arguments (4, 12) supporting non­
linear functions. However, the limited empirical results and 
theoretical arguments are suspect. The studies in the decision 
sciences deal with larger quantities of time and cost than would 
be encountered in most applications of transportation demand 
models. Also, these studies, those performed in the transporta­
tion field, and theoretical arguments deal with an intervally 
scaled utility function. The function used in demand models is 
claimed to be an ordinal one (1 ). As argued in the next section, 
this distinction would invalidate both the theoretical arguments 
and the empirical methodologies and imply that easier cogni­
tive tasks could be used in the laboratory. 

In this paper, ordinally based arguments for considering a 
systematic utility function whose component functions are non­
linear in time and cost are presented. An empirical study using 
only ordinally stated preferences for morning commuting op­
tions is also described. The results indicate that a linear utility 
function cannot generally be assumed to describe preferences 
as functions of time and cost, even when the values of these 
attributes are small and even when the function is in its least 
restrictive, ordinal form. The results strengthen the conclusions 
of previous studies not only by adding more data, but by 
collecting the data through a more appealing methodology­
one that is compatible with the ordinal nature of the utility 
function and that requires less difficult cognitive tasks of the 
subjects. 

In the next section, current arguments for considering a 
nonlinear utility function in time and cost are shown to be 
incompatible with the properties of an ordinal function and 
ordinally based arguments for considering such a function are 
presented. The merits of a stated-preference, laboratory-based 
empirical study are then discussed. Past studies assumed 
stronger-than-ordinal properties of the utility function and re­
quired more difficult cognitive tasks than were necessary. In the 
following section, the design of the ordinally based empirical 
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study is described. In the last section, the results, based on 
visual inspection of response surfaces, nonparametric tests of 
the assumption of a constant marginal rate of substitution, and 
predictive tests of linear and nonlinear ordinal specifications of 
the utility function, are presented. Implications and limitations 
of the results, along with directions for further study, are also 
discussed. 

BACKGROUND FOR AN ORDINAL STUDY 

The only LOS variables considered in this paper are time and 
cost. Therefore, any alternative can be specified by the associ­
ated time and cost (tj, cj) incurred by individual j when effect­
ing this alternative. Individual j's systematic utility function for 
an allemalive can similarly be specified by lj(tj, c). From here 
on, subscriptj on time-cost combinations will be dropped, both 
for simplicity and because the laboratory approach used can 
control for differences in these combinations among different 
individuals. With these conventions, Equation 1 becomes 

(3) 

where ao is a constant encompassing all other fixed terms. The 
usually encountered Equation 2 can be written 

(4) 

Theoretical Arguments for a Nonlinear Ordinal Function 

Some economists believe that intervally scaled (13) utility 
functions exist and can be measured (14). There have also been 
several empirical studies investigating intervally scaled utility 
functions ({r9). But the systematic utility function used in 
disaggregate choice models is claimed to be an even less 
restrictive ordinal function (1). There have also been no claims 
that this function possesses any of the stronger properties, such 
as intensity or strength of preference, implied by cardinal and 
intervally scaled functions (13). Although the use of the func­
tion is believed to imply stronger properties, it is investigated in 
its least restrictive ordinal form as a conservative approach to 
rejecting linearity. 

An ordinal function can only indicate a direction of prefer­
ence. It is a function mapping its arguments into the set of real 
numbers such that a lower (or higher) real number indicates 
increased preference (13 ). Specifically, the ordinal function 
implies only 

(tl, C1) • pj • (lz, Cz) if and only if Vj (t1, C1) < lj (lz, Cz) (5) 

and 

where (t1, c1) and (t2 , c2) are two time-cost combinations, 
• Pi • represents "is preferred to, by individual j," and • Ij • 

represents "is indifferent 10, for individual j." The symbol < is 
used instead of > because this convention allows positive 
coefficients in the utility function when dealing with negatively 
valued attributes such as time and cost. Therefore, although V 
really represents a systematic disutility function, the more 
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general term "utility function" is used except when the distinc­
tion is needed for clarity. 

The implication of the ordinal nature of the utility function is 
that any monotonic order-preserving transformation of the 
function yields an equivalent function. That is, if lj(t, c) 
represents individual j's utility for time-cost combinations, 
then Vj(l , c) also represents individual j's utiUty for these 
combinations if Vj(t, c) is a monotonic transfoanation of 
lj(t, c). For example, if lj(t, c) could be described by Equation 
4, it could also be described by 

(7) 

However, the linear version is normally used for computational 
convenience. 

The importance of this implication is that it renders inap­
propriate the current theoretical arguments advanced for a 
nonlinear utility function in time and cost if the function is to 
be an ordinal one. These arguments (4) are based on the 
economic concept of nonconstant marginal utilities in time and 
cost. Because some individuals appear to have marginal util­
ities for time and cost that depend on the level of these vari­
ables already incurred, the marginal utilities of the systematic 
utility functions [oV(t, c)/ot and oV(t, c)/oc] should not be 
assumed to be constant. Because Equation 4 implies constant 
marginal utilities, it is not a valid representation of the systema­
tic utility function. But, whether or not the mathematical ex­
pression of the marginal utility depends on the level of time or 
cost incurred depends on which of the equivalent monotonic 
transformations is used To see this, the partial derivatives of V' 
in Equation 7 are taken with respect to time and cost. Although 
v' is theoretically equivalent to v in Equation 4, analysis of the 
marginal utilities leads to different conclusions. This difficulty 
arises from using the derivatives of an ordinal function to 
indicate something stronger than direction of preference. 

However, theoretical arguments for a nonlinear ordinal func­
tion can be made by considering the marginal rates of substitu­
tion MRS instead of marginal utilities. Consider all time-cost 
combinations of equal ordinal utility. Because the utility is 
constant, the total derivative of the utility function among these 
combinations must be zero. After taking the total derivative, 
setting it equal to zero, and rearranging terms, the MRS of cost 
for time is 

MRS = dc/dt = - oV(t, c)(at 
()V(t, c)/()c 

(8) 

Equation 8 implies that if an individual is to be indifferent 
between one alternative and a second whose time differs from 
the first by an amount d t, then the necessary change in the 
second's cost from the first's is given by the ratio of the partial 
derivatives of the utility function with respect to time and cost. 
The negative sign indicates that an increase in time requires a 
decrease in cost and vice versa, because the signs of both 
derivatives will be identical. To derive this equation, it was 
only assumed that the appropriate derivatives could be taken. 
The interpretation is based only on the assumption of the 
ordinal property of Relation 6. 

The importance of using the MRS interpretation is that it is 
unique even for ordinal functions, and the MRS of Equation 4 
leads to unacceptable conclusions. To see that the MRS is 
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unique, let V' (t, c) be related to V(t, c) by a monotonic 
transformation g-that is, V' (I, c) = g [V(t, c)]. Use these 
definitions and the chain rule to write 

()V'(t, c)/()t _ ()g[V(t, c)]/()t 
()V'(t, c)/()c - ()g[V(t, c)]/()c 

= ()g[V(t, c)J/C}V(t, c) x ()V(t, c)/()t 
()g[V(t, c)]/()V(t, c) x ()V(t, c)/()c 

= ()V(t,c)/()t 
()V(t, c)/()c (9) 

The MRS for V' is the same as that for V, no matter what 
differentiable transformation is used. Although similar argu­
ments have been made in economics (15), they seem to be 
overlooked in transportation demand analyses. 

The linear utility function used in practice, or any permis­
sible transformation of it, leads to an MRS of cost for time that 
does not depend on the cost for time already incurred. 
Specifically, 

MRS = a,lac (10) 

But economic intuition and empirical studies indicate that some 
individuals' strengths of preference for time and cost depend 
on the levels of these variables already incurred. Although 
these dependencies cannot be used directly to invalidate a 
linear ordinal function, they can be used indirectly to reason 
that the MRS values depend on the levels of these variables. To 
see this, consider the types of strength of preference that might 
be exhibited. 

Koppelman (4) describes an individual who experiences 
increasingly more discomfort for public transportation as the 
time of the trip increases. This individual will, therefore, have a 
stronger preference for a given decrease in travel time dt when 
this decrease is made from a long trip than when it is made 
from a short one, because the same decrease relieves more 
discomfort in the long trip. It follows that the individual should 
be willing to pay a larger sum de to reduce the time when the 
trip is long than when it is short, at least if the original costs of 
the two trips are the same. Another individual might relax after 
a while so that an incremental increase will be less onerous; 
such an individual would pay less to eliminate it as the time 
incurred increases. A third individual may believe that "a 
minute is a minute" in the range of times considered and, 
therefore, would not be willing to change the amount to pay in 
order to eliminate an increase in time as a function of the 
amount of time already incurred. The magnitude of the first 
individual's MRS will be increasing in time, that of the sec­
ond 's decreasing, and that of the third's constant. All of these 
types of behavior appear plausible, but only the third is pennit­
ted by Equation 10 and the linear ordinal utility function from 
which it was derived. 

It is likewise possible that the MRS depends on the level of 
cost already incurred. One individual may be more sensitive to 
a given increase in cost when the cost is high than when it is 
low, while another will be more sensitive when the cost is low. 
The first individual might be concerned with "spending more 
than he wants to" for the good, while the second may reason in 
percentage increases in cost. It follows that the first will pay 
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more to reduce the time when the cost is low than when it is 
high-that is, have an MRS whose magnitude decreases in 
cost-and that the second will pay more when the cost is high 
than when it is low-that is, have an MRS whose magnitude 
increases in cost. Both behaviors seem plausible, but only that 
of a third individual, who values increased unit costs equally in 
the range considered and, therefore, has constant MRS in cost, 
is permitted by the linear utility function. 

There are arguments (16) for an individual to possess both 
increasing and decreasing intervally scaled marginal utilities­
and, therefore, both increasing and decreasing MRSs-depend­
ing on the amount of attribute incurred. However, these argu­
ments are normally made when large amounts of the attributes 
are involved. Because this study deals with small quantities, 
discussion and analysis of plausible descriptions of behavior 
are limited to those marginal rates of substitution of cost for 
time that are increasing, decreasing, or constant in time and in 
cost. 

Stated Preference Approach 

Most transportation demand studies designed for quantitative, 
policy assessment contexts use revealed preference data 
(1, 17). This type of data is usually expensive to obtain, and the 
analyst has little, if any, control over the LOS attributes acting 
as independent variables. In general, only one observation can 
be obtained for a given individual. Also, perceived levels of 
attributes must be represented by objectively measured levels, 
leading to the potential difficulties that Koppelman (4) 
discusses. 

Laboratory experiments using stated preferences can reduce 
these difficulties. The analyst poses hypothetical alternatives to 
a subject, who is asked to state relative preferences among 
them. Because the alternatives are defined by the analyst, the 
analyst has complete control over their independent variables. 
Several observations can be obtained from the same subject. 
These observations can be responses to the same set of alterna­
tives presented several times or to different sets of alternatives, 
whose attributes can be varied systematically. Functional forms 
can, therefore, be determined for each individual. Because the 
analyst presents the attributes of the alternatives to the subject 
directly, there is no discrepancy between the analyst's and the 
subject's perception of the attributes. The general drawback of 
the stated preference approach is that there is no guarantee that 
an individual's preferences stated in the laboratory will corre­
spond to the individual's actions implemented in the outside 
environment. Still, this approach has been used successfully to 
predict nonlaboratory behavior (18 ). 

Like past theoretical arguments for a nonlinear utility func­
tion, however, the transportation studies that have used stated 
preferences (11, 16-22) imply that the systematic utility func­
tion has stronger than ordinal properties and, therefore, requires 
more difficult cognitive tasks than necessary. These studies 
require individuals to rate the relative value of transportatiop. 
alternatives by assigning numbers on a scale that is anchored 
by lower and upper bounds. However, the allowable transfor­
mations of the utility functions make assigning such numbers 
meaningless. Given a number of ratings, many plausible speci­
fications of the utility function could be fit through them by 
taking some monotonic transformation of the function. 
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Even if the utility function sought were intervally scaled so 
that the rating scheme made theoretical sense, it would not be 
clear that individuals could supply valid estimates of intervally 
scaled utilities directly. To require only ordinal information of 
the subjects is cognitively simpler. An analogy in which an 
individual must decide upon the relative temperatures of two 
liquids without the aid of a thermometer illustrates this. It 
would be easier for the individual to determine which of the 
two liquids is hotter than to assign temperatures to each, even 
though the individual might be quite familiar with the well­
defined concept of temperature. The difference in cognitive 
difficulty between stating ordinal and intervally scaled prefer­
ences for a pair of goods would be even greater, because the 
individual will have little, if any, operational idea of how to 
assign a quantitative measure compatible with the interval 
scale. Researchers in other fields have also expressed concern 
over the ability to determine valid ratings of preferences di­
rectly (9, 23). 

The nonlinearity of the systematic utility function in time 
and cost was investigated empirically using a stated preference 
approach in a laboratory setting. The approach was chosen 
because of its appeal for investigating preferences toward sys­
tematically varied transportation alternatives. However, unlike 
previous studies in the transportation field, this study was 
ordinally based Such a study required fewer restrictive as­
sumptions of the systematic utility function than one based on 
intervally scaled data and, therefore, represented a type ofbest­
case test. Moreover, it was compatible with the claim in the 
literature that the systematic utility function is ordinal. Most 
important, it required less difficult cognitive tasks of the sub­
jects and, therefore, theoretically led to more valid data. The 
study was based on the use of preference and indifference 
statements, which were compatible with an ordinal function 
through Relations 5 and 6. 

DESIGN OF EMPIRICAL STUDY 

Protocol 

Each subject was asked to consider his daily morning trip to 
work or school in an abstract mode. The mode was described 
only generally as not being uncomfortable, and not allowing 
reading or socializing. The idea was to get the individual to 
think only about the trade-offs between unproductive travel 
time and cost. The interviewer then posed the question: 
"Would you prefer such a trip taking t,. min and costing c,. cents 
or paying R cents to eliminate the time of this trip?" The values 
oft,.. and c,. were set exogeneously as assessment parameters by 
the interviewer. The value of the response R was set by the 
interviewer, but adjusted according to the bracketing method 
(9) until the subject expressed indifference or no preference 
between (0, R)-paying R cents to eliminate the time-and (t,., 
ck). That is, a level of cost R,. was sought with this method such 
that 

(11) 

Using personal interviews and the bracketing method appears 
to represent deviations from other stated-preference-based 
transportation studies and should lead to more representative 
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responses. Time was set to zero in the response time-cost pair 
so that the subject could think of buying out the morning 
commute time without having to think of an extra time 
parameter. 

Responses to 42 (t, c) combinations were elicited for each 
individual. The 42 combinations were obtained by taking all 
combinations of 10, 20, 30, 40, 50, and 60 min with 0, 25, 50, 
75, 100, 125, and 150 cents. The upper bounds on these 
attributes were chosen to coincide with those that the Central 
Ohio Transit Authority considers for transit trips in the Co­
lumbus area. The order of presentation of these 42 combina­
tions was varied among individuals, but the presentation was 
ordered in such a way that the responses to combinations 
presented near the end of the session (which lasted about 1 hr 
on average) were constrained by monotonicity considerations 
in cost and time by responses presented near the beginning of 
the session (24 ). Surprisingly few inconsistencies appeared 
considering the small differences used in the assessment time­
cost combinations. When they did occur, the interviewer would 
point them out to the subject, who was then allowed to change 
any responses. 

Use of a Response Surface 

This type of data leads to an appealing geometric interpretation 
based on the concept of the response surface (25), which was 
developed for analysis of choice patterns under uncertainty. 
The (t, c) pairs can be thought of as points in the time-cost 
plane. The response R can be thought of as a height above this 
plane. Because less cost is preferred to more, less R is preferred 
to more, and the relative heights rank the (t, c) combinations. 
The three-dimensional response surface above the time-cost 
plane in time-cost-response space, therefore, represents an or­
dinal utility function. With the 42 responses, there are 42 points 
on the surface equally distributed throughout the domain of the 
time-cost plane considered. The response along the t = 0 axis is 
also known, by construction. The rest of the surface can be 
estimated by interpolation. 

It is convenient to represent the response surface by its 
isoquants-the projections of constant response in the time­
cost plane. If transitivity is assumed, specifically, that (tk, ck) 

• Ii. (0, Rk) and (t,,., c,,.) • Ii • (0, R,.) imply (tk, c,.) • Ii. (t,,., 
c,,.), the isoquants represent indifference curves among (t, c) 
combinations. Because indifference curves represent loci of 
equal ordinal utility, the slopes dc/dt of these curves represent 
the MRS developed in Equation 8. 

Note that this representation is model free. It assumes no 
behavioral properties of preferences other than continuity and 
transitivity, and offers a visual, completely ordinal test of the 
linearity of the utility function. If the function is linear, the 
constant MRS developed in Equation 10 implies that the iso­
quants of the response surface should be parallel straight lines. 
However, given the difficulty associated with the task of psy­
chological introspection necessary for even ordinal statements, 
perfectly parallel indifference lines are not expected. Rather, 
large and systematic deviations from linearity as a function of 
the independent variables time and cost would occur. 
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FIGURE 1 Representative response surfaces: (a) Subject b, 
(b) Subject e, (c) Subject f, and (d) Subject g. 

RESULTS 

Twelve subjects participated in the empirical study. Nine of 
these were graduate students in transportation at Ohio State 
University. The other three were Ohio State graduates with 
degrees in business administration. Because these 12 partici-
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FIGURE 2 Representative isoquants: (a) Subject b, (b) 
Subject e, (c) Subject f, and (d) Subject g. 
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pants were chosen on the basis of availability and had a homog­
eneous educational background, the sample could not be con­
sidered representative of the general population. Tests of the 
general population could be a subject for further study. 

Four response surfaces are presented in Figure 1 and their 
corresponding isoquants in Figure 2. The isoquants of Subjects 
b and e appear to systematically violate the requirements of 
linearity; those of Subject f seem to satisfy the requirements; 
those of Subject g violate the requirements, but not sys­
tematically. The isoquants for all 12 subjects can be found 
elsewhere (24 ). 

Although it is tempting to specify alternative functional 
forms of the systematic utility function and perform econo­
metric fits of the parameters, it was not known how to do so 
without requiring stronger than ordinal properties of the utility 
function. A least squares fit using the 42 indifference state­
ments would require taking the differences between the utility 
functions, implying that the differences are unique, at least to a 
positive linear transformation. Using maximum likelihood es­
timation based upon indifference statements and some spec­
ified binary choice model also makes stronger than ordinal 
assumptions, because these models assign a unique probability 
to choosing an alternative based upon the difference in the 
systematic utilities (1, 2). Note that this argument implies that 
systematic utility functions used in current models based on 
random utility maximization are not ordinal. 

Other quantitative means of investigating the degree to 
which these stated preferences satisfied the ordinal require­
ments of a linear utility function needed to be developed 
through nonparametric tests of calculated marginal rates of 
substitution and predictive tests of preference using ordinally 
calibrated parameters. 

Nonparametric Test of Constant MRS 

To estimate the marginal rate of substitution as a function of 
time and cost, the gridlike structure formed by the sample 
points in the time-cost plane was exploited. The grid can be 
seen in Figure 2, where each line represents an axis of either 
time or cost corresponding to a level that was used as an 
assessment parameter. The lines form unit boxes, ihe comer 
points of which were exogeneously set time-cost combinations 
for which a response was elicited. The response to a time-cost 
combination in the interior of one of the unit boxes can be 
uniquely estimated using linear interpolation among the box's 
four comer points. Specifically, the response is a function of the 
responses corresponding to the southwest, southeast, north­
west, and northeast comers of the unit box-Rsw, Rse, Rnw• and 
Rne• respectively; the times corresponding to the west and east 
edges of the unit box-tw and t0 , respectively; and the costs 
corresponding to the south and north comers of the unit box­
e8 and en, respectively. This interpolation scheme leads to a 
linearly generated, but perhaps nonplanar, surface above each 
box (see Figure 1). 

Because the response forms an ordinal utility function, 
Equation 8 can be applied to the response function to determine 
the MRS of any point within the unit box. The MRS at the 
center [(tw + t.)/2, (e6 + en)/2] of each box was taken, so that the 
estimate of the magnitude of the MRS for a given unit box was 
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(12) 

ht this way, an estimate was obtained of the MRS at all com­
binations of time levels of 5, 15, 25, 35, 45, and 55 min and 
cost levels of 12.5, 37.5, 62.5, 87.5, 112.5, and 137.5 cents. 
These estimates can be found in the literature (24 ). These 
estimates would be quite approximate, given the assumption of 
a linearly generated surface above each box and the arbitrary 
point within the box at which the estimate was taken. However, 
these approximations tend to increase the noise level in the 
estimates. This, coupled with the use of tests on the ranks rather 
than on the magnitudes of the MRS values, leads to a conserva­
tive approach in rejecting ordinal linearity of the utility 
function. 

Page's statistic (26) on the ranks of the calculated MRS 
values as a function of time at a given level of cost and as a 
function of cost at a given level of time was used. By calculat­
ing the statistic at a fixed level of either cost or time, the 
influence of these variables on the estimated value of the MRS 
was controlled. The results summarized in Table 1 supported 
the visual analyses. In Table 1, the null hypotheses are MRS 
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values that are constant in time or cost. For those subjects who 
appeared to have constant MRS values in the visual inspection 
of the indifference curves, midvalue statistics were found For 
some subjects (c, d, and gin Table 1) statistics strongly indica­
ting an increasing MRS in time were found. For other subjects 
(a and b) the statistics indicated a decreasing MRS in time. 
Although not as strong, there was some indication of a sys­
tematic change of MRS as a function of cost-decreasing for 
Subjects g, j, and k, and increasing for Subject c. Due to the 
noise involved with generating the MRS values, these tenden­
cies were explored further. Predictive tests were developed, 
consistent with the ordinal nature of the utility function, of the 
linear and various nonlinear specifications. 

Predictive Tests 

To describe the predictive test of the linear model, refer again 
to the unit boxes of the grid formed by the time and cost levels 
used in assessment. The northeast (ne), northwest (nw), south­
west (sw), and southeast (se) corners of a box have coordinates 
(tw + 10, C8 + 25), (tw, C1 + 25), (tw, C5), and (tw + 10, CJ, 
respectively, where as before, tw and c5 are the level of time 

TABLE 1 PAGE'S STATISTICS ON RANKS OF MRS MAGNITUDE 

Alternative Hypothesis on MRS Magnitude 

Subject (a) (b) (c) (d) 

Decreasing Increasing Decreasing Increasing 

in Time in Time in Cost in Cost 

a 472.5 409.5 446.0 436.0 

b 471.0 411.0 430.0 452.0 

c 378.0 504.0 414.5 467.5 

d 401.0 481.0 455.5 426.5 

e 422.0 460.0 443.0 439.0 

f 441.5 440.5 444.5 437.5 

g 369.0 513.0 464.0 418.0 

h 421.0 461.0 439.5 442.5 

449.0 433.0 448.9 435.5 

j 420.0 462.0 460.0 421.0 

k 423.5 458.5 460.0 422.0 

419.0 463.0 440.0 442.0 
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fonning the west boundary and the level of cost fonning the 
south boundary of the box. Note that by monotonicity the 
northeast comer of the box must be the least preferred, and the 
southwest comer the most preferred. For the northwest and 
southeast comers no preference is normatively apparent. An 
individual's stated preference between these two comers can be 
detennined through the value of R assigned-the comer with 
lower R is preferred. 

The predictive test revolved about the ability of the utility 
function to identify correctly the stated preferences between 
the.<>e two comers for each of the 36 unit boxei; of the time-cost 
domain (Figure 2). More comparisons could have been used in 
the tests (there were 336 nondominated comparisons involving 
comer points of the unit boxes) but the number of comparisons 
was limited for simplicity. Comparisons were excluded whose 
outcomes would be dictated a priori by transitivity and the 
outcome of a previous comparison. For example, when (tk, ck) 
• Pi. (tm, cm) was both stated by the responses and predicted 

by the utility function, then (t", ck) • Pi. (t,,. + 10, c,,.) would 
also be both stated and predicted. 

To determine whether the northwest or southeast comer was 
predicted by a linearly ordinal utility function, Equation 4 and 
Relation 5 can be used to write that (tw, c5 + 25) is predicted to 
be preferred to (tw + 10, CJ by Individual j only if 

g[ezo + aj,(tw + 10) + ajccsl < g[a0 + aj,tw 

+ ajc(c8 + 25)] (13) 

where g is any monotonic transformation of the linearly spec­
ified functions. By taking the inverse of this function, and 
noting that ai, and ajc must be positive for a disutility function 
monotonic in time and cost, the predictive conclusion can be 
written as 

A < 25/10 (14) 

where A is a positive parameter equal to the ratio of ai, to ajc· If 
I.he value of A is known, whether the northwest or soulheas1 
comer of a given box is predicted to be preferred for that value 
of A, that is, for the calibrated linear model, can be determined 

For each individual, the 42 indifference statements were 
used to determi."le 42 values of A. Using the indifference be­
tween (0, Rk) and (tk, ck) for an individual, Equation 4, Relation 
6, and the previous reasoning, 

(15) 

Note that Equation 15 holds for any monotonic transformation 
invoked 

Not only how well the linear utility function could predict 
preferences was of interest, but also whether any poor predic­
tive ability could be associated with behaviorally feasible de­
viations from the ordinal implications of a constant MRS. As 
previously stated, only MRS values increasing or decreasing in 
time or cost were considered as possible alternatives. Although 
there are many possible functional forms Lb.at could lead to 
Lhese alternatives (4, 18), I.he predictive ability of power func­
tions of cost and time were used because of I.heir simplicity and 
use in past studies. Specifically, alternatives were considered to 
I.he linear function of I.he form 
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The magnitude of MRS of this form is given by 

MRS = b,bj,tbi,-l )1 (ajcbjccbic-1) 

(16) 

(17) 

Because I.he a and b parameters are positive for a monotonic 
disutility function in time and cost, the magnitude of the MRS 
is increasing, decreasing, or constant in time if bi, is greater 
than, Jess than, or equal to 1, respectively, and in cost if bjc is 
less than, greater than, or equal to 1, respectively. 

Values of the exponents b could not be fit because an econo­
metric fitting would imply stronger Lb.an ordinal assumptions. 
A number of indifference statements could theoretically be 
used to determine values of the independent parameters of 
Equation 16. Values of bi, and bjc were assigned arbitrarily, 
however, both for convenience and so that the functions would 
have the same number of unknown parameters as the linear 
model, thereby allowing a more direct comparison among the 
results of the predictive tests. To bi, (bjc) a value of 2 (1/2) was 
assigned for an MRS whose magnitude was increasing and a 
value of 1/z (2) for an MRS whose magnitude was decreasing in 
time (cost). Along with a value of 1 for constant MRS, this 
convention led to the nine specifications, one of them being the 
linear one, summarized in Table 2. Once a specification has 

TABLE 2 EXPONENT VALUES b,, be FOR NINE 
SPECIFICATIONS OF V(t, c) 

Time Effect 
on MRS 
Magnitude 

Decreasing 
Constant 
Increasing 

Cost Effect on MRS Magnitude 

Decreasing 

( 1/2, 2) 
(1, 2) 
(2, 2) 

Constant 

( 1/2, 1) 
(l, l) 
(2, 1) 

Increasing 

(l/2, lh) 
(1, lh) 
(2, lh) 

been chosen, the same arguments can be invoked to show that it 
is sufficient 10 know the value of A, I.he ratio of ai, to ajc• when 
prcdicling preference with a utility function given by Equation 
16. An individual's stated indifference between (0, Rk) and (tk• 
ck) can again be used to detem1ine for the individual: 

(18) 

A small computer program was written lo detennine, for 
each of the 42 values of A, the number of limes the specified 
utility function predicted the same direction of preference as 
was stated through the responses for each of the 36 northwest­
southeast corner pairs. The number of correct predictions was 
then summed across the 42 A values and divided by the 1,512 
(42 x 36) total comparisons to determine an "average percent 
correct" number of predictions for each of the individual's 
specified utility functions. 

The results presented in Table 3 show that the linear model 
predicted I.he direction of preference more than 90 percent of 
the time for only one individual, between 80 and 90 percent of 
the time for two other individuals, and less than 70 percent of 
the time for the remaining nine individuals. For three individ­
uals (a, d, and e) the correct number of predictions was below 
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TABLE 3 PERCENTAGE CORRECT PREDICTIONS OF NINE SPECIFICATIONS OF V(t, c) 

Utility Function Specification, (bt, be) 

Subject (1, 1) (2,1) (1/2,1) (1,2) 

a 58.3 48.0 61.8 58.6 

b 61.7 49.8 64.2 59.8 

c 66.1 80.8 57.1 68.4 

d 56.0 63.2 50.8 50.7 

e 55.6 72.0 41.8 56.9 

f 69.4 59.5 55.4 65.9 

g 83.3 74.2 78.6 77 .5 

h 86.1 65.8 79.0 64.5 

62.3 61.9 65.6 55.5 

j 66.9 58.3 67.4 51.4 

k 60.1 60.5 49.5 60.9 

94.4 73.8 91.3 71.5 

60 percent, only marginally better than what would be expected 
by chance. The linear specification was best for only four 
individuals (f, g, h, and 1). No other specification was best for 
as many individuals, but given that the exponents were ar­
bitrarily chosen and that the arbitrary specification of b1 =be= 
1/2 was best for three individuals (a, i, and j) the indication is 
that some specification using power functions could have out­
performed the linear one. In addition to its generally poor 
performance in predicting ordinal preferences, compared to its 
nearest competitor, the linear specification predicted greater 
than 5 percent more of the preferences correctly only once, for 
Individual h. Of the eight individuals for whom one of the 
arbitrary alternative specifications predicted better than the 
linear one, five (a, c, d, e, and i) exhibited a decrease in the 
number of correctly predicted preferences of more than 5 
percent when the linear specification was used. 

Classification of Individuals 

Table 3 and visual and statistical analyses can be combined to 
classify the individuals according to tendency for their MRS 
values to vary systematically with time or cost. 

From Table 3 for Individuals a and b, the specifications 
involving b1 = 1/2, that is, those indicating a decreasing magni­
tude of the MRS in time, perform better than the other specifi­
cations for any of the three values of be This effect is supported 
both by the visual inspection of these individuals' isoquants 

(2,2) (1/2,2) (1,1/2) (2,1/2) (1/2, 1/2) 

52.9 60.8 55.9 49.2 65.0 

52.4 60.3 59.1 49.5 61.8 

75.5 62.3 64.6 78.5 42.9 

58.2 48.4 59. 7 65.3 52.8 

68.2 51.9 50.1 60.6 37.7 

62.0 63.0 54.9 54.6 54.1 

75.6 74.3 75.7 69.9 77 .2 

58.5 69.0 80.6 71.8 78.6 

57.8 56.9 66.8 67 .o 68.1 

47.4 57.6 63.3 58.9 67.9 

62.3 61.1 57.4 55.5 51.3 

61.8 76.7 85.7 72.6 82.2 

(Figure 2, Subject b) and by the relatively high rank statistic in 
Column a of Table 1. Similarly, the specification using b1 = 2 
performs better for Individuals c, d, and e than either of the 
other two alternatives for any value of be. The visual analyses 
(Figure 2, Subject e) and the relatively high statistics in Col­
umn b of Table 1 support the conclusion that the general trend 
for these individuals is an MRS whose magnitude increases in 
time. The indication for Individual f is an MRS that is constant 
in time. The specifications with b1 = 1 performs best for any 
value of be; the rank statistic is moderate in Columns a and b of 
Table 1; and the slopes of the isoquants (Figure 2) show no 
systematic pattern as a function of time. The rank statistic for 
Subject g indicates a strong dependence on time. This depen­
dence is supported by the isoquants (Figure 2) except at high 
values of time, where the pattern of steeper slopes with time 
changes drastically. Perhaps it is this change in pattern that 
makes b1 = 2 a poor predictor in Table 3. Similar inconclusive 
results are obtained for Individuals h, i, j, k, and l, which are 
conservatively classified as having mixed results as a function 
of time. 

Only Individual k exhibits a systematic change in MRS as a 
function of cost. For any of the three possible b1 values, the 
specification using be = 2 predicts the greatest number of 
correct preferences. The corresponding rank statistic in Table 2 
(Column c) is relatively high. And the isoquants are shallower 
as the cost is increased. This individual is therefore classified as 
having an MRS whose magnitude decreases in cost. Similarly, 



16 

only for Individual l is there strong support for a constant MRS 
as a function of the costs considered. The specification with 
be = 1 performs best for any value of b,; the rank statistics are 
moderate in Columns c and d of Table 1; visual inspection of 
the isoquants shows no systematic pattern as a function of cost. 
For the other 10 individuals, the results from the three analyses 
are either conflicting or inconclusive. This conflict could result 
from a preference structure similar to that of Individual g 
(Figure 2), which is compatible with increasing MRS values in 
some domains and decreasing MRS values in others. Because 
this type of behavior is not investigated here, these individuals 
can only be classified as having mixed results. 

The classification results are sununarized in Table 4. Al­
though the procedure for classification was subjective in that 

TABLE 4 CLASSIFICATION OF SUBJECTS 

Effect on MRS of 

Subject TI me Cost 

a Decreasing Mixed 
b Decreasing Mixed 
c Increasing Mixed 
d Increasing Mixed 
e Increasing Mixed 
f Constant Mixed 
g Mixed Mixed 
h Mixed Mixed 

Mixed Mixed 
j Mixed Mixed 
k Mixed Decreasing 
l Mixed Constant 

the isoquants were visually interpreted and "relatively" high 
rank statistics were qualitatively determined, those individuals 
with weak or conflicting results in the mixed results category 
were classified conservatively. Strong conclusions on the im­
pact of cost on the MRS for 10 individuals could not be made. 
Of the two remaining individuals, one exhibited a constant 
MRS, whereas the other exhibited an MRS whose magnitude 
was decreasing in cost. Strong results were obtained for more 
individuals when the dependence of the MRS on time was 
examined, and these results tended to discredit the assumption 
of a linear utility function. Ony one individual strongly showed 
no dependence in MRS on time; two showed MRS values 
whose magnitudes decreased in time; and three showed MRS 
values whose magnitudes increased in time. 

None of the 12 individuals could be classified as exhibiting 
an ordinally linear utility function, whereas 6 could be classi­
fied as not having such a function due to a dependence on time 
or cost. Even if the two individuals showing no dependency on 
one of the variables and mixed results on the other, and the four 
individuals showing mixed results on both variables were clas­
sified as linear, the evidence is that other than linear specifica­
tions can be expected even at relatively low levels of time and 
cost. 

DISCUSSION 

The discussion of this study can be divided between its meth­
odological and empirical components. 
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At the methodological level, a new approach has been de­
veloped and demonstrated for investigating the linearity of the 
systematic utility function for the time and cost of trips. The 
methodology would be easy to generalize to any two contin­
uous LOS variables. It uses a laboratory, stated-preference­
based approach and, therefore, allows economical collection of 
data that lead to systematic investigations of individuals' utility 
functions. Unlike approaches based on revealed preferences, an 
investigation of the utility function over ranges of the indepen­
dent variables is easily obtained. 

However, the methodology is different from others using 
stated preferences for transportation demand analyses in that it 
is ordinally based. It assumes only ordinal properties of the 
utility function and requires only ordinal preferences from the 
laboratory subjects. Only ordinal properties of the utility func­
tion are assumed because the function is claimed to be ordinal 
in the literature. Although current discrete choice models imply 
stronger than ordinal properties, a methodology that would be 
applicable if the function could eventually be used in an ordinal 
manner was desired. Also, because the methodology was used 
to investigate the rejection of properties, the less restrictive 
ordinal properties represent a conservative, best-case 
benchmark. Data that cannot support ordinal properties cannot 
support stronger ones. Finally, by requiring ordinal rather than 
intervally scaled preferences from the subjects, the cognitive 
difficulty of their tasks is reduced and the tasks are made more 
meaningful. These procedures should produce more valid data. 

Past studies have used goodness-of-fit measures and tests of 
statistical significance when analyzing results. Because these 
types of analyses imply stronger than ordinal properties of the 
utility function, they were not used. Even so, three different 
tests of linearity could be developed at the ordinal level. Sup­
porting results with different tests increases the confidence 
placed in conclusions drawn from them. One potential area of 
research could be devoted to understanding the situations in 
which the tests can give conflicting results and refining the tests 
so as to reduce the possibility of such situations. 

At the empirical level, the pool of scarce but significant data 
indicating that utility functions are generally not linear in time 
and cost, even for the small levels encountered in urban travel, 
has been increased. None of the subjects could be confidently 
ciassified as exhibiting a linear function, whereas six could be 
confidently classified as exhibiting systematic deviations from 
linearity. Although the sample was not chosen to represent any 
general population, the absence of an across-subject consis­
tency is somewhat disturbing. The practical implication is that 
even though nonlinear utility functions should be considered, a 
general specification does not appear possible. 

Even if the results were representative of the general popula­
tion, the deviations from linearity in opposite directions for 
different individuals and the better predictive ability of the 
linear utility function in the aggregate would not justify use 
of a linear function. The motivation for disaggregate choice 
theory is a behavioral one, and the utility function must be 
capable of describing preferences at the individual level if the 
models are to be marketed as being behaviorally based. Disag­
gregate choice theory acknowledges the possibility of different 
parameter values of the utility function for different segments 
of the population. It would be reasonable to allow different 
specifications, as well. Further research would be necessary to 
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detemtine the distribution of functional specifications across 
the population and of those parameters that can be used to 
stratify the specifications. The methodology used in this study 
could prove useful in this task. 
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A Method for Estimating Long-Term 
Changes in Time-of-Day Travel Demand 

JANUSZ c. SUPERNAK 

One of the desired features of a travel demand model Is an 
ablllty to estimate not only 24-hr traffic volumes but also their 
distributions during the day. In this paper, usefulness of the 
recently proposed person-category trip generation model to 
address this issue Is examined. A method to estimate tlme-of­
dny productions and attractions Is proposed. Thi! lime-of-day 
travel profiles of homogeneous groups of persons from Lodz, 
Poland, and Baltimore, Maryland, are examined. Category­
specific, time-of-day travel patterns appear consistent for dif­
ferent subareas within a given metropolitan area, whereas the 
difference.-; In travel profiles among person-categories are high. 
Thls modeling approach provides Ins ight Into long-term 
changes ln time-of-day travel distribution a.s a result of such 
trends as Increase In female employment, Increase In average 
age of the population, Increase in automobile avallablllty level, 
and so on. Forecast and policy Implications are also discussed. 

Time-of-day variations in daily traffic are of particular interest 
to transportation planners and engineers. Most of the transpor­
tation problems in urban areas are strongly correlated with the 
magnitude of the peak traffic and could be significantly allevi­
ated if there were a way to distribute traffic more evenly during 
the day. For obvious reasons, peaking in travel demand is 
unavoidable, and traffic volumes during the morning and after­
noon peak constitute criteria for the geometric design of the 
transportation network. 

Several studies have been performed in different metro­
politan areas around the world to examine and better under­
stand peaking phenomenon in daily traffic. A typical result of 
such studies could be an hourly histogram of daily traf.fic 
similar to Figure 1, which presents Lime-of-day traffic varia­
tions in Melbourne, Australia (1, 2). The traffic profiles in other 
cities show regularities similar to that from Melbourne, al­
though the shapes of actual distributions vary from ciLy to city. 
For example in Lodz, Poland, the morning peak hour between 
7:00 and 8:00 a.m. accounted for 10.3 percent of daily traffic 
and the afternoon peak hour between 4:00 and 5:00 p.m. 
accounted for 10.8 percent of daily traffic (3). Because the 
morning traffic revealed less directional variability, the morn­
ing rather than the afternoon peak volwnes were used to deter­
mine road geometry in Polish cities (3). 

In earlier studies, time-of-day travel profiles were often 
complemented by additional profiles for different trip purposes 
or profiles differentiated by the transportation mode used for a 
given trip. In recent approaches using disaggregate choice 
modeling methodology, time of day may be included as an 

Department of Civil Engineering, San Diego State University, San 
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additional element of a choice facing Individual i. For example, 
probability of Individual i's choosing to travel to Activity (trip 
purpose) p by Mode m and during Time Period t can be 
described as a product of respective conditional probabilities. 

P;(P, m, t) = P;(p)P;(m/p)P;(t/m, p) 

where 

P;(P) = probability that Individual i travels 
during the day to Purpose p, 

P;(m/p) = probability that Individual i chooses 
Modem for Purpose p, and 

P;(t/m, p) = probability that Individual i travels 
during the specified Time Period t for 
Purpose p on Mode m. 

(1) 

High heterogeneity of the urban population is the reason why 
the probabilities vary from person to person, thus making 
practical applications difficult, particularly in a context of fore­
casting the peak-period and off-peak traffic volumes. There­
fore, it seems reasonable to link time-of-day travel modeling 
with modeling of trip generation. An extended trip generation 
model able to estimate travel demand not only for a 24-hr 
period, but for any peak or off-peak period as well, could be 
sought. One such model could be a zonal regression model 
with the coefficients recalibrated for time of day instead of the 
24-hr period. However, well-known criticism directed toward 
this class of models (estimating generations, not attractions) 
would apply as well. 

Another candidate technique could be category analysis. A 
representative example in this class of models is the 108-
household-category model developed by Wooton and Pick in 
1967 (4). However, any household-based model will face an 
unavoidable basic problem of a high heterogeneity of the 
household. DctecLing regularities among categories of house­
holds treated as a whole in their trip-making behavior with 
respect to trip purpose, mode, or time of day is difficult if not 
practically unfeasible. The large variety of households types, 
sjzes, and structures will always primarily influence all these 
joint characteristics. 

A person-based category model appears a logical candidate 
for this analysis of the time-of-day travel because of a clear link 
between individuals' outside-home activities and resulring 
travel. Kuttcr's idea of constructing hourly histograms of travel 
(5) is a successful attempt to prove that different segments of 
the population have distinctly different patterns of their ac­
tivities and travel. 
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FIGURE 1 Typical hourly traffic pattern-weekday (1, 2). 

In this paper the suitability of the person-category modeling 
approach to analyze time-of-day regularities in travel behavior 
of homogeneous groups of individuals is examined. The model 
is an extension of the IS-category trip generation model de­
veloped by Supernak for Polish cities in 1979 (6) as well as the 
8-category trip generation model developed by Supernak et al. 
for American cities in 1983 (7). The main objectives of this 
paper are 

1. To investigate consistency of time-of-day travel patterns 
related to homogeneous categories of individuals, 

2. To analyze the potential for using these patterns to esti­
mate peak-period and off-peak trip generation and distribution, 
and 

3. To discuss regularities in time-of-day travel patterns in 
the context of the utility maximization principle. 

APPROACH AND DATA 

The major difference between the person-based modeling ap­
proach and other approaches is the fact that grouping of the 
individuals (potential or real travelers) into groups of similar 
behavior is based on revealed differences in trip-making be­
havior (in terms of mobility, mode choice, time-of-day prefer­
ences, etc.) rather than on those individuals' automatic affilia­
tion to the same geographic area (zonal level) or the same 
family (household level). Generalization of the observed be­
havior of any disaggregate analysis unit (household or person) 
is unavoidable in any application context, and can be accom­
plished much more easily and more adequately if (a) a proper 
market segmentation takes place, and (b) market segments are 
identifiable and predictable (8). 

The advantages of the person-based travel demand approach 
over the household approach were discussed elsewhere (7, 9). 
They include better behavioral background (same analysis unit 
over all modeling stages), easier forecasts (prediction of popu­
lation segments is independent of the changes in family forma­
tions), and significant reduction of data needed (and conse­
quently lower cost of travel surveys). In the specific context of 

this paper, the major advantage of the person-based approach is 
its fundamental ability to analyze and inteipret time-of-day 
travel patterns at all. Similar patterns applied to such hetero­
geneous clusters as household would not have much merit or 
use. 

Two data sets were used for the analysis reported in this 
paper. The first set was gathered in 1973 in Lodz, the second 
largest agglomeration in Poland (about 1 million inhabitants), 
and the second one in 1977 in the Baltimore, Maryland, metro­
politan area (with population also about 1 million). The sizes of 
the data sets were different-about 40,000 persons in Lodz 
versus about 1,800 persons in Baltimore. The relatively small 
size of the Baltimore data set was the reason why some aspects 
of the analysis reported in this paper could be performed only 
on Lodz data. Both surveys used home interviews as a data­
gathering technique. 

The methodology of creating homogeneous person-catego­
ries was also similar in both studies. Both models were de­
veloped in stages (two in the Lodz case, three in the Baltimore 
case) in order to gradually reduce the number of person-catego­
ries by eliminating variables that revealed least explanatory 
power at each stage. Cluster analysis and analysis of variance 
were used as statistical techniques to accomplish this goal. The 
analysis resulted in relatively small numbers of person-catego­
ries-IS in the case of Lodz and 8 in the case of Baltimore. The 
procedure of developing person-categories is described in more 
detail in Supernak et al. (7). 

The final categories in the Lodz study were defined as 
follows: 

Category 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Description 

Primary school children 
High school students 
College students 
Youth, nonstudents, and nonemployed 
Housewives 
Retired and pensioners 
Male employees, family with a car 
Male white collar workers, no car 
Male blue collar workers, no car 
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Category Description 

10 Male service workers, no car 
11 Female employees, family with a car 
12 Female white collar workers, no car 
13 Female blue collar workers, no car 
14 Female service workers, no car 
15 Preschool children 

For Baltimore the categories were defined as follows: 

Category 

1 

Description 

Persons <18 years of age 
2 
3 
4 
5 
6 

7 
8 

Employed, age 18 to 65, car never available 
Employed, age 18 to 65, car sometimes available 
Employed, age 18 to 65, car always available 
Nonemployed, age 18 to 65, car never available 
Nonemployed, age 18 to 65, car sometimes 

available 
Nonemployed, age 18 to 65, car always available 
Persons >65 years of age 

The most significant variables explaining differences in travel 
behavior were 

Lodz (Poland) 

Age 
Employment status 
Automobile ownership 
Sex 
Type of employment 

Baltimore, Maryland 

Age 
Employment status 
Automobile availability 

The criteria for homogeneity of old categories to be com­
bined into a new category were different in both studies. For 
the Lodz study, two Categories i and j were considered similar 
only if their 35-element vectors of partial trip rates differenti­
ated by (a) base (home-based origin, home-based destination, 
non-home-based); (b) trip purpose (work, education, other pur­
poses); and (c) time of day (midnight to 5:30 a.m.; 5:30 a.m. to 
8:30 a.m.; 8:30 a.m. to 2:00 p.m.; 2:00 p.m. to 5:00 p.m.; 5:00 
p.m. to midnight) satisfied the following criteria of similarity: 

1. Correlation coefficient r;j ~ 0.900, 
2. Slope 0.75 S b;i S 1.25, and 
3. fo.tercept ! aij ! ~ 0.10. 

In the Baltimore study, each category was represented by a 
15-element vector of-partial trip rates differentiated by (a) base 
(home-based origin, home-based destination, non-home­
based), and (b) trip purpose (work, education, shopping, per­
sonal business, social, recreation). Thus, the time-of-day crite­
rion was not introduced as a criterion of similarity of travel 
patterns in Baltimore. This lack was mainly due to scarcity of 
the Baltimore data. Introducing this criterion in the Lodz study 
was probably responsible for the significance of the variable 
employment type (white collar workers, blue collar workers, 
service employees) because of differences in working hours 
between white and blue collar workers (mostly 8:00 a.m. to 
4:00 p.m. for office employees versus 6:00 a.m. to 2:00 p.m. for 
factory workers in Poland). 

For this paper, the Lodz study was more meaningful than the 
Baltimore one because (a) time of day was a primary criterion 
of category definition, and (b) the data set was much larger. 
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RESULTS OF THE STUDY 

The results of both studies are presented in Figures 2-4. Figure 
2 shows hourly trip histograms for a sample of 9 out of 15 
person-categories in Lodz. There are separate profiles for (a) 
trips originated at home (HO), (b) ended at home (HD), and 
non-home-based (NHB). If the data set is large enough, this 
separation may help with directional analysis of traffic volumes 
generated by each category, for example, toward the central 
business district (CBD), away from CBD, and non-CED-ori­
ented. Figure 3 shows 11 sllIIlplo of joint hourly trip histograms 
for just three categories in Lodz representing three fundamen­
tally different activity and trip patterns for (a) preemployment, 
(b) employment, and (c) postemployment segments of the 
urban population. Figure 3 shows joint hourly trip histograms 
during the 24-hr period between 4:00 a.m. and 4:00 a.m the 
next day. (This presentation should probably be recommended 
instead of the period between midnight and next midnight 
because of late returns home from such activities as entertain­
ment or personal visits.) The four geographic areas within Lodz 
are rings differentiated by the transit travel time to the CBD: 
Zone 1, <15 min; Zone 2, 15 to 30 min; Zone 3, 30 to 45 min; 
and Zone 4, >45 min. Figure 4 shows a joint trip histogram of 
Categories 1-8 in Baltimore. 

The basic objective of this analysis is to answer two ques­
tions: (a) are there significant differences among person-cate­
gories in terms of their time-of-day travel patterns? and (b) are 
the category-based time-of-day trip characteristics consistent 
geographically? Visual inspection of Figures 2-4 suggests 
positive answers to both questions. Hourly trip histograms are 
indeed category-specific in both geographic contexts (in Lodz, 
Poland, and Baltimore, Maryland). Note that person-categories 
with no obligatory activities (e.g., work, education) try to plan 
their discretionary activities (shopping, personal business, rec­
reation, etc.) during off-peak periods, more convenient for 
travel. This applies to Category 6 in Lodz (Figures 2 and 3) and 
to Categories 5-8 in Baltimore (Figure 4). Hourly trip histo­
grams from both cities could be approximated by smooth, 
continuous functions. 

A brief comment on the findings presented in Figures 2-4 
can be made in terms of the utility maximization principle, 
commonly applied in disaggregate travel demand methodology. 
Persons participating in discretionary activities try to minimize 
disutility associated with travel (time expenditure, discomfort, 
etc.) by traveling during the off-peak periods. Moreover, sev­
eral discretionary activities (shopping, park recreation, etc.) 
have their highest utility also during the off-peak period (e.g., 
quicker service at stores, more sunshine during the middle of 
the day). Thus, persons who select the off-peak period for their 
activity and associated travel are acting rationally because they 
are trying to maximize their overall utility of the aclivities 
while at the same time minimizing their disutility of travel. 

For employed persons and students, the choice scenarios are 
greatly limited. The utility of being at work (or, to a lesser 
degree, at school) is commonly perceived as high but is nor­
mally restricted to a specific period during the day. The high 
ulili1y of the activity is commooJy able to offset even the 
highest disutility of travel during peak periods. (Changing the 
job or relocating will not be seen as the person's immediate 
reaction to the congestion problems experienced during travel 
to work.) 
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FIGURE 4 Hourly trip histograms of eight person-categories from Baltimore, Maryland. Total of hourly 
rates amounts to dally trip rate N;· 

Results of the statistical analyses presented in Tables 1 and 2 
are in agreement with the previous impression about the ob­
served regularities in category-based Lime-of-day travel pat­
terns (Figures 2-4). For the purpose of this analysis, all hourly 
histograms from Figure 3 bad to be standardized, that is, each 
hourly value represented the revealed probability of travel 
during a given period similar to Figure 1 (with a total of 1 for 
the 24-hr period). 

Time-of-day trip distributions of Category 1 (primary school 
children), Category 6 (retired persons), and Category 8 (male 
white collar workers) are significantly different from the ex­
pected population distribution in all cases analyzed (o. = 0.01). 

Table 2 shows that area differences in category-specific 
time-of-day trip profiles are significant only in 2 out of 12 cases 
analyzed (a= 0.01). The geographic stability of travel pro.files 
within homogeneous categories is an interesting finding con­
sidering the dramatically different geographic contexts ana­
lyzed (centtal city versus suburbs in Lodz). Similar analysi for 

Table 1 confirms the hypothesis that there are significant 
differences in hourly trip histograms among person-categories. 
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TABLE 1 RESULTS OF THE KOLMOGOROV-SMIRNOV TEST FOR GOODNESS 
OF FIT OF TIME-OF-DAY DISTRIBUTION FOR CATEGORIES 1, 6, AND 8 TO 
EXPECTED CATEGORY TIME-OF-DAY TRIP DISTRIBUTION (DATA FROM LODZ, 
POLAND) 

Category 
Zone Characteristic 6 8 

n 11122 1913 878 

o ... o. 1111 o. 136 0.179 

D crit 
0,042 0,037 0.055 

n 11357 11108 20211 

2 Dm11 0.115 0.155 o. 194 

D crit 
0,025 0.0211 0.036 

n 618 6116 187 

3 0
max 

0.127 0.1311 0.257 

D crit 0.066 0.066 0.119 

n 17117 979 370 

4 0max 
0,068 0.127 0.210 

D crit 0.039 0.052 0.085 

211 
n z sample size (number of trips); Dmax = Hax IF1-S1li a= 0,01 

1=1 

Baltimore could not be performed because of the limitations of 
the size of the data set. It is not clear, therefore, to what extent 
the travel pattern regularities from Lodz could be generalized 
for West European or American cities. 

APPLICATION OF THE TIME-OF-DAY TRAVEL 
PROFILES TO TRIP GENERATION AND 
DISTRIBUTION 

The trip interchange T;/11, t2) between Zones i and j during a 
specified Time Period 12 - 11 can be described as follows: 

where 

P;(t1, t2) = production of Zone i during Period (t2 -

11), 

(2) 

Ai(t1, t2) = attraction of Zone j during Period (t2 - t1), 

and 
C,/t1, 12) = generalized cost of travel between Zones i 

and j during Period (t2 - 11). 

The attractions Ai(t1, t2) can be known from empirical stud­
ies of the time profiles of arrivals at major employment places 
and schools, and to a lesser degree at other potential attraction 
points (parks, banks, etc.). If it is assumed that for each trip 
purpose p the corresponding shares SP(t1, t2) or arrival proba­
bility functions gP(t1, t2) are known, then 

(3) 

(4) 

or 

(5) 

where AiP is the total daily attraction of Zone j for Purpose p. 
Productions P;18 (t1, t2). on the other hand, do not depend on 

area characteristics but rather on characteristics of trip makers 
who try to satisfy their outside-home activities at some time 
during the day. The category-specific hourly trip histograms 
can now be useful for estimations of P,18 (t), which otherwise 
could be rather difficult to estimate. 

(6) 

The home-based production of Zone i, p1(8 (t1, t2), can be 
estimated as 

(7) 

summed over the hourly histogram, or, if normalized travel 
profiles are used, 

(8) 
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where 

Li 
aik 

NfB 

Ilf,B 

hHB 
kt 

= 
= 

= 

= 

= 

population of Zone i, 
share of Category k in Zone i, 

home-based daily trip rate of Category k, 

hourly histogram of daily trip rate of 
Category k, and 
normalized histogram of daily trip rate of 
Category k. 

The hk1 satisfy the nonnalization condition 

If histograms hk, could be substituted by a probability function 
hk (t) such that 

(24 HB Jo hk (t)dt = 1, 

then Equation 8 becomes 

(9) 

(10) 

During the 24-hr period, the following balancing condition has 
to hold (if trips crossing the cordon of the study area are 
ignored): 

P=A=Y (11) 

where 

P = total daily trip production (generation) in the city 
(sum of all zonal productions, both HB and 
NHB); 
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A = total daily trip attraction in the city; and 
Y = total daily number of trips made (anywhere) by 

inhabitants of all zones. 

Thus non-home-based production will be 

pNHB =A - pHB (12) 

Trip total Y will amount to 

(13) 

where L, ak, N" are as before but for the entire city. It could be 
reasonable to assume that 

12 12 +111 12 Pl =Al =YI 
11 11 +At t1 

(14) 

where tit= tiJ(t1, t2) =the average travel time between a pair of 
zones during the analyzed period t2 - t1 for the entire city. 

Thus, balancing conditions for period 12 - 11 for the entire 
city are 

m Jlz+lit = L AP gp(t)dt 
p=l 1, +lit 

(15) 

or 

(16) 

This equation can be used to adjust/2 and gP(t). 

TABLE 2 RESULTS OF THE KOLMOGOROV-SMIRNOV TEST FOR GOODNESS OF FIT 
OF TIME-OF-DAY DISTRIBUTION FOR ZONES 1-4 TO EXPECTED ZONE TIME-OF-DAY 
TRIP DISTRIBUTION (DATA FROM LODZ, POLAND) 

Cateaory Characteristic Zone 

2 3 II 

n 11122 11357 618 17117 

D 0.0211 max 0.013 0.063 0.0211 

0crit 0.0113 0.025 0.066 0.039 

n 1913 4108 6116 979 
• • 

DllH 0.051 0.018 0.059 0.106 

0cr1t 0.037 0.0211 0,066 0.052 

n 878 2024 187 370 
8 n ... 0.0113 0.019 0.018 0.071 

D cr1t 0.055 0.036 0.119 0.085 

•)Dtrrerence s11n1r1cant at a = 11 level 



Supernak 

The time-of-day travel forecasts can be made by introducing 
corresponding forecast variables L~ ex~ and adjusting functions 
h. and s;(1). This procedure should give a modeler an approxi­
mate idea about the expected changes in traffic volumes not 
only during the 24-hr period but during any peak or off-peak 
period as well. 

It is clear rhat such changes as increasing female employ­
ment, increasing automobile availability, and gradual aging of 
the society and changes in family structures have had a pro­
found effect on changes in both overall daily volumes and 
time-of-day distribution of rhe daily traffic during rhe recent 
dec.ade or two. This process continues, and will influence, 
among other traffic characteristics, time-of-day travel profiles. 
The person-category merhod is able to account for these long­
range changes, and rhus provide useful information about rhe 
scale of the desired changes in time-of-day traffic distribution 
in the future. It will be up to rhe transportation policy makers to 
decide to what extent the expected demand should be satisfied, 
or the anticipated peak-hour behavior modified [by, for exam­
ple, some specific transportation systems management (TSM) 
actions]. 

The complete equilibration process is, of course, much more 
complicated rhan the theoretical considerations from this paper 
(e.g., rhan Equations 15 and 16) would suggest. The basic 
category analysis assumption is that travel characteristics of 
homogeneous categories of individuals will remain unchanged 
over time. This assumption seems reasonable for the off-peak 
traffic when the system functions below its capacity. In rhe case 
of peak-period traffic, the situation may often be quite com­
plex. First, the model coefficients calibrated for existing condi­
tions may already reflect some modifications in travel patterns 
resulting from some degree of the oversaturation of the trans­
portation network in some places. Second, even if it is not the 
case (which would not be a realistic assumption for most North 
American and European cities), rhe forecast year may indicate 
deterioration of the currently satisfactory travel conditions in 
several areas. In that case, the forecast made by using person­
category travel profiles would represent desired volumes rather 
than real ones. Traffic assignment forecast would have to re­
duce rhese volumes to the level determined by the equilibrium 
conditions on the specific elements of the network. For the 
travelers it will mean either (a) necessarily eliminating some 
noncompulsory travel during peak period; (b) searching for a 
more convenient route or mode of traveling (e.g., abandoning a 
car in favor of transit if it enjoys preferential treatment), or (c) 
accepting increased delays and consequently also increasing 
length of peak periods. 

It is felt that, in spite of its simplification, the person­
category time-of-day volume estimation would be useful not 
only for an assessment of likely changes of traffic volumes in 
the future but also for policy analyses of possible counter­
measures (such as different TSM strategies, among them flex­
ible work hours) to be applied in situations where the traffic 
situation is expected to deteriorate. Today, in most western 
cities and probably in several cities elsewhere a significant part 
of the vital elements of transportation systems operates under 
saturated or oversaturated conditions during peak periods. 
Therefore, peak-period travel profiles for specific person-cate­
gories may represent an unnegotiable need for travel, indepen-
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dent of its inconvenience. It will be unrealistic to assume that 
many of these trips would disappear if the travel conditions 
deteriorate even more. Rather, a mode switch consideration or 
acceptance of longer delays and longer peak periods would be 
more likely options. Therefore, category-specific time-of-day 
profiles may appear more stable over time than the complexity 
of the phenomenon [influence from (a) traveler, (b) network, 
and (c) traffic] would indicate. Previous studies about actual 
responses in time-of-day travel to specific policies ( 11, 12) will 
be helpful for any extended application of the approach pro­
posed in this paper. 

CONCLUSIONS 

1. Extension of the person-category trip generation model 
by using category-specific time-of-day travel patterns appears a 
useful approach to estimate peak and off-peak traffic volumes 
in metropolitan areas. Time-of-day travel patterns are found to 
be significantly differentiated among person-categories and rel­
atively stable for representatives of the same person-category 
residing in different subareas of the metropolitan area studied. 

2. Time-of-day regularities in travel represent a rational 
behavior of groups of persons who try to maximize their utility 
of outside-home activities and minimize the disutility of associ­
ated travel. The resulting time-of-day travel patterns are 
strongly related to the time-of-day changes in both utilities of 
activities and disutilities of travel. These patterns illustrate a 
fundamental difference between highly constrained behavior of 
employed persons and students, and a relatively unconstrained 
behavior of persons involved in discretionary outside-home 
activities only. 

3. Person-category time-of-day travel analysis can provide a 
better insight into the peaking phenomenon, useful in travel 
studies and forecasts. Category-specific travel patterns can 
provide a base for estimation of the scale of the potential Iong­
range changes in traffic volumes for any time-of-day period. By 
estimating potential demand for additional traffic volumes dur­
ing peak periods, this approach can help develop appropriate 
solutions to best handle the network oversaturation problems 
by adequate TSM strategies or protransit policies. 
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Discrete/Continuous Analysis of 
Commuters' Route and Departure 
Time Choices 

SAMEER A. ABU-EISHEH AND FRED L. MANNERING 

An analysis of commuters' choices of routes and departure 
times Is undertaken using a dlscrete/contlnuous econometric 
modeling structure. The modeling system Is estJmated with 
morning work trip data collected In State College, Pennsy1-
van1a. The estimation results provide Interesting Insights Into 
the behavioral aspects motivating route and departure time 
choices and underscore the need for proper econometric speci­
fication in discrete/continuous model structures. Overall, the 
model estimations provide surprisingly good fits and show 
promise for applications in a tradJtlonal user equilibrium 
framework. 

The problem of peak-period traffic congestion has served as the 
primary motivation for countless research studies. Such efforts 
have ranged in focus from highway capacity analyses, includ­
ing intersection studies and coordinated traffic signal strategies, 
to studies of trip-making behavior. The congestion remedies 
suggested by these studies have given rise to new highway 
construction, various traffic capacity improvements (e.g., high­
way widening and improvement and automation of signal tim­
ings), high-occupancy-vehicle lanes, car- and vanpooling, and 
marketing efforts supporting pubJic transportation. Although 
such remedies have met with varying degrees of success, peak­
period traffic congestion continues to be one of the most per­
sistent problems facing the transportation profession. 

In this paper, an important behavioral aspect of the peak­
period congestion problem, travelers' choices of route and 
departure time, is considered. In the past few years, there has 
been a healthy level of research devoted to the general area of 
departure time and route choice. For example, an econometric 
modeling approach was adopted by Cosslett (1) and Abkowitz 
(2) for departure time choice, and by Hendrickson and Plank 
( 3) for the choice of departure time and mode. Hendrickson and 
Kocur (4), Hendrickson et al. (5), De Palma et al. (6), and 
Mahmassani and Herman (7) studied departure time in the 
context of user equilibrium for a single route. Extensions of 
some of these modeling efforts resulted in the inclusion of a 
route choice component, but on a limited scale as expressed by 
the equilibrium approaches of De Palma et al. (6), Mahmassani 
and Herman (7), and by the econometric simulation approach 
of Ben-Akiva et al. (8). Although a number of past studies have 
provided valuable insight into the route and departure time 

S. A. Abu-Eisheh, Department of Civil Engineering, An-Najah Na­
tional University, Nablus, West Bank, Israel. F. L. Mannering, Depart­
ment of Civil Engineering, University of Washington, Seattle, Wash. 
98195. 

choice decision-making process, they have all developed meth­
odologies that treat departure time as a discrete variable as 
opposed to a continuous one. The argument in support of the 
discrete treatment of this variable is that travelers can only 
distinguish among a few prevailing traffic conditions over a 
specified departure period. However, by discretizing departure 
time an arbitrary structure of time intervals is being imposed on 
the decision model. In this paper, a model that treats departure 
time as a continuous variable and thereby avoids any a priori 
restrictions on the modeling approach is developed. 

ECONOMETRIC FRAMEWORK 

In developing an appropriate econometric structure, first a 
probabilistic route choice model for travelers' automobile com­
mutes to work is specified Let the utility provided by each 
route be a linear function for each traveler, 

U; = ~(E7T;) + f!(RC;) 

where 

U; 
E7T; 

= 
= 

utility provided by Route i to the traveler; 
expected travel time on Route i; 

(1) 

RC; = vector of route specific characteristics such as 
number of traffic signals, queue lengths, and 
so on, for Route i; and 

~. o = estimable parameters. 

If a disturbance ierm is added to Equation 1 such that V; = U; 
+ E; is assumed to be distributed with a generalized extreme 
value (GEV) distribution, it can be shown (9) that the route 
choice probabilities are given by the standard multinomial logit 
model, 

P(ilR) = exp U1 

~exp uj 
I 

(2) 

where P (i IR) is the probability of selecting Route i from the 
set of available Routes R, and other tenns are as previously 
defined. 

With the route choice model specified, the specification of a 
continuous departure time model can be considered. The depar­
ture time, for each commuter, is defined from the following 
identity: 
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DT = WST - TT - WAT - DC (3) 

where 

DT 
WST 

TT 
WAT 

DC 

= 
= 
= 
= 

= 

departure time; 
work start time; 
travel time; 
work access time (i.e., walking time from 
parking location to work location); and 
delay cushion defined as the time difference 
between WST and arrival time (i.e., DC = DT 
+TT+ WAT). 

For the purposes of this analysis, it is assumed that WST and 
WAT are exogenous to the route and departure time choice 
process. Therefore, the aspects of departure time determination 
that are controllable by commuters include travel time and the 
delay cushion. In similar work, Mahmassani and Chang (10) 
analyzed the individual's departure time through a dynamic 
boundedly rational framework, but one that was based only on 
a schedule-delay acceptability mechanism. 

Most previous work has viewed route travel time as a factor 
beyond a commuter's control. In other words, under specified 
ft.ow conditions, all commuters face the same route travel 
times. However, in reality, this assertion is valid only under 
extremely congested conditions. Under most flow conditions, 
individual commuters have considerable control over their 
travel times by their abilities to alter driving speeds, risk-taking 
behavior, and reaction times in the traffic stream and at inter­
sections. Given this condition, a linear model of individual 
commuters' choice of travel time is defined by 

TT; = 't + a(RC;) + e (SE) + Tl (VC) + Uj (4) 

where 

TT; = work trip in-vehicle travel time (min) on 
Route i; 

RC; = vector of route specific characteristics for 
Route i (e.g., flow rate); 

SE = vector of socioeconomic characteristics of 
the commuter; 

vc = vector of vehicle characteristics used to 
commute; 

U; = disturbance term; and 
't,0.,0,TJ = estimable parameters. 

From an econometric perspective, the estimation of Equation 
4 gives rise to a classic problem of selectivity bias because 
route and travel time choices are interrelated decisions. To 
illustrate this problem, consider an origin-destination pair con­
nected by two routes, one a freeway and the other an arterial. It 
is unrealistic to assume that the travel time behavior of people 
observed to be using the freeway will be identical to that of 
people using the arterial. Observed freeway users may tend to 
be faster drivers, in general, because the freeway route offers 
them the potential to drive at much higher travel speeds. Hence, 
on the basis of observed route users, a censored sample exists 
because there is no way to know how fast a freeway user would 
have driven had he or she selected the arterial or how fast an 
arterial user would have driven had he or she selected 
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the freeway. Estimation results are biased because users ob­
served on any specific route represent a nonrandom sample 
fonned from a systematic route selection process. 

Numerous econometric methods have been developed in 
recent years to correct such a selectivity bias problem. A 
comprehensive review of such methods as they apply to trans­
portation is presented by Mannering and Hensher (11 ). The 
method selected for use in this study is the expected value 
method, which has been successfully applied by Dubin and 
McFadden (12) and by Manncring and Winston (13). To apply 
this method, Equation 4 is rcwrincn, conditioning on the choice 
of Route i, 

II 

TT = 't + a I. (RCk)<h; + 0(SE) + TJ (VC) + u (5) 
k=l 

where TT is the travel time conditional on choice Route i, n is 
the total number of route alternatives, and <l>ti is an indicator 
variable that equals I when k = i and 0 otherwise. 

To arrive at consistent estimates of Equation 5, the choice 
indicators (<l>ki) are replaced by the estimated probabilities from 
the route choice model (Equation 2). Thus, every route-specific 
variable included in the travel time equation is replaced by its 
expected value, which is the summation over all route alterna­
tives of the route's selection probability multiplied by its corre­
sponding route-specific attribute. 

The remaining component of Equation 2 necessary for de­
parture time prediction is the delay cushion, which is defined as 
the difference between the work start time and the actual 
commuter arrival time. A linear model is defined, 

DC; = TJ + 'ljf(RC;) + 'A.(SE) + fJ(PREF) + ro; (6) 

where 

DC; = delay cushion (min) on Route i, 
RC; = vector of route specific characteristics, 
SE = vector of commuters' socioeconomic 

characteristics, 
PREF = commuters' preferences for early or late 

arrivals, 
(J)i = a disturbance, and 

TJ, 'ljf, 'A., f, = estimable parameters. 

As was the case with the lravel Lime model, the delay 
cushion model must also be corrected or possible seleclivity 
bias, because it is unreasonable to assume that the selection of 
route and delay cushion are independent decisions. Consistent 
estimates of Equation 6 are obtained as discussed for the travel 
time model by replacing all route-specific independent vari­
ables by their expected values (see Equation 5). 

EMPIRICAL SETTING AND SAMPLE DESCRIPTION 

To estimate the specified route, travel time, and delay cushion 
models, a survey of morning commuters in the State College, 
Pennsylvania, metropolitan area was WJdertakeri. To simplify 
data collection and subsequent empirical analysis, one origin­
dcstination pair was evaluated The origin was a large residen­
tial devclopmenr in suburban State College and the destination 
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was the Pennsylvania State University and surrounding down­
town State College. The residential area comprises mostly 
multiple-story apartment complexes and the destination is a 
highly concentrated area of educational and business activity 
comprising less than 1 ml. 

Three distinct and diverse routes connect the selected origin­
destination pair. One is a four-lane major arterial with center 
turning lane and a 35-mph posted speed limit. Another is a two­
lane rural highway with 12-ft lanes, 4-ft paved shoulders, and a 
design speed of 45 mph. The third is a four-lane expressway 
designed to Interstate standards. This diversity of routes makes 
the selected origin-destination pair particularly well suited to 
route and departure time choice modeling. 

The morning commute smvey was designed as a trip log in 
which respondents provided a variety of information on their 
most recent work trip, including route choice; make, year, and 
model of car used; maximum driving speed; departure time; 
work arrival time; scheduled work starting time (if any); pre­
ferred arrival time at work; safety belt use; automobile occu­
pancy; and walking time from parking lot to work location. Jn 
addition, general socioeconomic information was collected, 
including income, age, occupation, marital status, and number 
of children. Jn the last week of April 1986, the smvey was 
administered as a postage-free mailback questionnaire to 505 
randomly selected origin residents. Although there was nearly 
a 40 percent response rate, improperly completed forms and 
respondents with work start times outside of the studied mom-
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ing peak period produced 151 usable observations. The sum­
mary statistics for the usable sample are presented in Table 1. 

Table 1 reflects the relatively short commute times that are 
typical for such a small metropolitan area. The socioeconomic 
characteristics are also typical for the graduate students and 
young professionals that dominate the survey sample. 

Jn addition to the commuter survey, extensive traffic-related 
data were collected for each of the three routes connecting the 
origin and destination. This information included flow rates, 
intersection queue lengths, peak-hour volumes, route lengths, 
and traffic signal characteristics (phasing, cycle times, etc.). All 
of thjs information is potentially useful for the route charac­
teristic variables specified in Equations 1, 4, and 6. 

ESTIMATION RESULTS 

The route choice model as specified in Equations 1 and 2 was 
estimated first. The estimation results of this model are pre­
sented in Table 2. As mentioned earlier, this model specifies the 
probability of a commuter's selecting one of the three alternate 
routes (i.e., arterial, rural route, or expressway) described in the 
previous section. 

The first variable included is the route's expected travel time. 
Expected travel time is defined to be the travel time predicted 
by the Bureau of Public Roads' (BPR) equation 

(7) 

TABLE 1 SAMPLE SUMMARY STATISTICS (Means or Percentages) 

Home to work in-vehicle travel time (minutes) 

Home to work distance (miles) 

Age (years) 

Household income (dollars) 

Percent male/female 

Percent married/single 

Percent using safety belts 

Vehicle occupancy 

Percent automobiles less than 5 years old 

Percent with fixed work start times preferring 
early arrival (positive delay cushions) 

Percent with fixed work start times preferring 
on-time arrivals (zero delay cushions) 

Percent with fixed work start times preferring 
late arrival (negative delay cushions) 

11.68 

4.81 

32.95 

25,860 

63/37 

42/58 

71 

1. 2 

66 

60 

37 

3 
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where 

EfT = 
To = 

expected travel time (min); 
travel time (min/mi) at zero flow (i.e., at 
speed limit); 

V = peak-hour volume (veh/hr) measured from 
field surveys; 
capacity of the route; 
distance from origin to destination; and 

c = 
d = 

a,p = route specific parameters that are functions of 
speed limit and capacity. 

The values of a and p used in estimation are obtained from 
the Branston study (14) in which transferable values are pre­
sented for different highway types. 

The expected travel times calculated by Equation 7 may vary 
from commuter to conm1utt:r bet:ause their precise destinations 
within the general Pennsylvania State University and down­
town State College destination area are considered. In other 
words, travel on local access streets is considered in addition to 
the three line-haul routes discussed earlier. Expected travel 
times are therefore distance weighted to account for travel on 
highway segments of varying capacity and speed limit. All 
variables in the estimated models take into account this precise 
destination consideration. 

As a final point, it is important to note that the use of 
expected travel times as defined in Equation 7 avoids endo­
genicity problems that would be encountered if actual travel 
times were used. This problem arises because travel time and 
route choice decisions are interrelated and a correlation be­
tween an explanatory variable (travel time) and the disturbance 
term would exist. [See Mannering and Hensher (11) for a 
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discussion of this problem in a discrete/continuous modeling 
framework.] 

Returning to the coefficient estimates presented in Table 2, 
EfT has the anticipated negative effect on route selection 
probabilities. Moreover, estimation results indicate that higher­
income commuters (those earning $30,000 or more) find travel 
time to be more onerous than their lower income counterparts. 
This presumably reflects the higher value of time of high­
income commuters. 

The percentage of coordinated traffic signals has a positive 
influence on the probability of route selection, indicating that 
commuters value the reduction in the variance of travel time 
resulting from signal coordination. Finally, the number of traf­
fic signals increases the probability of route selection for indi­
viduals with flexible work start time. This suggests a willing­
ness among flexible-time commuters to accept a higher travel 
time variance and to gamble for the lowest travel time route. 
(Recall that expected travel times are explicitly considered in 
the model.) Statistically, the route choice model performs well 
with relatively low standard errors and a high degree of log­
likelihood convergence. 

The travel time model is estimated by ordinary least squares 
and the dependent variable is the in-vehicle work trip travel 
time in minutes. The estimation results for uncorrected models 
and models corrected for selectivity bias (i.e., Equations 4 and 
5, respectively) are presented in Table 3. The difference be­
tween corrected and uncorrected coefficient estimates under­
scores the importance of correcting for possible selectivity 
bias. 

For specific coefficient estimates, the expected travel time as 
defined for the route choice model is a strong predictor of 
actual travel time. This variable is actually capturing a number 

TABLE 2 ROUTE CHOICE COEFFICIENT ESTIMATES (Standard Errors in Parentheses) 

Variable 

Expected travel time if income less than $30,000 
(in minutes)* 

Expected travel time if income $30,000 or more 
(in minutes)* 

Percent of traffic signals coordinated 

Number of traffic signals if flexible work start time 

Number of observations 

Log likelihood at zero 
at convergence 

*See text for precise def i nition . 

Coefficient 

-0.585 
(0.091) 

-0.753 
(0.155) 

0.043 
(0.021) 

o. 126 
(0.053) 

151 

-241.15 
-106.45 
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TABLE 3 TRAVEL TIME MODEL ESTIMATES, UNCORRECfED AND CORRECTED FOR SELECTIVITY 
BIAS (Standard Errors in Parentheses) 

Coefficient Estimate 

Variable Uncorrected Corrected 

Constant 8.407 5.079 
( 1. 562) ( 1. 79) 

Expected travel time (in minutes)* 0.189 0.247 
(0.074) (0.079) 

Flow rate (in vehicles per hour, per lane)* 0.00463 0. 00977 
(0.00159) (0.00213) 

Sex (1 if male, 0 if female) -0.414 -0.470 
(0.341) (0.328) 

Safety belts (1 if used, 0 if not used) -1.416 -0.873 
(0.649) (0.636) 

Age (1 if 30 years old or less, 0 otherwise) -0.677 -0.851 

Vehicle vintage (1 if 5 years 
old or less, 0 otherwise) 

Number of observations 

R-squared 

*See text for precise definition . 

of physical characteristics of the route, including speed limit, 
capacity, and distance (see Equation 7). The other route-spe­
cific variable in the model is the instantaneous flow rate defined 
as the observed flow rate over the 5-min interval that occurs 5 
min after the commuter's reported departure time, transformed 
into equivalent vehicles per hour per lane. Understandably, this 
variable is strongly positive, indicating that increasing in­
stantaneous flow rate increases commuters' travel times. 

Three socioeconomic variables were included in the model. 
The sex indicator variable confirmed a priori expectations that 
males tended to drive faster than females. The safety belt 
indicator variable produced a negative coefficient, suggesting 
that safety belt users tended to drive faster. This result lends 
some support to Sam Peltzman's famous hypothesis concerning 
the tendency of safety belt users to drive more recklessly, 
thereby mitigating the potential benefits of safety belt usage 
(15 ). Finally, the age indicator coefficient indicated that youn­
ger commuters tend to drive faster than older ones. 

The only vehicle characteristic included in the model was the 
vintage. This variable indicates that newer vehicles, with more 
sound bodies and steering, are driven faster than older vehicles. 

(0.588) (0.566) 

-0. 738 -0.555 
(0.624) (0.593) 

151 151 

0.150 0.216 

Unfortunately, the sample was not large enough to explore the 
differences among high-performance, compact, intermediate, 
and large cars. 

The delay cushion model was defined only for those re­
spondents that actually had fixed work start times. Because the 
sample included many researchers and self-employed profes­
sionals, only 90 of the 151 respondents had fixed work start 
times. Because the route choice behavior of these respondents 
may differ somewhat from the full sample estimates presented 
in Table 2, the route choice model was reestimated using only 
the 90 commuters with fixed work start times. The specification 
is identical to the earlier route choice model, of course exclud­
ing the flexible work start time traffic signal variable, and the 
estimation results are presented in Table 4. The route choice 
probabilities estimated from this model will be used to produce 
the expected values needed to correct for selectivity bias in the 
delay cushion model. For the 61 respondents with no fixed 
work start times, Equation 3 does not apply. For these com­
muters, departure times are simply their stated preferred arrival 
times minus their travel and work access times. The stated 
preferred arrival time is exogenous to the route and departure 



TABLE 4 ROUTE CHOICE COEFFICIENT ESTIMATES FOR PARTICIPANTS WITH FIXED WORK 
START TIMES (Standard Errors in Parentheses) 

Variable 

Expected travel time if income less than $30,000 
(In minutes)* 

Expected travel time if income $30,000 or more 
(In minutes)* 

Percent of traffic signals coordinated 

Number of observations 

Log likelihood at zero 
at convergence 

*See text for precise definition. 
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(0.157) 

.0073 
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FIGURE 1 The dlstrlbutlon of actual delay cushions. 
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time choice decision-making process. A similar treatment was 
used by Mahmassani and Chang (16), for whom preferred 
arrival times were supplied by commuters. 

The dependent variable in the delay cushion model is the 
difference between the work start time and actual arrival time 
in minutes and will be positive if the commuter arrives early 
and negative if the commuter arrives late. The actual observed 
distribution of these delay cushions is shown in Figure 1. The 
coefficient estimates for the regression model, both corrected 
and uncorrected for selectivity bias, are presented in Table 5. 

The only route specific variable included in the model is the 
expected travel time, defined as before. The coefficient is 
negative, indicating that the longer the commute the less the 
delay cushion. This negative sign may be an outgrowth of the 
rather short commuting distances that the sample of travelers 
experienced. That is, because absolute variance in travel time is 
fairly small due to the short travel distances, commuters tend to 
decrease their delay cushions to compensate for longer in­
vehicle travel times, knowing that the likelihood of a late 
arrival is rather small. It would be interesting to reestimate this 
model with a longer, higher-variance commute and to reassess 
the delay cushion and expected travel time relationships. 

The socioeconomic variables include income and age. The 
income coefficient is negative, indicating that higher-income 
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people prefer shorter delay cushions (i.e., have a higher value 
of time). The age coefficient is positive, suggesting that older 
workers tend to be more risk-adverse by choosing longer delay 
cushions. 

The final variables are commuters' preferences for early, on­
time, or late arrivals. These preferences are accounted for by 
indicator variables with on-time implicity set to zero. The 
coefficients of the preferred-early and preferred-late arrival 
indicator variables are of plausible sign and are highly signifi­
cant statistically. Overall, the Jil value of this model is sur­
prisingly high considering the high variance likely to be present 
in all delay cushion data. 

ESTIMATION NOTES 

The inclusion of flow-dependent variables in all models gives 
rise to two important estimation concerns. The first is one of 
selectivity in that traveler behavior in response to prevailing 
flows is observed only for the departure time actually chosen. 
However, unlike the route choice selectivity bias problem dis­
cussed earlier, therl? is no theoretical basis for assuming that the 
behavioral characteristics of individuals departing at different 
times will systematically differ. Thus, although the sample is 
censored in that individuals are not observed departing at all 

TABLE 5 DELAY CUSHION MODEL ESTIMATES, UNCORRECTED AND CORRECTED FOR SELECTIVITY 
BIAS (Standard Errors in Parentheses) 

Variable 

Constant 

Expected travel time (in minutes)* 

Income (in thousands of dollars) 

Age (in years) 

Preferred early cushion (1 if prefer to 
arrive before•work start time, 0 otherwise) 

Preferred late cushion (1 if prefer to 
arrive after work start time, 0 otherwise 

Number of observations 

R-squared 

*See text for precise definition. 

Coefficient Estimate 

Uncorrected 

-1. 288 
(3.979) 

-0.137 
(0.161) 

-0.091 
(0.082) 

o. 174 
(0.093) 

9.078 
(l.424) 

-7.047 
(3.95) 

90 

0.406 

Corrected 

0.497 
(4 .108) 

-0. 268 
(0.187) 

-0.091 
(0.081) 

0. 172 
(0.093) 

9. 119 
(l.417) 

-7.248 
(3.919) 

90 

0.415 
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available times, there is no reason to believe that it is censored 
nonrandomly, and as a result selectivity bias and the associated 
endogenicity of flows are not an issue with respect to departure 
times. 

The second point is one of endogenicity in the more tradi­
tional sense. As specified by the equilibrium condition in Equa­
tion l, flow deiermines demand but is itself an outcome of 
demand. This relationship can be safely ignored during the 
estimation of the specified individual choice models because 
the impact of a single individual's choice on total traffic flow is 
negligible. Therefore, each individual will view traffic flow as 
exogenous to the route and departure time choice process. 

MODEL APPLICATIONS 

The greatest potential application of the route/departure time 
choice modeling system is in the context of user equilibrium 
traffic assignment. The modeling system offers the potential to 
evaluate the traffic-related impacts of a wide range of policy 
options related to physical changes in the highway system. In 
addition, due to the behavioral nature of the models, the im­
pacts of shifts in population demographics can also be 
assessed. 

Unfortunately the model structure does not readily lend itself 
to equilibrium solutions. All three models (route, travel time, 
and delay cushion) include vehicle volumes as explanatory 
variables either in expected travel time terms or directly. Al­
though volumes can be considered exogenous when estimating 
individual choice models as previously discussed, they must be 
considered endogenous in the context of a user equilibrium. 
This endogenicity produces a more complex problem than 
standard route choice equilibriums, such as stochastic user 
equilibrium (17), due to the presence of travel tilt\e and delay 
cushion models. Equilibrium with such a group of models is 
technically possible (18) but is beyond the scope of this paper. 

SUMMARY AND CONCLUSIONS 

Most previous work on route and departure time choice has 
viewed departure time as a discrete variable. In this paper a 
route and departure time choice modeling system is developed 
that treats departure time as a continuous variable. The models 
were estimated with a sample of work trip commuters and the 
resulting coefficient estimates were of plausible sign and rea­
sonable statistical significance. 

The findings of this study give rise lo a number of important 
points. First, the prospects for continuing advances in develop­
ment of behavioral route and departure time choice models are 
most promising. Such models offer the potential for signifi­
cantly expanding understanding of this critical decision-mak­
ing process. The second point relates to the importance of 
proper econometric specification in the estimation of discrete/ 
continuous route and departure time choice models. The es­
timation results (Tables 3 and 5) suggest that the potential for 
selectivity bias is considerable. Finally, from the perspective of 
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applications, it is important that future work be directed to­
wards incorporating route and departure time choice models 
such as those estimated in this paper into a user equilibrium 
framework. Only then can the true value of such a modelmg 
approach be realized. 
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